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Introduction

Homological algebra is a tool used to prove nonconstructive existence theo-
rems in algebra (and in algebraic topology). It also provides obstructions to
carrying out various kinds of constructions; when the obstructions are zero,
the construction is possible. Finally, it is detailed enough so that actual cal-
culations may be performed in important cases. The following simple ques-
tion (taken from Chapter 3) illustrates these points: Given a subgroup A of an
abelian group B and an integer n, when is nA the intersection of A and nB?
Since the cyclic group Z/n is not flat, this is not always the case. The obstruc-
tion is the group Tor(B/A,  Z/n), which explicitly is (x E B/A : nx = O}.

This book intends to paint a portrait of the landscape of homological alge-
bra in broad brushstrokes. In addition to the ìcanonsî of the subject (Ext, Tor,
cohomology of groups, and spectral sequences), the reader will find introduc-
tions to several other subjects: sheaves, limí, local cohomology, hypercoho-
mology, profinite groups, the classifying space of a group, Affine Lie alge-
bras, the Dold-Kan correspondence with simplicial modules, triple cohomol-
ogy, Hochschild and cyclic homology, and the derived category. The historical
connections with topology, regular local rings, and semisimple Lie algebras
are also described.

After a lengthy gestation period (1890-1940),  the birth of homological al-
gebra might be said to have taken place at the beginning of World War II with
the crystallization of the notions of homology and cohomology of a topolog-
ical space. As people (primarily Eilenberg) realized that the same formalism
could be applied to algebraic systems, the subject exploded outward, touching
almost every area of algebra. This phase of development reached maturity in
1956 with the publication of Cartan and Eilenbergís book [CE] and with the
emergence of the central notions of derived functors, projective modules, and
injective modules.

xi



xii Introduction

Until 1970, almost every mathematician learned the subject from Cartan-
Eilenberg [CE]. The canonical list of subjects (Ext, Tor, etc.) came from this
book..As the subject gained in popularity, other books gradually appeared on
the subject: MacLaneís  1963 book [MacH], Hilton and Stammbachís 1971
book [HS], Rotmanís  1970 notes, later expanded into the book [Rot], and
Bourbakiís 1980 monograph [BX] come to mind. All these books covered the
canonical list of subjects, but each had its own special emphasis.

In the meantime, homological algebra continued to evolve. In the period
1955-1975, the subject received another major impetus, borrowing topolog-
ical ideas. The Dold-Kan correspondence allowed the introduction of simpli-
cial methods, lim’ appeared in the cohomology of classifying spaces, spec-
tral sequences assumed a central role in calculations, sheaf cohomology be-
came part of the foundations of algebraic geometry, and the derived category
emerged as the formal analogue of the topologistsí homotopy category.

Largely due to the influence of Grothendieck, homological algebra became
increasingly dependent on the central notions of abelian category and derived
functor. The cohomology of sheaves, the Grothendieck spectral sequence, lo-
cal cohomology, and the derived category all owe their existence to these no-
tions. Other topics, such as Galois cohomology, were profoundly influenced.

Unfortunately, many of these later developments are not easily found by
students needing homological algebra as a tool. The effect is a technological
barrier between casual users and experts at homological algebra. This book is
an attempt to break down that barrier by providing an introduction to homo-
logical algebra as it exists today.

This book is aimed at a second- or third-year graduate student. Based on the
notes from a course I taught at Rutgers University in 1985, parts of it were
used in 1990-92 in courses taught at Rutgers and Queensí University (the
latter by L. Roberts). After Chapter 2, the teacher may pick and choose topics
according to interest and time constraints (as was done in the above courses),

As prerequisites, I have assumed only an introductory graduate algebra
course, based on a text such as Jacobsonís Basic Algebra I [BAI]. This means
some familiarity with the basic notions of category theory (category, functor,
natural transformation), a working knowledge of the category Ab of abelian
groups, and some familiarity with the category R-mod (resp. mod-R) of left
(resp. right) modules over an associative ring R. The notions of abelian cat-
egory (section 1.2), adjoint functor (section 2.3) and limits (section 2.6) are
introduced in the text as they arise, and all the category theory introduced in
this book is summarized in the Appendix. Several of the motivating exam-
ples assume an introductory graduate course in algebraic topology but may
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be skipped over by the reader willing to accept that such a motivation exists.
An exception is the last section (section 10.9) which requires some familiarity
with point-set topology.

Many of the modern applications of homological algebra are to algebraic
geometry. Inasmuch as I have not assumed any familiarity with schemes or
algebraic geometry, the reader will find a discussion of sheaves of abelian
groups, but no mention of sheaves of Ox-modules. To include it would have
destroyed the flow of the subject; the interested reader may find this material
in [Hart].

Chapter 1 introduces chain complexes and the basic operations one can
make on them. We follow the indexing and sign conventions of Bourbaki
[BX], except that we introduce two total complexes for a double complex: the
algebraistsí direct sum total complex and the topologistsí product total com-
plex. We also generalize complexes to abelian categories in order to facilitate
the presentation of Chapter 2, and also in order to accommodate chain com-
plexes of sheaves.

Chapter 2 introduces derived functors via projective modules, injective
modules, and &functors,  following [Tohoku]. In addition to Tor and Ext, this
allows us to define sheaf cohomology (section 2.5). Our use of the acyclic
assembly lemma in section 2.7 to balance Tor and Ext is new.

Chapter 3 covers the canonical material on Tor and Ext. In addition, we dis-
cuss the derived functor limí of the inverse limit of modules (section 3.5), the
Ktinneth Formulas (section 3.6), and their applications to algebraic topology.

Chapter 4 covers the basic homological developments in ring theory. Our
discussion of global dimension (leading to commutative regular local rings)
follows [KapCR]  and [Rot]. Our material on Koszul complexes follows [BX],
and of course the material on local cohomology is distilled from [GLC].

Spectral sequences are introduced in Chapter 5, early enough to be able to
utilize this fundamental tool in the rest of the book. (A common problem with
learning homological algebra from other textbooks is that spectral sequences
are often ignored until the last chapter and so are not used in the textbook
itself.) Our basic construction follows [CE]. The motivational section 5.3 on
the Leray-Serre spectral sequence in topology follows [MacH]  very closely.
(I first learned about spectral sequences from discussions with MacLane  and
this section of his book.) Our discussion of convergence covers several results
not in the standard literature but widely used by topologists, and is based on
unpublished notes of M. Boardman.

In Chapter 6 we finally get around to the homology and cohomology of
groups. The material in this chapter is taken from [Brown], [MacH],  and [Rot].



xiv Introduction

We use the LyndonHochschild-Setre  spectral sequence to do calculations in
section 6.8, and introduce the classifying space BG in section 6.10. The ma-
terial on universal central extensions (section 6.9) is based on [Milnor] and
[Suz]. The material on Galois cohomology (and the Brauer group) comes from
[BAII], [Serre], and [Shatz].

Chapter 7 concerns the homology and cohomology of Lie algebras. As
Lie algebras arenít part of our prerequisites, the first few sections review the
subject, following [JLA] and [Humph]. Most of our material comes from the
1948 Chevalley-Eilenberg paper [ChE]  and from [CE], although the emphasis,
and our discussion of universal central extensions and Affine Lie algebras,
comes from discussions with R. Wilson and [Will.

Chapter 8 introduces simplicial methods, which have long been a vital part
of the homology toolkit of algebraic topologists. The key result is the Dold-
Kan theorem, which identifies simplicial modules and positive chain com-
plexes of modules. Applied to adjoint functors, simplicial methods give rise
to a host of canonical resolutions (section 8.6), such as the bar resolution, the
Godement resolution of a sheaf [Gode], and the triple cohomology resolutions
[BB]. Our discussion in section 8.7 of relative Tor and Ext groups parallels
that of [MacH],  and our short foray into Andre-Quillen homology comes from

[Ql and [B=d.
Chapter 9 discusses Hochschild and cyclic homology of k-algebras. Al-

though part of the discussion is ancient and is taken from [MacH], most is new.
The material on differentials and smooth algebras comes from [EGA, IV] and
[Mat]. The development of cyclic homology is rather new, and textbooks on it
([Loday],[HK])  are just now appearing. Much of this material is based on the
articles [LQ],  [Connes], and [Gw].

Chapter 10 is devoted to the derived category of an abelian category. The
development here is based upon [Verd] and [HartRD].  The material on the
topologistsí stable homotopy in section 10.9 is based on [A] and [LMS].

Paris, February 1993



1

Chain Complexes

1.1 Complexes of R-Modules

Homological algebra is a tool used in several branches of mathematics: alge-
braic topology, group theory, commutative ring theory, and algebraic geometry
come to mind. It arose in the late 1800s in the following manner. Let f and g
be matrices whose product is zero. If g . II = 0 for some column vector V, say,
of length n, we cannot always write u = f . u. This failure is measured by the
defect

d = II - rank(f) - rank(g).

In modern language, f and g represent linear maps

with gf = 0, and d is the dimension of the homology module

H = ker(s>lfW).

In the first part of this century, Poincare and other algebraic topologists
utilized these concepts in their attempts to describe ìn-dimensional holesî in
simplicial complexes. Gradually people noticed that ìvector spaceî could be
replaced by ìR-moduleî for any ring R.

This being said, we fix an associative ring R and begin again in the category
mod-R of right R-modules. Given an R-module homomorphism f: A + B,
one is immediately led to study the kernel ker(f), cokernel coker(f),  and
image im(f)  of f. Given another map g: B -+ C, we can form the sequence

(*I ALBg'C.



2 Chain Complexes

We say that such a sequence is exact (at B) if ker(g)  = im(f).  This implies
in particular that the composite gf: A + C is zero, and finally brings our
attention to sequences (*) such that gf = 0.

Definition 1.1.1 A chain complex C. of R-modules is a family [Cn)nEz  of
R-modules, together with R-module maps d = d,,: C, -+ C,_I such that each
composite d o d: C, -+ C,,-2  is zero. The maps d,, are called the dzxerentials
of C.. The kernel of d,, is the module of n-cycles of C,, denoted 2, = Z, (C.).
The image of d,,+l: C,,+l + C, is the module of n-boundaries of C,, denoted
B, = B,,(C,). Because d o d = 0, we have

for all n. The nth homology module of C, is the subquotient H,,(C.) = Z,lB,
of C,. Because the dot in C, is annoying, we will often write C for C..

Exercise 1.1.1 Set C, = Z/8 for n >_ 0 and C, = 0 for n < 0; for n > 0
let d,, send x(mod 8) to 4x(mod 8). Show that C. is a chain complex of
Z/8-modules and compute its homology modules.

There is a category Ch(mod-R) of chain complexes of (right) R-modules.
The objects are, of course, chain complexes. A morphism u: C. + D, is a
chain complex map, that is, a family of R-module homomorphisms un: C, +
D, commuting with d in the sense that un-Id,  = dn_lu,.  That is, such that
the following diagram commutes

d d d d
. . . + Cn+l - c, + c,-I - ...

d d d d
. . . + Dntl  - D, - D,-1 - . .

Exercise 1.1.2 Show that a morphism U: C, + D. of chain complexes sends
boundaries to boundaries and cycles to cycles, hence maps H,, (C.) + H,, (D.).
Prove that each H, is a functor from Ch(mod-R) to mod-R.

Exercise 1.1.3 (Split exact sequences of vector spaces) Choose vector spaces
(Bn, HnJnEz  over a field, and set C, = B, @ Hn @ B,_l. Show that the
projection-inclusions C, + B,_l c C,_ 1 make (C,) into a chain complex,
and that every chain complex of vector spaces is isomorphic to a complex of
this form.
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Exercise 1.1.4 Show that {HomR(A,  C,))  forms a chain complex of abelian
groups for every R-module A and every R-module chain complex C. Taking
A = Z,, show that if H,(HomR(Z,,  C)) = 0, then H,(C) = 0. Is the converse
true?

Definition 1.1.2 A morphism C. -+ D. of chain complexes is called a quasi-
isomorphism (Bourbaki uses homologism) if the maps H,(C.) -+ H,(D.) are
all isomorphisms.

Exercise 1.1.5 Show that the following are equivalent for every C. :

1. C. is enact,  that is, exact at every C,.
2. C, is acyclic, that is, H,(C.) = 0 for all 12.
3. The map 0 + C, is a quasi-isomorphism, where ì0”  is the complex of

zero modules and zero maps.

The following variant notation is obtained by reindexing with superscripts:
C” = C-,. A cochain complex C. of R-modules is a family {Cî} of R-
modules, together with maps dn: Cn -+ Cn+’ such that d o d = 0. Zî(C.)  =
ker(dn) is the module of n-cocycles,  Bî(C,)  = im(dî-ë)  C Cn is the mod-
ule of n-coboundaries, and the subquotient Hî(C.)  = Zî/B”  of C” is the nth
cohomology module of C.. Morphisms and quasi-isomorphisms of cochain
complexes are defined exactly as for chain complexes.

A chain complex C, is called bounded if almost all the C, are zero; if
C, = 0 unless a ( n 5 b, we say that the complex has amplitude in [a, b]. A
complex C, is bounded above (resp. bounded below) if there is a bound b (resp.
a) such that C, = 0 for all n > b (resp. n < a). The bounded (resp. bounded
above, resp. bounded below) chain complexes form full subcategories of Ch
= Ch(R-mod) that are denoted Chb, Ch_ and Ch+, respectively. The sub-
category Ch,o  of non-negative complexes C. (C, = 0 for all n < 0) will be_
important in Chapter 8.

Similarly, a cochain complex C. is called bounded above if the chain com-
plex C, (C, = C?) is bounded below, that is, if Cn = 0 for all large n; C.
is bounded below if C, is bounded above, and bounded if C. is bounded.
The categories of bounded (resp. bounded above, resp. bounded below, resp.
non-negative) cochain complexes are denoted Chb, Ch-,  Chf,  and Chî,

respectively.

Exercise 1.1.6 (Homology of a graph) Let I be a finite graph with V vertices
(~1, . . , VV)  and E edges (el, . . . , e&. If we orient the edges, we can form the
incidence matrix of the graph. This is a V x E matrix whose (ij) entry is fl
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if the edge ej starts at vi, - 1 if ej ends at ui, and 0 otherwise. Let CO be the
free R-module on the vertices, Cl the free R-module on the edges, C, = 0
if n # 0, 1, and d: Cl -+ Co be the incidence matrix. If r is connected (i.e.,
we can get from IJO  to every other vertex by tracing a path with edges), show
that Ho(C) and HI(C) are free R-modules of dimensions 1 and V - E - 1
respectively. (The number V - E - 1 is the number of circuits of the graph.)
Hint: Choose basis (~0, vt - vu, . . . , Z)V  - uo} for Co, and use a path from vu
to ui to find an element of Ct mapping to vi - uu.

Application 1.1.3 (Simplicial homology) Here is a topological application
we shall discuss more in Chapter 8. Let K be a geometric simplicial complex,
such as a triangulated polyhedron, and let Kk (0 5 k 5 n) denote the set of
k-dimensional simplices of K. Each k-simplex has k + 1 faces, which are
ordered if the set Ko of vertices is ordered (do so!), so we obtain k + 1 set
maps &: Rk + &_t (0 ( i 5 k). The simplicial chain complex of K with
coefficients in R is the chain complex C., formed as follows. Let Ck be the free
R-module on the set Kk; set Ck = 0 unless 0 5 k 5 n. The set maps & yield
k + 1 module maps Ck -+ C&t, which we also call &; their alternating sum
d = c(- l)ë&  is the map Ck + Ck-1 in the chain complex C.. To see that C,
is a chain complex, we need to prove the algebraic assertion that d o d = 0.
This translates into the geometric fact that each (k - 2)-dimensional simplex
contained in a fixed k-simplex o of K lies on exactly two faces of U. The
homology of the chain complex C, is called the simplicial homology of K with
coefficients in R. This simplicial approach to homology was used in the first
part of this century, before the advent of singular homology.

Exercise 1.1.7 (Tetrahedron) The tetrahedron T is a surface with 4 ver-
tices, 6 edges, and 4 2-dimensional faces. Thus its homology is the homol-
ogy of a chain complex 0 -+ R4 + R6 + R4 + 0. Write down the matrices
in this complex and verify computationally that Hz(T) g Ho(T)  &Z R and
HI(T) = 0.

Application 1.1.4 (Singular homology) Let X be a topological space, and
let Sk = Sk(X) be the free R-module on the set of continuous maps from
the standard k-simplex Ak to X. Restriction to the ith face of .& (0 5 i 5 k)
transforms a map & + X into a map Ak_1  + X, and induces an R-module
homomorphism ai from Sk to ,!$_I.  The alternating sums d = x(-l)ë&  (from
Sk to Sk-t) assemble to form a chain complex
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called the singular chain complex of X. The nrh homology module of S.(X) is
called the nth singular homology of X (with coefficients in R) and is written
Z&(X;  R). If X is a geometric simplicial complex, then the obvious inclusion
C,(X) -+ S.(X) is a quasi-isomorphism, so the simplicial and singular homol-
ogy modules of X are isomorphic. The interested reader may find details in
any standard book on algebraic topology.

1.2 Operations on Chain Complexes

The main point of this section will be that chain complexes form an abelian
category. First we need to recall what an abelian category is. A reference for
these definitions is [MacCW].

A category A is called an Ab-category if every horn-set HomA(A,  B) in
A is given the structure of an abelian group in such a way that composition
distributes over addition. In particular, given a diagram in A of the form

we have h(g + gí)f  = hgf + hgíf in Hom(A, D). The category Ch is an Ab-
category because we can add chain maps degreewise; if (f,,)  and {gn} are chain
maps from C, to D., their sum is the family of maps { fn + gn}.

An additive functor  F: 23 -+ A between Ab-categories t3 and d is a functor
such that each Homa(Bí,  B) -+ HomA(FBí,  FB) is a group homomorphism.

An additive category is an Ab-category A with a zero object (i.e., an ob-
ject that is initial and terminal) and a product A x B for every pair A, B of
objects in A. This structure is enough to make finite products the same as fi-
nite coproducts. The zero object in Ch is the complex ì0”  of zero modules
and maps. Given a family (A,] of complexes of R-modules, the product lTA,
and coproduct (direct sum) @A, exist in Ch and are defined degreewise: the
differentials are the maps

respectively. These suffice to make Ch into an additive category.

Exercise 1.2.1 Show that direct sum and direct product commute with ho-
mology, that is, that @H,,(A,) G %(@A,)  and lXH,(A,)  2 H,(lTA,) for
all n.



6 Chain Complexes

Here are some important constructions on chain complexes. A chain com-
plex B is called a subcomplex of C if each B, is a submodule of C, and the
differential on B is the restriction of the differential on C, that is, when the
inclusions i, : B, C C, constitute a chain map B + C. In this case we can
assemble the quotient modules C,/ B, into a chain complex

. ..--+ Cn+l/B,+l  5 C,IB, A C,_l/B,_l  5 ...
denoted C/B and called the quotient complex. If f: B + C is a chain map, the
kernels {ker(f,,)}  assemble to form a subcomplex of B denoted ker(f>,  and
the cokemels (coker(f,)}  assemble to form a quotient complex of C denoted
coker(f).

Definition 1.2.1 In any additive category A, a kernel of a morphism f: B +
C is defined to be a map i: A + B such that fi = 0 and that is universal with
respect to this property. Dually, a cokernel of f is a map e: C -+ D, which
is universal with respect to having ef = 0. In A, a map i: A + B is manic
if ig = 0 implies g = 0 for every map g: Aí + A, and a map e: C + D is
an epi if he = 0 implies h = 0 for every map h: D -+ Dí. (The definition of
manic and epi in a non-abelian category is slightly different; see A.1 in the
Appendix.) It is easy to see that every kernel is manic and that every cokemel
is an epi (exercise!).

Exercise 1.2.2 In the additive category A = R-mod, show that:

I. The notions of kernels, monies, and monomorphisms are the same.
2. The notions of cokemels, epis, and epimorphisms are also the same.

Exercise 1.2.3 Suppose that A = Ch and f is a chain map. Show that the
complex ker( f) is a kernel of f and that coker( f) is a cokemel of f .

Definition 1.2.2 An abelian category is an additive category A such that

1. every map in A has a kernel and cokemel.
2. every manic in A is the kernel of its cokemel.
3. every epi in A is the cokernel of its kernel.

The prototype abelian category is the category mod-R of R-modules. In
any abelian category the image im(f)  of a map f: B -+ C is the subobject
ker(coker f) of C; in the category of R-modules, im(f)  = {f(b) : b E B).
Every map f factors as
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B  5 im(.f)  $ C

with e an epimorphism and m a monomorphism. A sequence

of maps in A is called exact (at B) if ker(g)  = im(f).
A subcategory t? of A is called an abelian  subcategory if it is abelian, and

an exact sequence in B is also exact in A.
If A is any abelian category, we can repeat the discussion of section 1.1

to define chain complexes and chain maps in d-just replace mod-R by A!
These form an additive category Ch(d), and homology becomes a functor
from this category to A. In the sequel we will merely write Ch for Ch(d)
when A is understood.

Theorem 1.2.3 The category Ch = Ch(d) of chain complexes is an abelian
category.

Proof Condition 1 was exercise 1.2.3 above. If f: B + C is a chain map, I
claim that f is manic iff each B, + C,, is manic, that is, B is isomorphic to a
subcomplex of C. This follows from the fact that the composite ker(f) + C
is zero, so if f is manic,  then ker(f) = 0. So if f is manic,  it is isomorphic to
the kernel of C -+ C/B. Similarly, f is an epi iff each B, + C, is an epi, that
is, C is isomorphic to the cokemel  of the chain map ker(f)  + B,. 0

Exercise 1.2.4 Show that a sequence 0 -+ A, -+ B. --+ C. -+ 0 of chain com-
plexes is exact in Ch just in case each sequence 0 -+ A,, -+ B, --+ C, + 0 is
exact in A.

Clearly we can iterate this construction and talk about chain complexes of
chain complexes; these are usually called double complexes.

Example 1.2.4 A double complex (or bicomplex) in A is a family {C,,,) of
objects of A, together with maps

dh: C,,, --+ C,_l,, a n d  dU: C,,, + C,,,-I

such that dh o dh = d” o dî = dîdh  + dhd” = 0. It is useful to picture the
bicomplex C.. as a lattice
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. . . . . . . . .

1 1 1
dh dh. . . - c,-1,,+1 - Cp,,+l  - cp+1,,+1  - ..’

dUL dU1 4.

. . . -
CP-Lq L cp,, E Cp+l,q - . .

a dîL. 4

dh dh
. . - cp-14-l - Cp,,-1 - c,+1,,_1  t- . . .

L 1 I
. . . . . . . . .

in which the maps d” go horizontally, the maps dî go vertically, and each
square anticommutes. Each row C,, and each column C,, is a chain complex.

We say that a double complex C is bounded if C has only finitely many
nonzero terms along each diagonal line p + 4 = n, for example, if C is con-
centrated in the first quadrant of the plane (ajrst quadrant double complex).

Sign Trick 1.2.5 Because of the anticommutivity, the maps dî are not maps
in Ch, but chain maps f*s from C*, to C*,q_t  can be defined by introducing
f signs:

fp,4 = (-1)pd;,4:  Cp,q  + Cp,q-1.

Using this sign trick, we can identify the category of double complexes with
the category Ch(Ch)  of chain complexes in the abelian category Ch.

Total Complexes 1.2.6 To see why the anticommutative condition dîdh  +
dhd” = 0 is useful, define the total complexes Tot(C) = Totî(C) and Tot@(C)

by
T o t î ( C ) ,  =  fl C,,, and  To t@(C) ,  =  @ C,,,.

p+q=n p+q=n

The formula d = dh + dî defines maps (check this!)

d : Totî(C),  + Totî(C),_1 and d : Totí(C), -+ Tot@(C),_t

such that d o d = 0, making Totî(C) and Tot@(C) into chain complexes. Note
that Tot@(C) = Totî(C) if C is bounded, and especially if C is a first quadrant
double complex. The difference between Totî(C) and Tot@(C) will become
apparent in Chapter 5 when we discuss spectral sequences.
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Remark Totî(C) and Tot@(C) do not exist in all abelian categories; they
donít exist when A is the category of all finite abelian groups. We say that
an abelian  category is complete if all infinite direct products exist (and so
Totî exists) and that it is cocomplete if all infinite direct sums exist (and so
Tot@  exists). Both these axioms hold in R-mod and in the category of chain
complexes of R-modules.

Exercise 1.2.5 Give an elementary proof that Tot(C) is acyclic whenever C
is a bounded double complex with exact rows (or exact columns). We will see
later that this result follows from the Acyclic Assembly Lemma 2.7.3. It also
follows from a spectral sequence argument (see Definition 5.62  and exercise
5.6.4).

Exercise 1.2.6 Give examples of (1) a second quadrant double complex C
with exact columns such that Totî(C) is acyclic but Tot@(C) is not; (2) a
second quadrant double complex C with exact rows such that Tot@(C) is
acyclic but Totî(C) is not; and (3) a double complex (in the entire plane) for
which every row and every column is exact, yet neither Totî(C) nor Tot@(C)
is acyclic.

Truncations 1.2.7 If C is a chain complex and n is an integer, we let r?,,C
denote the subcomplex of C defined by

0 ifi <n
(t>nC)i = Z, if i = R

Ci ifi >n.

Clearly Hi(t>,C)  = 0 for i < n and Hi(r,,C) = Hi(C) for i > n. The com-
plex t+C is called the (good) truncation of C below n, and the quotient
complex t<,,C = C/(t,,C) is called the (good) truncation of C above n;
Hi(t<,C) is Hi(C) for 7 < n and 0 for i > n.

Some less useful variants are the brutal truncations u<,,C  and oznC =

C/(%l C). By definition, (o<,C)i  is Ci if i < n and 0 if i > n. These have
the advantage of being easier to describe but the disadvantage of introducing
the homology group H,,(a&)  = C,/B,.

Translation 1.2.8 Shifting indices, or translation, is another useful operation
we can perform on chain and cochain complexes. If C is a complex and p an
integer, we form a new complex C[p] as follows:

c[p], = Cnfp (resp.  C[pY = Cî-ë)
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with differential (-1)Pd.  We call C[p] the pth translate of C. The way to
remember the shift is that the degree 0 part of C[p] is C,. The sign convention
is designed to simplify notation later on. Note that translation shifts homology:

fL(C[pl)  = &fp(C) (rev. ffî(C[~l)  = ffî-p(C>h

We make translation into a functor by shifting indices on chain maps. That is,
if f: C + D is a chain map, then f[p] is the chain map given by the formula

f[Pln = fn+p (resp.  f[p]” = fnPP).

Exercise 1.2.7 If C is a complex, show that there are exact sequences of
complexes:

0  ---+ Z ( C )  --+ c -5 B(C)[-l]  ---_,  0 ;

0 - H(C) - C/B(C)  A Z(C)[-11  - H(C)[-11  - 0 .

Exercise 1.2.8 (Mapping cone) Let f: B + C be a morphism of chain com-
plexes. Form a double chain complex D out of f by thinking of f as a chain
complex in Ch and using the sign trick, putting B [-- l] in the row 9 = 1 and
C in the row q = 0. Thinking of C and B[- 11 as double complexes in the
obvious way, show that there is a short exact sequence of double complexes

0 - C ----+  D - B[-I] + 0.

The total complex of D is cone(fí),  the mapping cone (see section 1.5) of
a map fí,  which differs from f only by some f signs and is isomorphic
to f.

1.3 Long Exact Sequences

It is time to unveil the feature that makes chain complexes so special from a
computational viewpoint: the existence of long exact sequences.

Theorem 1.3.1 Let 0 --+ A. L B. & C, + 0 be a short exact sequence of
chain complexes. Then there are natural maps a: H,(C) -+ H,_l (A), called
connecting homomorphisms, such that

. L f&+,(C) A K,(A) z H,(B)-II-,  H,(C)A Hn_l(A)L

is an exact sequence.
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Similarly, if 0 -+ A. L B. -% C. -+ 0 is a short exact sequence of
cochain complexes, there are natural maps a: Hn(C) -+ Hnfl (A) and a long
exact sequence

. . &Hî-ë(C)&  H"(A)L H"(B)& H"(C)& H"+'(A)L

Exercise 1.3.1 Let 0 -+ A + B -+ C + 0 be a short exact sequence of com-
plexes. Show that if two of the three complexes A, B, C are exact, then so is
the third.

Exercise 1.3.2 (3 x 3 lemma) Suppose giben  a commutative diagram

0 + Aî + B/' + C" + 0

1 L 1
0 0 0

in an abelian category, such that every column is exact. Show the following:

1. If the bottom two rows are exact, so is the top row.
2. If the top two rows are exact, so is the bottom row.
3. If the top and bottom rows are exact, and the composite A -+ C is zero,

the middle row is also exact.

Hint: Show the remaining row is a complex, and apply exercise 1.3.1.

The key tool in constructing the connecting homomorphism a is our next
result, the Snake Lemma. We will not print the proof in these notes, because
it is best done visually. In fact, a clear proof is given by Jill Clayburgh at the
beginning of the movie Itís  My Turn (Rastar-Martin Elfand Studios, 1980). As
an exercise in ìdiagram chasingî of elements, the student should find a proof
(but privately-keep the proof to yourself!).

Snake Lemma 1.3.2 Consider a commutative diagram of R-modules of the

form
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Aí + Bí -_, C’ --+ 0

O-A&B-C.

If the rows are exact, there is an exact sequence

ker(f) --f ker(g)  --f ker(h)  a\ coker(f)  -+ coker(g)  -+ coker(h)

with 8 defined by the formula
.

a(cí)  = i-ëgp-ë(cí), cí E ker(h).

Moreover, if Aí + Bí is manic,  then so is ker(f)  + ker(g),  and if B + C is
onto, then so is coker(f)  --, coker(g).

ëd R

Etymology The term snake comes from the following visual mnemonic:

ker(f)  --+ ker(g) + ker(h) - -  - -  -.,

.  - - - - f coker(f) + coker(g) --+ coker(h).

Remark The Snake Lemma also holds in an arbitrary abelian category C. To
see this, let A be the smallest abelian subcategory of C containing the ob-
jects and morphisms of the diagram. Since d has a set of objects, the Freyd-
Mitchell Embedding Theorem (see 1.6.1) gives an exact, fully faithful embed-
ding of A into R-mod for some ring R. Since a exists in R-mod, it exists in
A and hence in C. Similarly, exactness in R-mod implies exactness in A and
hence in C,
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Exercise 1.3.3 (5-Lemma)  In any commutative diagram

Aí + Bí + Cí + D’ --+ E’

al=  bL= c-i dls +

A---+B-C---+D-+E

13

with exact rows in any abelian category, show that if a, b, d, and e are isomor-
phisms, then c is also an isomorphism. More precisely, show that if b and d
are manic and a is an epi, then c is manic. Dually, show that if b and d are
epis and e is manic,  then c is an epi.

We now proceed to the construction of the connecting homomorphism a of
Theorem 1.3.1 associated to a short exact sequence

O+A-+B+C+O

of chain complexes. From the Snake Lemma and the diagram

P P ;

0 - Z,A ---+ Z,B - Z,C

I L 1

O+ A,, ----+  B, + C, -0

4 4 4.

0 + A,_1 --+ B,_l + C,_l - 0

I I I

An-1 B,-1 cn-1

dA,- dB,-
--0
dG

I L I

0 0 0

we see that the rows are exact in the commutative diagram

A, & G
dA- dBn+l- -0

flfl dG+l

4 dl dl
f

0  ---+ Z,pl(A)  + Z,-l(b) A Z,-](C).
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The kernel of the left vertical is H,,(A), and its cokernel is H,_l (A). Therefore
the Snake Lemma yields an exact sequence

H,(A)f HJB,A H,(C)&  H,-l(A)+  f&-l(B)-+ H,-l(C).

The long exact sequence 1.3.1 is obtained by pasting these sequences together.

Addendum 1.3.3 When one computes with modules, it is useful to be able to
push elements around. By decoding the above proof, we obtain the following
formula for the connecting homomorphism: Let z E H,,(C), and represent it by
a cycle c E C,. Lift the cycle to b E B, and apply d. The element db of B,_l
actually belongs to the submodule Z,_t (A) and represents i!)(z)  E H,_l(A).

We shall now explain what we mean by the naturality of a. There is a
category S whose objects are short exact sequences of chain complexes (say,
in an abelian category C). Commutative diagrams

O-A-+B--+C-+O

(*) L I I

0 4 Aí -_, Bí -_, Cí + 0

give the morphisms in S (from the top row to the bottom row). Similarly, there
is a category L of long exact sequences in C.

Proposition 1.3.4 The long exact sequence is a functor from S to C. That is,
for every short exact sequence there is a long exact sequence, and for every
map (*) of short exact sequences there is a commutative ladder diagram

... A H , ( A )  ---F H , ( B )  - H , ( C ) a\ H,_I(A)--+  ...

I I I 1

.  .  .  5 H,(Aí)  --f H,(Bí)  - H,(Cí)  A H,-,(Aí)-+  .  .  .  .

Proof All we have to do is establish the ladder diagram. Since each H,, is a
functor, the left two squares commute. Using the Embedding Theorem 1.6.1,
we may assume C = mod-R in order to prove that the right square commutes.
Given z E H,(C), represented by c E C,, its image zí E H,(Cí)  is represented
by the image of c. If b E B, lifts c, its image in BL lifts cí. Therefore by 1.3.3
a (zí) E H,_I  (Aí) is represented by the image of db, that is, by the image of a
representative of a(z), so i3(zí>  is the image of a(z). 0
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Remark 1.3.5 The data of the long exact sequence is sometimes organized
into the mnemonic shape

H,(A) - H*(B)

6 Jl
H*(C)

This is called an exact triangle for obvious reasons. This mnemonic shape
is responsible for the term ìtriangulated category,î which we will discuss in
Chapter 10. The category K of chain equivalence classes of complexes and
maps (see exercise 1.4.5 in the next section) is an example of a triangulated
category.

Exercise 1.3.4 Consider the boundaries-cycles exact sequence 0 + Z +
C + B(- 1) + 0 associated to a chain complex C (exercise 1.2.7). Show that
the corresponding long exact sequence of homology breaks up into short exact
sequences.

Exercise 1.3.5 Let f be a morphism of chain complexes. Show that if ker(f)
and coker(f) are acyclic, then f is a quasi-isomorphism. Is the converse true?

Exercise 1.3.6 Let 0 -+ A + B + C + 0 be a short exact sequence of dou-
ble complexes of modules. Show that there is a short exact sequence of total
complexes, and conclude that if Tot(C) is acyclic, then Tot(A) + Tot(B) is a
quasi-isomorphism.

1.4 Chain Homotopies

The ideas in this section and the next are motivated by homotopy theory in
topology. We begin with a discussion of a special case of historical impor-
tance. If C is any chain complex of vector spaces over a field, we can always
choose vector space decompositions:

C, = Z, 63 B;, B:, % C,/Z, = d(C,,)  = B,_l;

Z, = B, @I  H;, H; z Z,/B,  = H,,(C).

Therefore we can form the compositions

C,, + Z, + B, % B;+l E C,,+l
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to get splitting maps sn: C,, -+ Cn+t, such that d = dsd. The compositions ds
and sd are projections from C, onto B, and BA, respectively, so the sum ds +
sd is an endomorphism of C, whose kernel HL is isomorphic to the homology
Z&(C).  The kernel (and cokemel!) of ds + sd is the trivial homology complex
H,(C). Evidently both chain maps H,(C) + C and C -+ H*(C) are quasi-
isomorphisms. Moreover, C is an exact sequence if and only if ds + sd is the
identity map.

Over an arbitrary ring R, it is not always possible to split chain complexes
like this, so we give a name to this notion.

Definition 1.4.1 A complex C is called split ifthere are maps s,,: C, + C,,+l
such that d = dsd. The maps s, are called the splitting maps. If in addition C
is acyclic (exact as a sequence), we say that C is split exact.

Example 1.4.2 Let R = Z or Z/4, and let C be the complex

This complex is acyclic but not split exact. There is no map s such that ds + sd
is the identity map, nor is there any direct sum decomposition C,, 2 Z, @ BL.

Exercise 1.4.1 The previous example shows that even an acyclic chain com-
plex of free R-modules need not be split exact.

1. Show that acyclic bounded below chain complexes of free R-modules
are always split exact.

2. Show that an acyclic chain complex of finitely generated free abelian
groups is always split exact, even when it is not bounded below.

Exercise 1.4.2 Let C be a chain complex, with boundaries B,, and cycles Z,
in C,. Show that C is split if and only if there are R-module decompositions
C, 2 Z, @ BA and Z, = B, @ HA. Show that C is split exact iff Hi = 0.

Now suppose that we are given two chain complexes C and D, together
with randomly chosen maps sn: C, + D,+ 1. Let f,, be the map from C, to D,
defined by the formula fn = dn+ls, + sn_ld, .

d d
Cnfl ---, G --f G-1

SLA  fl SkY

D,,+I + D, + D,-I
d d
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Dropping the subscripts for clarity, we compute

17

df = d(ds + sd) = dsd = (ds + sd)d = f d.

Thus f = ds + sd is a chain map from C to D.

Definition 1.4.3 We say that a chain map f: C + D is null homotopic if
there are maps sn: C, -+ Dn+l such that f = ds + sd. The maps {sn} are
called a chain contraction of f.

Exercise 1.4.3 Show that C is a split exact chain complex if and only if the
identity map on C is null homotopic.

The chain contraction construction gives us an easy way to proliferate chain
maps: if g: C + D is any chain map, so is g + (sd + ds) for any choice of
maps sn. However, g + (sd + ds) is not very different from g, in a sense that
we shall now explain.

Definition 1.4.4 We say that two chain maps f and g from C to D are chain
ho&otopic  if their difference f - g is null homotopic, that is, if

f -g=sd+ds.

The maps (s,} are called a chain homotopy from f to g. Finally, we say that
f: C -+ D is a chain homotopy equivalence (Bourbaki uses homotopism) if
there is a map g: D + C such that gf and fg are chain homotopic to the
respective identity maps of C and D.

Remark This terminology comes from topology via the following observa-
tion. A map f between two topological spaces X and Y induces a map
f*: S(X) + S(Y) between the corresponding singular chain complexes. It
turns out that if f is topologically null homotopic (resp. a homotopy equiv-
alence), then the chain map f* is null homotopic (resp. a chain homotopy
equivalence), and if two maps f and g are topologically homotopic, then f*
and g* are chain homotopic.

Lemma 1.4.5 If f: C -+ D is null homotopic, then every map f*: H,(C) +
H,,(D) is zero. Zf f and g are chain homotopic, then they induce the same
maps H,(C) + H,(D).

Proof It is enough to prove the first assertion, so suppose that f = ds + sd.
Every element of H,(C) is represented by an n-cycle x. But then f(x) =
d(sx). That is, f(x) is an n-boundary in D. As such, f(x) represents 0 in

K(D). 0
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Exercise 1.4.4 Consider the homology H,(C) of C as a chain complex with
zero differentials. Show that if the complex C is split, then there is a chain
homotopy equivalence between C and H,(C). Give an example in which the
converse fails.

Exercise 1.4.5 In this exercise we shall show that the chain homotopy classes
of maps form a quotient category K of the category Ch of all chain complexes.
The homology functors H,, on Ch will factor through the quotient functor
Ch-+K.

Show that chain homotopy equivalence is an equivalence relation on
the set of all chain maps from C to D. Let HomK(C,  D) denote the
equivalence classes of such maps. Show that HomK(C,  D) is an abelian
group.
Let f and g be chain homotopic maps from C to D. If U: B + C and
u: D + E are chain maps, show that vf u and vgu are chain homotopic.
Deduce that there is a category K whose objects are chain complexes and
whose morphisms are given in (1).
Let fu, fl, go, and gl be chain maps from C to D such that fi is chain
homotopic to gi (i = 1, 2). Show that fu + ft is chain homotopic to
go + gl. Deduce that K is an additive category, and that Ch + K is an
additive functor.
Is K an abelian category? Explain.

1.5 Mapping Cones and Cylinders

1.5.1 Let f: B, + C, be a map of chain complexes. The mapping cone of
f is the chain complex cone(f) whose degree n part is B,_l @ C,,. In order
to match other sign conventions, the differential in cone(f) is given by the
formula

d(B, c) = (--d(B),  d(c)  - f(B)), (b E B,-1, c E C,).

That is, the differential is given by the matrix

B,_l _\ Bn_2

[--4” :,I: @ \- 63 .

G - G - 1
-c
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Here is the dual notion for a map f: B. + C. of cochain complexes. The
mapping cone, cone(f), is a cochain complex whose degree n part is Bn+’ @
Cî.  The differential is given by the same formula as above with the same signs.

Exercise 1.51 Let cone(C) denote the mapping cone of the identity map idc
of C; it has C,_t @ C, in degree n. Show that cone(C) is split exact, with
s(b, c) = (-c, 0) defining the splitting map.

Exercise 1.52 Let f: C -+ D be a map of complexes. Show that f is null
homotopic if and only if f extends to a map (--s, f): cone(C) + D.

1.52 Any map f+: H,(B) -+ H,(C) can be fit into a long exact sequence
of homology groups by use of the following device. There is a short exact
sequence

0 + C + cone(f) & B[-1] + 0

of chain complexes, where the left map sends c to (0, c), and the right map
sends (b, c) to -b.  Recalling (1.23) that H,+l(B[-11) Z H,(B), the homol-
ogy long exact sequence (with connecting homomorphism a) becomes

+ f&+l(cone(f))  5 H,(B) -2 H,(C) -+ H,(cone(f))  5 ~&I(B)  5 ìë.

The following lemma shows that 8 = f*, fitting f* into a long exact sequence.

Lemma 1.5.3 The map 8 in the above sequence is f*,

Proof If b E B, is a cycle, the element (-b, 0) in the cone complex lifts b via
6. Applying the differential we get (db, fb) = (0, fb). This shows that

a[bl = Lfbl = fJb1. 0

Corollary 1.5.4 A map f: B -+ C is a quasi-isomorphism if and only if the
mapping cone complex cone(f) is exact. This device reduces questions about
quasi-isomorphisms to the study of sp,!@ complexes.

Topological Remark Let K be a simplicial complex (or more generally a cell
complex). The topological cone CK of K is obtained by adding a new vertex
s to K and ìconing offî the simplices (cells) to get a new (n + I)-simplex
for every old n-simplex of K. (See Figure 1.1.) The simplicial (cellular) chain
complex C.(s) of the one-point space (s] is R in degree 0 and zero elsewhere.
C,(s) is a subcomplex of the simplicial (cellular) chain complex C.(CK) of
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Figure 1.1. The topological cone C K and mapping cone Cf.

the topological cone C K. The quotient C. (C K)/ C, (s) is the chain complex
cone(C. K) of the identity map of C,(K). The algebraic fact that cone(C.K)  is
split exact (null homotopic) reflects the fact that the topological cone CK is
contractible.

More generally, if f: K + L is a simplicial map (or a cellular map), the
topological mapping cone Cf of f is obtained by glueing CK and L together,
identifying the subcomplex K of CK with its image in L (Figure 1.1). This is
a cellular complex, which is simplicial if f is an inclusion of simplicial com-
plexes. Write C,(Cf) for the cellular chain complex of the topological map-
ping cone Cf. The quotient chain complex C.(Cf)/C.(s)  may be identified
with cone(f*),  the mapping cone of the chain map f*: C,(K) + C.(L).

1.55 A related construction is that of the mapping cylinder cyl(f)  of a chain
complex map f: B. -+ C,. The degree n part of cyl( f) is B, @ B,_, @ C,, and
the differential is

d(b, bí, c) = (d(b) + bí, -d(bí), d(c) - f (bí)).

That is. the differential is given by the matrix

ds ids 0

0 -ds 0

0 -f 4

0 +

/

0

Bn-1 d  K-2
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The cylinder is a chain complex because

dB -dB 0

d$ 0 = 0.

f d s - d c f  d; 1
Exercise 1.5.3 Let cyl(C) denote the mapping cylinder of the identity map
idc of C; it has C,, @ C,_l @ C,, in degree n. Show that two chain maps
f, g: C + D are chain homotopic if and only if they extend to a map (f, s, g):
cyl(C) + D.

Lemma 1.5.6 The subcomplex of elements (0, 0, c) is isomorphic to C, and
the corresponding inclusion CX: C + cyl( f) is a quasi-isomorphism.

Proof The quotient cyl(f)/a(C) is the mapping cone of -idB,  so it is null-
homotopic (exercise 1.5.1). The lemma now follows from the long exact ho-
mology sequence for

0  + C  > cyl(f)  + cone(-ids)  + 0 . 0

Exercise 1.5.4 Show that /3(b, bí, c) = f(b) + c defines a chain map from
cyl(f) to C such that /3a = idc. Then show that the formula s(b, bí, c) =
(0, b, 0) defines a chain homotopy from the identity of cyl( f) to c@.  Conclude
that a! is in fact a chain homotopy equivalence between C and cyl( f ).

Topological Remark Let X be a cellular complex and let I denote the interval
[O,l].  The space I x X is the topological cylinder of X. It is also a cell com-
plex; every n-cell e” in X gives rise to three cells in Z x X: the two n-cells,
0 x e” and 1 x en, and the (n + 1)-cell (0, 1) x en. If C.(X) is the cellular
chain complex of X, then the cellular chain complex C.(I x X) of I x X may
be identified with cyl(idc,x),  the mapping cylinder chain complex of the iden-
tity map on C.(X).

More generally, if f: X + Y is a cellular map, then the topological map-
ping cylinder cyl( f) is obtained by glueing Z x X and Y together, identifying
0 x X with the image of X under f (see Figure 1.2). This is also a cellular
complex, whose cellular chain complex C. (cyl( f )) may be identified with the
mapping cylinder of the chain map C, (X) + C.(Y).

The constructions in this section are the algebraic analogues of the usual
topological constructions I x X E X, cyl(f)  2: Y, and so forth which were
used by Dold and Puppe to get long exact sequences for any generalized ho-
mology theory on topological spaces.



Chain Complexes22

1xX

A---/
\

.-----

_--- ------_
I’ -.

Figure 1.2. The topological cylinder of X and mapping cylinder cyl(f)

Here is how to use mapping cylinders to fit f* into a long exact sequence
of homology groups. The subcomplex of elements (b, 0,O) in cyl(_f) is iso-
morphic to B, and the quotient cyl(f)/B is the mapping cone of f. The

composite B + cyl(f)  -% C is the map f, where j3 is the equivalence of
exercise 1.5.4,  so on homology f*: H(B) + H(C) factors through H(B) +
H(cyl(f)).  Therefore we may construct a commutative diagram of chain com-
plexes with exact rows:

0  - B  ---+ cyl(f)  -+ c o n e ( f )  ---+O

tff II

O--+ C ---+ c o n e ( f )  > B [ - 1 ]  - 0 .

The homology long exact sequences fit into the following diagram:

-a
+ f&(B) + Hn(cyKf))  + H,(cone(.f)) 2 Hn_I(B) +

,. + H,+I(N-11)  7 H,(C) + H,(cone(f))  -f+ H,(Bl-11) 7 ...

Lemma 1.5.7 This diagram is commutative, with exact rows.

Proof It suffices to show that the right square (with -3 and 6) commutes.



1.5 Mapping Cones and Cylinders 23

Let (b, c) be an n-cycle in cone(f), so d(b) = 0 and f(b) = d(c). Lift it to
(0, b, c) in cyl(f)  and apply the differential:

d(0, b, c) = (0 + b, -db, dc - fb) = (b, 0,O).

Therefore a maps the class of (b, c) to the class of b = -6(b,  c) in k&-t(B).
0

1.58 The cone and cylinder constructions provide a natural way to fit the
homology of every chain map f: B + C into some long exact sequence (see
15.2 and 15.7). To show that the long exact sequence is well defined, we need
to show that the usual long exact homology sequence attached to any short
exact sequence of complexes

agrees both with the long exact sequence attached to f and with the long exact
sequence attached to g.

We first consider the map f. There is a chain map cp: cone(f) + D defined
by the formula q(b, c) = g(c). It fits into a commutative diagram with exact
rows:

s
o- C + c o n e ( f )  - B [ - 1 ]  + 0

1 ff I I

0  + B  -+ cyl(f) ---+ c o n e ( f )  --+ 0

II b b

O-BL C 5 D - 0.

Since B is a quasi-isomorphism, it follows from the 5-lemma and 1.3.4 that p
is a quasi-isomorphism as well. The following exercise shows that v need not
be a chain homotopy equivalence.

Exercise 1.55 Suppose that the B and C of 15.8  are modules, considered
as chain complexes concentrated in degree zero. Then cone(f) is the complex

0 + B -f, C + 0. Show that q is a chain homotopy equivalence iff f : B c
C is a split injection.

To continue, the naturality of the connecting homomorphism 8 provides us
with a natural isomorphism of long exact sequences:
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A H,(B) + H,,(cyl(f))  - H,(cone(f))  5 H,_l(B)  -

. 5 H,(B)  - H,(C) - f&(D) -2 Ha-I(B)  - ìí

Exercise 1.56 Show that the composite

H,(D) 2 H,(cone(f))  iii-l.  &(B[-11)  g K-i(B)

is the connecting homomorphism  13 in the homology long exact sequence for

O-+B-+C+D+O.

Exercise 1.5.7 Show that there is a quasi-isomorphism B[-1] + cone(g)
dual to cp. Then dualize the preceding exercise, by showing that the com-
posite

H,(D) -% f&-l(B)  5 &(cone(g))

is the usual map induced by the inclusion of D in cone(g).

Exercise 1.58  Given a map f: B + C of complexes, let IJ denote the in-
clusion of C into cone(f). Show that there is a chain homotopy equivalence
cone(v) + B[ - 11. This equivalence is the algebraic analogue of the topolog-
ical fact that for any map f: K + L of (topological) cell complexes the cone
of the inclusion L c Cf is homotopy equivalent to the suspension of K.

Exercise 1.59 Let f: B -+ C be a morphism of chain complexes. Show that

the natural maps ker(f) [ - l] --% cone(f) -% coker(f)  give rise to a long
exact sequence:

ë.  -% H,_l(ker(f)) -% &(cone(f)) -f+ H,,(coker(f))  --% H,_2(ker(f)). .

Exercise 1.510 Let C and Cí be split complexes, with splitting maps s, sí.
If f: C + Cí is a morphism, show that a(c, cí) = (--s(c), sí(cí)  - síf~(c))
defines a splitting of cone(f) if and only if the map f*: H,(C) -+ H,(Cí)  is
zero.



1.6 More on Abelian Categories

1.6 More on Abelian Categories

25

We have already seen that R-mod is an abelian category for every associative
ring R. In this section we expand our repertoire of abelian categories to include
functor categories and sheaves. We also introduce the notions of left exact and
right exact functors, which will form the heart of the next chapter. We give the
Yoneda embedding of an additive category, which is exact and fully faithful,
and use it to sketch a proof of the following result, which has already been
used. Recall that a category is called small if its class of objects is in fact a set.

Freyd-Mitchell Embedding Theorem 1.6.1 (1964) If d is a small abelian
category, then there is a ring R and an exact, fully faithful functor from
A into R-mod, which embeds A as a full subcategory in the sense that _
HomA(M, N) S HomR(M,  N).

We begin to prepare for this result by introducing some examples of abelian
categories. The following criterion, whose proof we leave to the reader, is
frequently useful:

Lemma 1.6.2 Let C c A be a full subcategory of an abelian category A.

1. C is additive + 0 E C, and C is closed under 0%
2. C is abelian and C c A is exact e C is additive, and C is closed under

ker and coker.

Examples 1.6.3

1. Inside R-mod, the finitely generated R-modules form an additive cate-
gory, which is abelian if and only if R is noetherian.

2. Inside Ab, the torsionfree groups form an additive category, while the
p-groups form an abelian category. (A is a p-group if (Va E A) some
pna  = 0.) Finite p-groups also form an abelian category. The category
(Z/p)-mod of vector spaces over the field Z/p is also a full subcategory
of Ab.

Fun&or Categories 1.6.4 Let C be any category, A an abelian category.
The functor category AC is the abelian category whose objects are functors
F: C -+ A. The maps in AC are natural transformations. Here are some rele-
vant examples:

1. If C is the discrete category of integers, AbC contains the abelian cate-
gory of graded abelian groups as a full subcategory.
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c?(U)  (resp. C?*(U))  is the group of continuous maps from U into Cc (resp.
Cc*).  Then there is a short exact sequence of sheaves:

When X is the space Q*, this sequence is not exact in Presheaves(X) because
the exponential map from Q = O(X) to Q*(X) is not onto; the cokernel is
i2 = Hí(X,  Z), generated by the global unit l/z. In effect, there is no global
logarithm function on X, and the contour integral & 4 f(z) dz gives the
image of f(z) in the cokernel.

Definition 1.6.6 Let F: A + B be an additive functor between abelian cat-
egories. F is called left exact (resp. right exact) if for every short exact se-
quence 0 + A --+ B + C + 0 in A, the sequence 0 --+ F(A) + F(B) -+
F(C) (resp. F(A) + F(B) --+ F(C) -+ 0) is exact in B. F is called exact if
it is both left and right exact, that is, if it preserves exact sequences. A con-
travariant functor F is called left exact (resp. right exact, resp. exact) if the
corresponding covariant functor Fí: d"P + B is left exact (resp. . . . ).

Example 1.6.7 The inclusion of Sheaves(X) into Presheaves(X) is a left
exact functor. There is also an exact functor Presheaves(X) + Sheaves(X),
called ìsheafification.î (See 2.6.5; the sheafification functor is left adjoint  to
the inclusion.)

Exercise 1.6.3 Show that the above definitions are equivalent to the follow-
ing, which are often given as the definitions. (See [Rot], for example.) A (co-
variant) functor F is left exact (resp. right exact) if exactness of the sequence

0 + A -+ B -+ C (resp. A + B + C + 0)

implies exactness of the sequence

0 -+ FA + FB + FC (resp. FA + FB + FC -+ 0).

Proposition 1.6.8 Let A be an abelian category. Then HomA(M,  -) is a left
exact functor from A to Ab for every M in A. That is, given an exact sequence

0 + A & B 5 C + 0 in d, the following sequence of abelian groups is
also exact:

0 --+ Hom(M, A) 3 Hom(M, B) 3 Hom(M, C).
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Proof If o E Hom(M, A) then f*a! = f o a; if this is zero, then (II must be
zero since f is manic. Hence f* is manic.  Since g o f = 0, we have g,f,(ol) =
g o f o o = 0, so g*f* = 0. It remains to show that if ,8 E Hom(M, B) is such
that g&I = g o B is zero, then fi = f o a! for some a!. But if g o /l = 0, then
/I(M) 5 f(A), so /I factors through A. 0

.

Corollary 1.6.9 HomA( -, M) is a left exact contravariant functor.

Proof Homd(A,  M) = Hom_&~(M, A). 0

Yoneda Embedding 1.6.10 Every additive category A can be embedded in
the abelian category AbdîP by the functor h sending A to hA = Homd(-,  A).
Since each Homd(M,  -) is left exact, h is a left exact functor. Since the
functors hA are left exact, the Yoneda embedding actually lands in the ìbe&n
subcategory L of all left exact contravariant functors from A to Ab whenever
A is an abelian category.

Yoneda Lemma 1.6.11 The Yoneda embedding h reflects exactness. That is,

a sequence A 5 B -% C in A is exact, provided that for every M in A the
following sequence is exact:

Homd(M,  A) -% Homd(i%f,  B) -% Homd(M,  C).

Proof Taking M = A, we see that /Ia = f?*a*(idA)  = 0. Taking M = ker(/?),
we see that the inclusion 1: ker(/3) -+ B satisfies /I*(t)  = /IL = 0. Hence there
is a CT E Hom(M, A) with 1 = a*(a)  = cm, so that ker@) = im(l)  C im(cY).

0

We now sketch a proof of the Freyd-Mitchell Embedding Theorem 1.6.1;
details may be found in [Freyd] or [Swan, pp. 14-221.  Consider the failure of
the Yoneda embedding h: A -+ AbdoP to be exact: if 0 -+ A + B + C -+ 0
is exact in A and M E d, then define the abelian group W(M) by exactness of

0 + Homd(M, A) -+  HOmd(kf,  B) + HOIIId(M,  C) + W(M) -+ 0.

In general W(M) # 0, and there is a short exact sequence of functors:

(*) O-+hAíh~ëhcíW-+O.

W is an example of a weakly effaceable functor, that is, a functor such that
for all M E A and x E W(M) there is a surjection P + M in A so that the
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map W(M) + W(P) sends x to zero. (To see this, take P to be the pullback
M xc B, where M + C represents x, and note that P + C factors through
B.) Next (see lot. cit.), one proves:

Proposition 1.6.12 If A is small, the subcategory W of weakly effaceable
functors is a localizing subcategory of AbAoP  whose quotient category is C.
That is, there is an exact ìreflectionî functor R from AbAoP to C such that
R(L) = L for every left exact L and R(W) 2 0 tfs W is weakly effaceable.

Remark Cokemels in L are different from cokemels in AbAoP, so the inclu-
sion L c AbAoP  .IS not exact, merely left exact. To see this, apply the reflection
R to (*). Since R(hA)  = hA and R(W) 2 0, we see that

O+hA-+hn-+hc+O

is an exact sequence in C, but not in AbAoP.

Corollary 1.6.13 The Yoneda embedding h: A + L is exact and fully faith-
ful.

Finally, one observes that the category C has arbitrary coproducts and has
a faithfully projective object P. By a result of Gabriel and Mitchell [Freyd,
p. 1061, L is equivalent to the category R-mod of modules over the ring
R = HomL( P, P). This finishes the proof of the Embedding Theorem.

Example 1.6.14 The abelian category of graded R-modules may be thought
of as the full subcategory of (n,eZ R)-modules of the form @tezMt.  The
abelian category of chain complexes of R-modules may be embedded in
S-mod, where

S = (n R)[d]/(d’ = 0, {dr = rdJrER,  (det = et_ld]i,z).
iei2

Here ei: n R -+ R -+ n R is the ith coordinate projection.
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Derived Functors

2.1 &Functors

The right context in which to view derived functors, according to Groth-
endieck [Tohoku], is that of b-functors between two abelian categories A
and B.

Definition 2.1.1 A (covariant) homological (resp. cohomological) d-jiinctor
between A and B is a collection of additive functors Tn:  A + f? (resp.
Tn: A -+ I?) for II ) 0, together with morphisms

(resp. P: Tn(C) + Tnf*  (A))

defined for each short exact sequence 0 + A -+ B + C + 0 in A. Here we
make the convention that T” = T,, = 0 for n < 0. These two conditions are
imposed:

1. For each short exact sequence as above, there is a long exact sequence

... T,+I(C) A T,(A)  + T,(B) + T,(C)  A T,_l(A) ...

(resp.

.  Tî-ë(C) > Tî(A) + T î (B) --f Tn(C) A Tn+ë(A)  .ë,).

In particular, To is right exact, and To is left exact.

30
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2. For each morphism of short exact sequences from 0 + Aí + Bí -+
Cí + 0 to 0 + A -+ B + C -+ 0, the 6ís give a commutative diagram

T,,(Cí)  A T,_l(Aí) Tî(Cí)  & ,ë+](Aí)

1 I resp. 1 I

G(C) A T,-I(A)
6

Tn(C)  + P+ë(A).

Example 2.1.2 Homology gives a homological b-functor K from Chlo(d)
to A; cohomology gives a cohomological S-functor H* from Ch"(d)  to

A.

Exercise 2.1.1 Let S be the category of short exact sequences

(*I O+A+B-+C--+O

in A. Show that Si is a natural transformation from the functor sending (*) to
Z(C) to the functor sending (*) to E-l(A).

Example 2.1.3 (p-torsion) If p is an integer, the functors To(A) = A/pA and

Tl(A)= ,,A={a~A:pa=0}

fit together to form a homological &functor,  or a cohomological &functor
(with To = Tt and T’ = To) from Ah to Ah. To see this, apply the Snake
Lemma to

O+A-B-C-0

P-L P-L P-L

O - A - B - C - 0

to get the exact sequence

O+ pA+ pB+ &&A/PA+ B/pB+C/pC+O.

Generalization The same proof shows that if r is any element in a ring R,
then To(M) = M/rM  and Tl(M) = ,M fit together to form a homological S-
functor (or cohomological S-functor, if that is oneís taste) from R-mod to Ab.
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Vista We will see in 2.6.3 that Tn(M)  = Torz(R/r, M) is also a homolog-
ical &functor  with To(M) = M/rM.  If r is a left nonzerodivisor (meaning
that ,R = (s E R : rs = 0} is zero), then in fact Torf(R/r,  M) = ,M and

Torf  (R/r, M) = 0 for n )_ 2; see 3.1.7. However, in general ,. R # 0, while
Torp(R/r,  R) = 0, so they arenít the same; Torp(M,  R/r) is the quotient of
,M by the submodule (, R)M generated by (sm : r-s = 0, s E R, m E M]. The
Tor, will be universal d-functors in a sense that we shall now make precise.

Definition 2.1.4 A morphism S -+ T of S-functors is a system of natural
transformations S,, + T,, (resp. S” -+ Tn) that commute with 8. This is fancy
language for the assertion that there is a commutative ladder diagram con-
necting the long exact sequences for S and T associated to any short exact
sequence in A.

A homological Sfunctor  T is universal if, given any other &functor  S and a
natural transformation fo: SO + To, there exists a unique morphism { fn: S,, +
T,} of li-functors that extends fu.

A cohomological S-functor T is universal if, given S and fî:  To -+ So,
there exists a unique morphism T -+ S of b-functors extending fî.

Example 2.1.5 We will see in section 2.4 that homology H*:  Ch,o(A)  -+ _A
and cohomology H*: Chî(d)  + A are universal S-functors.

Exercise 2.1.2 If F: A + t3 is an exact functor, show that To = F and T,, = 0
for n # 0 defines a universal Sfunctor  (of both homological and cohomologi-
cal type).

Remark If F: A + t? is an additive functor, then we can ask if there is any S-
functor T (universal or not) such that To = F (resp. To = F). One obvious
obstruction is that To must be right exact (resp. To must be left exact). By
definition, however, we see that there is at most one (up to isomotphism)
universal &functor  T with To = F (resp. To = F). If a universal T exists, the
T,, are sometimes called the left satellite functors of F (resp. the Tn are called
the right satellite functors of F). This terminology is due to the pervasive
influence of the book [CE].

We will see that derived functors, when they exist, are indeed universal 6-
functors. For this we need the concept of projective and injective resolutions.
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An object P in an abelian category A is projective if it satisfies the following
universal lifting property: Given a surjection g: B + C and a map y: P + C,
there is at least one map /I: P + B such that y = g o @.

B - C - 0

We shall be mostly concerned with the special case of projective modules
(.4 being the category mod-R). The notion of projective module first appeared
in the book [CE]. It is easy to see that free R-modules are projective (lift a
basis). Clearly, direct summands of free modules are also projective modules.

Proposition 2.2.1 An R-module is projective iff it is a direct summand of a
free R-module.

Proof Letting F(A) be the free R-module on the set underlying an R-module
A, we see that for every R-module A there is a surjection n: F(A) -+ A. If
A is a projective R-module, the universal lifting property yields a map i: A +
F(A) so that ni = lo, that is, A is a direct summand of the free module F(A).

0

Example 2.2.2 Over many nice rings (Z, fields, division rings, . . .) every
projective module is in fact a free module. Here are two examples to show
that this is not always the case:

1. If R = RI x R2, then P = RI x 0 and 0 x R2 are projective because their
sum is R. P is not free because (0, 1)P = 0. This is true, for example,
when R is the ring Z/6 = Z/2 x Z/3.

2. Consider the ring R = M,(F) of n x n matrices over a field F, acting
on the left on the column vector space V = Fî. As a left R-module, R
is the direct sum of its columns, each of which is the left R-module V.
Hence R 2 V @ . . . @I V, and V is a projective R-module. Since any free
R-module would have dimension dn2  over F for some cardinal number
d, and dimF(V) = n, V cannot possibly be free over R.

Remark The category A of finite abelian groups is an example of an abelian
category that has no projective objects. We say that A has enough projectives
if for every object A of A there is a surjection P + A with P projective.
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Here is another characterization of projective objects in A:

Lemma 2.2.3 M is projective iff HomA(M,  -> is an exact functor. That is,
iff the sequence of groups

0 + Hom(M, A) + Hom(M, B) g*\ Hom(M, C) -+ 0

is exactfor  every exact sequence 0 -+ A -+ B + C + 0 in A.

Proof Suppose that Hom(M, -) is exact and that we are given a surjec-
tion g: B + C and a map y: M + C. We can lift y E Hom(M, C) to fl E
Hom(M, B) such that y = g*B = g o /I because g, is onto. Thus M has the
universal lifting property, that is, it is projective. Conversely, suppose M is
projective. In order to show that Hom(M, -> is exact, it suffices to show that
g, is onto for every short exact sequence as above. Given v E Hom(M, C),
the universal lifting property of M gives j3 E Hom(M, B) so that y = g o B =
g*(B),  that is, g* is onto. 0

A chain complex P in which each P,, is projective in A is called a chain
complex of projectives. It need not be a projective object in Ch.

Exercise 2.2.1 Show that a chain complex P is a projective object in C h
if and only if it is a split exact complex of projectives. Hint: To see that P
must be split exact, consider the surjection from cone(idp)  to P[-11. To see
that split exact complexes are projective objects, consider the special case
0 -F Pl 2 PO + 0.

Exercise 2.2.2 Use the previous exercise 2.2.1 to show that if A has enough
projectives, then so does the category Ch(d) of chain complexes over A.

Definition 2.2.4 Let M be an object of A. A left resolution of M is a com-
plex P. with Pi = 0 for i < 0, together with a map E: PO + M so that the
augmented complex

. . . & P2 & P1 -% PO & M + 0

is exact. It is a projective resolution if each Pi is projective.

Lemma 2.2.5 Every R-module M has a projective resolution. More gener-
ally, if an abelian  category A has enough projectives, then every object M in
A has a projective resolution.
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0 0 0 0

Figure 2.1. Forming a resolution by splicing.

Proof Choose a projective PO and a surjection ~0:  PO -+ M, and set MO =
ker(eu). Inductively, given a module M,_l,  we choose a projective P,, and
a surjection en: P, -+ M,_l. Set M, = ker(r,), and let d,, be the composite
P,, + M,_l  -+ P,_l. Since dn(P,)  = M,_l = ker(d,_t),  the chain complex
P, is a resolution of M. (See Figure 2.1.) 0

Exercise 2.2.3 Show that if P, is a complex of projectives with Pi = 0 for
i -C 0, then a map E: PO -+ M giving a resolution for M is the same thing as
a chain map E: P. -+ M, where M is considered as a complex concentrated in
degree zero.

Comparison Theorem 2.2.6 Let P, 5 M be a projective resolution of M

and fí: M + N a map in A. Then for every resolution Q, 5 N of N there
is a chain map f: P, + Q, lifting fí in the sense that q o fo = fí o E. The
chain map f is unique up to chain homotopy equivalence.

. . -P2+-P1+Po~M+0

4 4 4 lf’

II
... - Q2 - Ql ---+ Q. ---+ N - 0

Porism 2.2.7 The proof will make it clear that the hypothesis that P + M be
a projective resolution is too strong. It suffices to be given a chain complex

. +P2-+P1-+Po+M-+0

with the Pi projective. Then for every resolution Q + N of N, every map
M -+ N lifts to a map P + Q, which is unique up to chain homotopy. This
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stronger version of the Comparison Theorem will be used in section 2.7 to
construct the external product for Tor.

Proof We will construct the f,, and show their uniqueness by induction on n,
thinking of f-1 as fí. Inductively, suppose fi has been constructed for i 5 n
so that fi-ld = dfi. In order to construct fn+l we consider the n-cycles of
P and Q. If n = -1, we set Z-l(P)  = A4 and Z-t(Q) = N; if IZ 10, the
fact that fn- Id = dfn means that f,, induces a map fi from Z,(P) to Z,(Q).
Therefore we have two diagrams with exact rows

5 P,+1  -5 Z,(P) - 0 0 + Z,(P) * P, - Pn_l

q 1fL and if; Jfn if"_,

d
ë.  - Q~+I - Z,(Q) - 0 0 - Z,(Q) - Qn - en-1

The universal lifting property of the projective P,+I yields a map fn+l from
Pn+l to Qn+t,  so that dfn+l = f,ëd  = fnd.  This finishes the inductive step and
proves that the chain map f: P -+ Q exists.

To see uniqueness of f up to chain homotopy, suppose that g: P + Q is
another lift of fí and set h = f - g; we will construct a chain contraction
(sn: P,, -+ Qn+l} of h by induction on I I. If 12 < 0, then P,, = 0, so we se t
s, = 0. If n = 0, note that since t$ru = c( fí - fí) = 0, the map ho sends PO to
Zu(Q) = d( Ql). We use the lifting property of PO to get a map SO: PO -+ Ql
so that ho = dso = dso + s-Id. Inductively, we suppose given maps si(i -C n)
so that ds,_l = h,_l  - sn_2d and consider the map h, - sn_ld  from P,, to
Qn.  We compute that

d(h,, - s,_ld) = dh, - (h,_l - s,_2d)d  = (dh - hd) + s,-2dd = 0.

Therefore h, - sn_ 1 d lands in Z,(Q), a quotient of Qn+t . The lifting property
of P,, yields the desired map s,: P,, + Q,,+l such that ds, = h, - s,_ld. 0

Here is another way to construct projective resolutions. It is called the Horse-
shoe Lemma because we are required to fill in the horseshoe-shaped diagram.
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Horseshoe Lemma 2.2.8 Suppose given a commutative diagram

;
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where the column is exact and the rows are projective resolutions. Set P,, =
P,!, $ Pi. Then the P,, assemble to form a projective resolution P of A, and
the right-hand column lijts to an exact sequence of complexes

0 -+ Pí & P 1, Pî + 0,

where i,: Pd + P,, and n,: P,, + P,f are the natural inclusion and projection,
respectively.

Proof Lift E” to a map P: + A; the direct sum of this with the map
iA&: Ph + A gives a map E: PO  --+  A. The diagram (*) below commutes.

E P P

0 -_, ker(Eí)  ---+ Ph 5 Aí + 0

I 1 I

(*) 0 + ker(c) - PO 5 A ---+ 0

4 1 I

0 --+ ker(cî) + P{ 2 A” + 0

J 1 I

0 0 0
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The right two columns of (*) are short exact sequences. The Snake Lemma
1.3.2 shows that the left column is exact and that coker(e) = 0, so that PO maps
onto A. This finishes the initial step and brings us to the situation

. . . + Pi -% ker(cí)  + 0

ker(e)

d”
. + P; + ker(eî)  + 0

0.

The filling in of the ìhorseshoeî now proceeds by induction. 0

Exercise 2.2.4 Show that there are maps h,: Pi -+ Pi_, so that

d’  PI =
[ 1

dí(pí)  + VPî )

P” d” (pî) 1
2.3 Injective Resolutions

An object Z in an abelian category A is injective if it satisfies the following
universal lifting property: Given an injection f: A -+ B and a map o: A + I,
there exists at least one map B: B + I such that 01 = @ o f .

f
0-A-B

We say that A has enough injectives if for every object A in A there is an
injection A + I with I injective. Note that if (Z,} is a family of injectives,
then the product n ZU is also injective. The notion of injective module was
invented by R. Baer in 1940, long before projective modules were thought of.
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Exercise 2.3.3 Show that an abelian group A is zero iff HomAb(A,  Q/z) =
0.

Now it is a fact, easily verified, that if A is an abelian category, then the
opposite category d*P is also abelian. The definition of injective is dual to
that of projective, so we immediately can deduce the following results (2.3.4-
2.3.7) by arguing in dOJ'.

Lemma 2.3.4 The following are equivalent for an object I in an abelian
category A:

1. I is injective in A.
2. I is projective in A'P.
3. The contravariant functor HomA(-, I) is exact, that is, it takes short

exact sequences in A to short exact sequences in Ab.

Definition 2.3.5 Let M be an object of A. A right resolution of M is a
cochain complex I. with I’  = 0 for i < 0 and a map M + I0 such that the
augmented complex

0 --+ M -+ I0 5 I’ A Z2 &- . . .

is exact. This is the same as a cochain map M + I., where M is considered as
a complex concentrated in degree 0. It is called an injective resolution if each
I’  is injective.

Lemma 2.3.6 Zf the abelian  category A has enough injectives, then every
object in A has an injective resolution.

Comparison Theorem 2.3.7 Let N + I, be an injective resolution of N and
f ë:  M + N a map in d. Then for every resolution M + E. there is a cochain
map F: E. + I, lifting  fí. The map f is unique up to cochain homotopy
equivalence.

0 + M + E” --+ E’ + E2 + . . .

fíl  3J 31 3L

0 + N ---+ I0 + I’ L Z2 -_,  . .

Exercise 2.3.4 Show that Z is an injective object in the category of chain
complexes iff Z is a split exact complex of injectives. Then show that if A
has enough injectives, so does the category Ch(d) of chain complexes over
A. Hint: Ch(d)'P M Ch(d'p).
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We now show that there are enough injective R-modules for every ring
R. Recall that if A is an abelian group and B is a left R-module, then
HomAb(R,  A) is a right R-module via the rule f r: b H f(rb).

Lemma 2.3.8 For every right R-module M, the natural map

t: HOmAb(M,  A) -+ HOmrnod__~(~~ HOmAb(R,  A))

is an isomorphism, where (tf)(m) is the map r H f(mr).

Proof We define a map 1 backwards as follows: If g: M + Hom(R, A) is
an R-module map, pg is the abelian group map sending m to g(m)(l). Since
t(l_~g) = g and pr(f) = f (check this!), t is an isomorphism. 0

Definition 2.3.9 A pair of functors L: A -+ Z? and R: Z3 + A are adjoint if
there is a natural bijection for all A in A and B in B:

T = rAB : Homa(L(A),  B) --% HomA(A,  R(B)).

Here ìnaturalî means that for all f: A -+ Aí in A and g: B --+ Bí in 23 the
following diagram commutes:

Homa(L(Aí),  B) 5  Horn&L(A) ,  B) 5 Homa(L(A),  B í )

Jr IT Ix

HomA(Aí,  R(B)) 2 HomA(A,  R ( B ) ) --!% HomA(A,  R(Bí)).

We call L the left adjoint and R the right adjoint of this pair. The above lemma
states that the forgetful functor from mod-R to Ab has HOIIIAb(R,  -) as its
right adjoint.

Proposition 2.3.10 Zf an additive functor R: Z? -+ A is right adjoint to an
exact functor L: A + I3 and I is an injective object of Z?, then R(Z) is an
injective object of A. (We say that R preserves injectives.)

Dually, if an additive functor L: A -+ B is left adjoint to an exact functor
R: B + A and P is a projective object of d, then L(P) is a projective object
of Z?. (We say that L preserves projectives.)

Proof We must show that Homd(-,  R(Z)) is exact. Given an injection
f: A -+ Aí in A the diagram
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Hom&L(Aí),  Z) % Homa(L(A),  Z)

& Jz

Homd(Aí,  R(Z)) 2 Homd(A,  R(Z))

commutes by naturality of r. Since L. is exact and Z is injective, the top
map Lf* is onto. Hence the bottom map f* is onto, proving that R(Z) is an
injective object in A. 0

Corollary 2.3.11 Zf Z is an injective abelian group, then HomAb(R, I) is an
injective R-module.

Exercise 2.3.5 If M is an R-module, let Z(M) be the product of copies of
Zu = HomAb(R, Q/z), indexed by the set HomR(M,  lo). There is a canonical
map eM: M + Z(M); show that eM is an injection. Being a product of injec-
tives, Z(M) is injective, so this will prove that R-mod has enough injectives.
An important consequence of this is that every R-module has an injective res-
olution.

Example 2.3.12 The category Sheaves(X) of abelian group sheaves (1.6.5)
on a topological space X has enough injectives. To see this, we need two
constructions. The stalk of a sheaf 3 at a point x E X is the abelian group
3x = 1@{3(U)  : x E U). ìStalk at x” is an exact functor from Sheaves(X) to

Ab. If A is any abelian group, the skyscraper sheaf x,A  at the point x E X is
defined to be the presheaf

(.c+A)(U) =
A  ifxEU
0 otherwise.

Exercise 2.3.6 Show that x,A  is a sheaf and that

for every sheaf 3. Use 2.3.10 to conclude that if A, is an injective abelian
group, then x,(A,) is an injective object in Sheaves(X) for each x, and that

nx.x x,(A,) is also injective.

Given a fixed sheaf 3, choose an injection 3x + I, with Z, injective in Ab
for each x E X. Combining the natural maps 3 + ~,3~  with x,3, + x,Z,
yields a map from 3 to the injective sheaf Z = n,,, x* (I,). The map 3 + Z
is an injection (see [Gode],  for example) showing that Sheaves(X) has enough
injectives.
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Example 2.3.13 Let I be a small category and A an abelian category. If the
product of any set of objects exists in A (A is complete) and d has enough
injectives, we will show that the functor category A' has enough injectives.
For each k in I, the krh coordinate A H A(k) is an exact functor from A' to
A. Given A in A, define the functor k,A: I -+ A by sending i E I to

k,A(i) = n A.
Homf (i,k)

If n: i + j is a map in I, the map k,A(i) -+ k,A(j) is determined by the
index map q*:  Hom(j,  k) + Hom(i, k). That is, the coordinate k,A(i) + A
of this map corresponding to cp E Hom( j, k) is the projection of k,A(i)  onto
the factor corresponding to q*p = cpq  E Hom(i, k). If f: A + B is a map in
A, there is a corresponding map k,A --+ k,B defined slotwise. In this way,
k, becomes an additive functor from A to Aí,  assuming that A has enough
products for k,A to be defined.

Exercise 2.3.7 Assume that A is complete and has enough injectives. Show
that k, is right adjoint to the kth coordinate functor, so that k, preserves injec-
tives by 2.3.10.  Given F E A', embed each F(k) in an injective object Ak of
A, and let F + k,Ak be the corresponding adjoint map. Show that the product
E = nk6, k,Ak exists in A', that E is an injective object, and that F + E is
an injection. Conclude that A' has enough injectives.

Exercise 2.3.8 Use the isomorphism ( A')"' E A('"') to dualize the previous
exercise. That is, assuming that A is cocomplete and has enough projectives,
show that A' has enough projectives.

2.4 Left Derived Functors

Let F: A + B be a right exact functor between two abelian categories. If A
has enough projectives, we can construct the lest derived jiinctors Li F(i > 0)
of F as follows. If A is an object of A, choose (once and for all) a projective
resolution P + A and define

LiF(A) = Hi(F(P)).

Note that since F( PI) --+  F( PO) + F(A) + 0 is exact, we always have
LoF(A)  2 F(A). The aim of this section is to show that the L,F form a
universal homological S-functor.



44 Derived Functors

Lemma 2.4.1 The objects Lt F(A) of I? are well defined up to natural iso-
morphism. That is, if Q + A is a second projective resolution, then there is a
canonical isomorphism:

LiF(A) = Hi(F(P)) 5 Hi(F(Q)).

In particular a different choice of the projective resolutions would yield new
functors it F, which are naturally isomorphic to the functors Li F.

Proof By the Comparison Theorem (2.2.6),  there is a chain map f: P + Q
lifting the identity map idA,  yielding a map f* from Hi F( P) to Hi F( Q).
Any other such chain map f ë: P + Q is a chain homotopic to f, so f* = fi.
Therefore, the map f* is canonical. Similarly, there is a chain map g: Q + P
lifting idA and a map g*. Since gf and idp are both chain maps P -+ P lifting
idA,  we have

g*f* = (gf)* = (idp)* = identity map on HtF(P).

Similarly, fg and idQ both lift idA,  so f*g*  is the identity. This proves that f*
and g, are isomorphisms. 0

Corollary 2.4.2 If A is projective, then Li F (A) = 0 for i # 0.

F-Acyclic Objects 2.4.3 An object Q is called F-acyclic if Lt F( Q) = 0 for
all i # 0, that is, if the higher derived functors of F vanish on Q. Clearly,
projectives are F-acyclic for every right exact functor F, but there are oth-
ers; flat modules are acyclic for tensor products, for example. An F-acyclic
resolution of A is a left resolution Q + A for which each Qi is F-acyclic.
We will see later (using dimension shifting, exercise 2.4.3 and 3.2.8) that we
can also compute left derived functors from F-acyclic resolutions, that is, that
Lt (A) E Hi (F( Q)) for any F-acyclic resolution Q of A.

Lemma 2.4.4 If f: Aí -+ A is any map in d, there is a natural map Lt F( f ):
LiF(Aí)  + Li F(A) for each i.

Proof Let Pí + Aí and P + A be the chosen projective resolutions. The
comparison theorem yields a lift of f to a chain map f from Pí to P, hence a
map f* from Hi F (Pí) to Hi F (P). Any other lift is chain homotopic to J, SO

the map f* is independent of the choice of f. The map Li F (f) is f*. 0

Exercise 2.4.1 Show that LoF( f) = f under the identification LoF(A) 2

F(A).
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Theorem 2.4.5 Each Li F is an additive jiinctor from A to t?.
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Proof The identity map on P lifts the identity on A, so LiF(idA)  is the

identity map. Given maps Aí -& A 5 Aî and chain maps 7, g lifting f
and g, the composite if lifts gf. Therefore g, f* = (gf)*, proving that Li F

is a functor. If fi: Aí -+ A are two maps with lifts fi, the sum 71 + f2 lifts
fl + f2. Therefore fl* + f2* = (fl + f&, proving that LiF is additive. 0

Exercise 2.4.2 (Preserving derived functors) If U: B -+ C is an exact functor,
show that

U(LiF)  2 Li(UF).

Forgetful functors such as mod-R + Ab are often exact, and it is often eas-
ier to compute the derived functors of UF due to the absence of cluttering
restrictions.

Theorem 2.4.6 The derived functors L, F form a homological b-functor:

Proof Given a short exact sequence

0 + Aí + A + Aî + 0,

choose projective resolutions Pí + Aí and Pî + Aî. By the Horseshoe
Lemma 2.2.8, there is a projective resolution P -+ A fitting into a short ex-
act sequence 0 + Pí + P + Pî + 0 of projective complexes in A. Since
the P,ë,’  are projective, each sequence 0 + Pi + P,, + P: + 0 is split exact.
As F is additive, each sequence

O+ F(P;) + F(P,) = F(P;) + 0

is split exact in B. Therefore

0 + F(Pí) + F(P) + F(Pî) + 0

is a short exact sequence of chain complexes. Writing out the corresponding
long exact homology sequence, we get

A LiF(A')  + Li F ( A ) + LiF(Aî)  L Li-1  F(Aí)  + Li_lF(A) +  Li_1  F(Aî)  A ë.
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To see the naturality of the +, assume we are given a commutative diagram

in A, and projective resolutions of the corners: Eí: Pí --+ Aí, 6î:  Pî + Aî,

17í:  Q’ + Bí and nî:  Qî + Bî. Use the Horseshoe Lemma 2.2.8 to get projec-
tive resolutions t: P + A and n: Q -+ B. Use the Comparison Theorem 2.2.6
to obtain chain maps Fí: Pí -+ Q’ and Fî: Pî + Qî lifting the maps f’ and
fî,  respectively. We shall show that there is also a chain map F: P + Q lift-
ing f, and giving a commutative diagram of chain complexes with exact rows:

0 ---+ P’ + P + Pî -0

Fí-l FL J_F”

0 + Q’ + Q ---+ Qî ---+ 0.

The naturality of the connecting homomorphism in the long exact homology
sequence now translates into the naturality of the &. In order to produce F, we
will construct maps (not chain maps) yn: Pi + Ql, such that F,, is

F,(Pí,  Pî)  = (Fí(d)  + Y(Pî>,  Fî(Pî)).

Assuming that F is a chain map over f, this choice of F will yield our
commutative diagram of chain complexes. In order for F to be a lifting of f,
the map (~Fo - ft) from PO = Ph @ Pi to B must vanish. On Ph this is no
problem, so this just requires that

iBqíy0  = fhp - hgF{

as maps from Pl to B, where hp and 1~ are the restrictions of 6 and n to Pl
and Q& and iB is the inclusion of Bí in B. There is some map B: Pi + Bí so
that iB/I  = f h - hF{  because in Bî we have

rre(fh - k,F;) = fînAkp  - n&F; = fîd’  - r/ìF;  = 0.
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We may therefore define yo to be any lift of /3 to Qb.
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In order for F to be a chain map, we must have

díF’  - Fíd’ (díy - ydî + hF” - Fíhí)
=

0 dîF”  - Fîd”

vanishing. That is, the map díy,:  PL -+ Qí,_,  must equal

g,, = yn_ld” - h,F; +  F,!_&,.

yi defined for i -C g, exists. A short cal-
culation, using the inductive formula for díy,,-1,  shows that díg,,  = As the
complex Qí is exact, the map g, factors through a map /I: Pl+ d(QA).  We
may therefore define yn to be any lift of B to Qk.  This finishes the construction
of the chain map F and the proof. 0

Exercise 2.4.3 (Dimension shifting) If 0 -+ M -+ P -+ A + 0 is exact with
P projective (or F-acyclic 2.4.3),  show that LiF(A) ?Z Li_lF(M)  for i > 2
and that Lt F(A) is the kernel of F(M) -+ F(P). More generally, show that if

o -+ M,,, + P,,, + P,_l + ’ . . -+ PO + A + 0

is exact with the Pj projective (or F-acyclic), then Li F(A) Z Li_,_l F(M,)
fori:m++andL,+t (A) is the kernel of F(M,) + F(P,). Conclude that
if P -+ A is an F-acyclic resolution of A, then LiF(A) = Hi(F(P)).

The object Mm, which obviously depends on the choices made, is called
the mrh syzgy  of A. The word ìsyzygyî comes from astronomy, where it was
originally used to describe the alignment of the Sun, Earth, and Moon.

Theorem 2.4.7 Assume that /I has enough projectives. Then for any right
exactfinctor F: /I -+ l3, the derivedfunctors  L, F form a universal &functol:

Remark This result was first proven in [CE, IIIS], but is commonly attributed
to [Tohoku], where the term ìuniversal S-functorî first appeared.
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Proof Suppose that T* is a homological &functor  and that ~0: To + F is
given. We need to show that cpu admits a unique extension to a morphism
~0: T* + L,F of 8-functors. Suppose inductively that (pi: c + LiF are al-
ready defined for 0 5 i < n, and that they commute with all the appropriate
aiís.  Given A in A, select an exact sequence 0 + K + P -+ A + 0 with P
projective. Since L, F (P) = 0, this yields a commutative diagram with exact
rows:

T , ( A )  A T,-I(K)  - G-l(P)

J%l LVJ-,

&I
0  ---+ &F(A) + L,_lF(K) - L,_lF(P).

A diagram chase reveals that there exists a unique map pn(A) from T,(A) to
L, F(A) commuting with the given 6,ës.  We need to show that 40, is a natural
transformation commuting with all 6,ës  for all short exact sequences.

To see that 60, is a natural transformation, suppose given f: Aí -+ A and an
exact sequence 0 + Kí + P’ + Aí -+ 0 with Pí projective. As Pí is projec-
tive we can lift f to g: Pí + P, which induces a map h: K’ + K.

0 + Kí -_$ P’ + Aí ----_,  0

b b If

O--_,K--+P~A-+O

To see that (Pi commutes with f, we note that in the following diagram that
each small quadrilateral commutes.

T,(A3
T,(t)

> T,(A)

MAí)

F
\

6J
T,_,(Kí)  A> T~I(K>

%-I
1 1

On-l

La-,F(Kí)
L,-IF(h)

) L,-IF(K)

6

2.

%(A)

A chase reveals that
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6 0 L(f) 0 cp,(Aí)  = 8 0 G(A) 0 Tn(f).
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Because 6: L, F(A) -+ L,_l F( K) is manic,  we can cancel it from the equa-
tion to see that the outer square commutes, that is, that q,, is a natural trans-
formation. Incidentally, this argument (with A = Aí and f  a l s o  s h o w s

q,(A) ít depend on the choice of 
F i n a l l y ,  w e  n e e d  t o  v e r i f y  t h a t  qn

+ Aí -+ A + Aî + 0 î  -+
î + Aî  0  î  f a n d  g

0 ---+ Kî î --+ Aî  0

0 --+ Aí + A -_$ Aî + 0

commute. This yields a commutative diagram

G (Aî)
T(g)

5 T,_l(Kî)  d T,-I(Aí)

L,F(Aî)  & L,_l F ( K î )
LFk)
+ L,_l F(Aí).

Since the horizontal composites are the 6, maps of the bottom row, this implies
the desired commutativity relation. 0

Exercise 2.4.4 Show that homology H*: Ch,o(A)  + A and cohomology
H*: Chî(d)  -+ A are universal S-functors. Hint: Copy the proof above, re-
placing P by the mapping cone cone(A) of exercise 1.5.1.

Exercise 2.4.5 ([Tohoku]) An additive functor F: A + f3 is called effuceable
if for each object A of A there is a monomorphism U: A + I such that F(u) =
0. We call F coeffaceable if for every A there is a surjection u: P -+ A such
that F(u) = 0. Modify the above proof to show that if T* is a homological
d-functor such that each T, is coeffaceable (except TO), then T* is universal.
Dually, show that if T* is a cohomological d-functor such that each T” is
effaceable (except To), then T* is universal.

2.5 Right Derived Functors

2.51 Let F: A + B be a left exact functor between two abelian cate-
gories. If A has enough injectives, we can construct the right derived jiinctors
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RíF(i  2 0) of F as follows. If A is an object of A, choose an injective resolu-
tion A -+ I. and define

RíF(A)  = Hí(F(Z)).

Note that since 0 + F(A) -+ F(Zî) + F(Zí)  is exact, we always have
RíF(A)  g F(A).

Since F also defines a right exact functor Fop:  AîP  + Bop,  and AîP  has
enough projectives, we can construct the left derived functors Li Fop as well.
Since I. becomes a projective resolution of A in AîP,  we see that

RíF(A)  = (LiFOP)OP(A).

Therefore all the results about right exact functors apply to left exact functors.
In particular, the objects RíF(A)  are independent of the choice of injective
resolutions, R* F is a universal cohomological S-functor, and RíF  (I) = 0 for
i # 0 whenever Z is injective. Calling an object Q F-acyclic if RíF(  Q) =
0 (i # a s  i n  2 . 4 . 3 ,  w e  s e e  t h a t  t h e  r i g h t  d e r i v e d  f u n c t o r s  o f  c a n  a l s o  b e
computed from F-acyclic resolutions.

Definition 2.52 A ,  F ( B )  =
 B )  i s  l e f t  e x a c t .  I t s  r i g h t  d e r i v e d  f u n c t o r s  a r e  c a l l e d  t h e  g r o u p s :

Extk(A, RíHomR(A,  -)(B).

In particular, Extí(A,  B) is Hom(A, B), and injectives are characterized by
Ext via the following exercise.

Exercise 2.5.1 Show that the following are equivalent.

1. B is an injective R-module.
2. HomR(-, B) is an exact functor.
3. Extk(A, B) vanishes for all i # 0 and all A (B is HomR(-, B)-acyclic

for all A).
4. Extfp(A,  B) vanishes for all A.

The behavior of Ext with respect to the variable A characterizes projectives.

Exercise 2.5.2 Show that the following are equivalent.

1. A is a projective R-module.
2. HomR(A, -) is an exact functor.
3. Extk(A, B) vanishes for all i # 0 and all B (A is HomR(-, B)-acyclic

for all B).
4. Extk(A, B) vanishes for all B.
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The notion of derived functor has obvious variations for contravariant func-
tots. For example, let F be a contravariant left exact functor from A to B. This
is the same as a covariant left exact functor from d"P to 8, so if A has enough
projectives (i.e., d"P has enough injectives), we can define the right derived
functors R” F(A) to be the cohomology of F (P.), P. --+ A being a projective
resolution in A. This too is a universal 6-functor with ROF(A)  = F(A), and
RíF(P)  = 0 for i # 0 whenever P is projective.

Example 2.5.3 For each R-module B, the functor G(A) = HomR(A,  B)
is contravariant and left exact. It is therefore entitled to right derived func-
tors R*G(A). However, we will see in 2.7.6 that these are just the functors
Ext*(A, B). That is,

R* Hom(-, B)(A) Z R* Hom(A, -)(B) = Ext*(A, B).

Application 2.54 Let X be a topological space. The global sections functor
r from Sheaves(X) to Ab is the functor r(F) = F(X).  It turns out (see 2.6.1
and exercise 2.6.3 below) that r is right adjoint to the constant sheaves functor,
so r is left exact. The right derived functors of r are the cohomology jiinctors
on X:

H'(X,F)= R+(F).

The cohomology of a sheaf is arguably the central notion in modem algebraic
geometry. For more details about sheaf cohomology, we refer the reader to
[Hart].

Exercise 2.53 Let X be a topological space and (A,] any family of abelian
groups, parametrized by the points x E X. Show that the skyscraper sheaves
x,(A,) of 2.3.12 as well as their product F = lIx,(A,) are r-acyclic, that is,
that Hí(X,  F) = 0 for i # 0. This shows that sheaf cohomology can also be
computed from resolutions by products of skyscraper sheaves.

2.6 Adjoint Functors and Left/Right Exactness

We begin with a useful trick for constructing left and right exact functors.

Theorem 2.6.1 Let L: A + t? and R: B + A be an adjoint pair of additive
jiunctors. That is, there is a natural isomorphism

T: Homa(L(A),  B) 3 Homd(A,  R(B)).
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Then L is right exact, and R is left exact.

Proof Suppose that 0 -+ Bí + B + Bî + 0 is exact in L?. By naturality of t
there is a commutative diagram for every A in A.

0 - Homn(L(A),  B í )  --+ Homa(L(A),  B) + Homa(L(A),  B î )

& JE J_E

0 --+  HomA(A,  R (B í ) )  + HomA(A,  R(B)) + HomA(A,  R ( B î ) )

The top row is exact because Hom(LA, -) is left exact, so the bottom row is
exact for all A. By the Yoneda Lemma 1.6.11,

O-+ R(Bí) + R(B) + R(Bî)

must be exact. This proves that every right adjoint  R is left exact. In particular
Lop: d"P --+ t?'P (which is a right adjoint) is left exact, that is, L is right exact.

0

Remark Left adjoints have left derived functors, and right adjoints have right
derived functors. This of course assumes that A has enough projectives, and
that B has enough injectives for the derived functors to be defined.

A p p l i c a t i o n  2 . 6 . 2  L e t  R  b e  a  r i n g  a n d  B  a left R-module. The follow-
ing standard proposition shows that @uB:  mod-R --f Ab is left adjoint to
HOmAb(B,  -), so @RB is right exact. More generally, if s is another ring,
and B is an R-S bimodule, then @.RB  takes mod-R to mod-S and is a left
adjoint, so it is right exact.

Proposition 2.6.3 If B is an R-S bimodule and C a right S-module, then
Homs(B, C) is naturally a right R-module by the rule (fr)(b) = f(rb) for
f E Hom(B, C), r E R and b E B. Thefunctor Homs(B, -) from mod-S to
mod-R is right adjoint to @uB.  That is, for every R-module A and S-module
C there is a natural isomorphism

t: Homs(A  @,R B, C) --%  HOIIIR(A,  Homs(B, C)).

Proof Given f: A @R B -+ C, we define (tf)(a) as the map b H f (a 8 b)
for each a E A. Given g: A + Homs(B, C), we define t-ë(g)  to be the map
defined by the bilinear form a @I  b H g(u)(b). We leave the verification that
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t(f)(a) is an S-module map, that t(f) is an R-module map, t-ë(g)  is an R-
module map, t is an isomorphism with inverse r-i, and that t is natural as an
exercise for the reader. 0

Definition 2.6.4 Let B be a left R-module, so that T(A) = A @.R B is a right
exact functor from mod-R to Ab. We define the abelian groups

Tori(A, B) = (L,T)(A).

In particular, To$(A,  B) Z A @R B. Recall that these groups are computed by
finding a projective resolution P + A and taking the homology of P @R B. In
particular, if A is a projective R-module, then Tor,(A,  B) = 0 for n # 0.

More generally, if B is an R-S bimodule, we can think of T(A) = A ë8~  B
as a right exact functor landing in mod-S, so we can think of the Tor:(A, B)
as S-modules. Since the forgetful functor U from mod-S to Ab is exact, this
generalization does not change the underlying abelian groups, it merely adds
an S-module structure, because U(L.,  @ B) Z L,U(@B) as derived functors.

The reader may notice that the functor A@,R  is also right exact, so we could
also form the derived functors L,(A@R).  We will see in section 2.7 that this
yields nothing new in the sense that L,(A@R)(B) Z L,(@RB)(A).

Application 2.6.5 Now we see why the inclusion ìincl”  of Sheaves(X) into
Presheaves(X) is a left exact functor, as claimed in 1.6.7; it is the right ad-
joint to the sheafification functor. The fact that sheafification is right exact is
automatic; it is a theorem that sheafification is exact.

Exercise 2.6.1 Show that the derived functor Rí(inc1)  sends a sheaf 3 to the
presheaf U H Hí(U,  3]U),  where 3]U  is the restriction of 3 to U and Hi is
the sheaf cohomology of 2.5.4. Hint: Compose Rí(inc1)  with the exact functors
Presheaves(X) -+ Ab sending 3 to 3(U).

Application 2.6.6 Let f: X + Y be a continuous map of topological spaces.
For any sheaf 3 on X, we define the direct image sheaf f*3  on Y by
(f*.?=)(V)  = 3(f-’ V) for every open V in Y. (Exercise: Show that f*3 is
a sheaf!) For any sheaf G on Y, we define the inverse image sheaf f-ëG  to be
the sheafification of the presheaf sending an open set U in X to the direct limit
1E G(V) over the poset of all open sets V in Y containing f(U). The follow-

ing exercise shows that f-’ is right exact and that f* is left exact because they
are adjoint. The derived functors R' f* are called the higher direct image sheaf
functors and also play a key role in algebraic geometry. (See [Hart] for more
details.)
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Exercise 2.6.2 Show that for any sheaf F on X there is a natural map
f-ëfJ  + F, and that for any sheaf B on Y there is a natural map B -+
f*f-ë8  . Conclude that f-’ and f* are adjoint to each other, that is, that
there is a natural isomorphism

HomxKíG,  F) Y Homr(G,  f*fl.

Exercise 2.6.3 Let * denote the one-point space, so that Sheaves(*) % Ab.

1. If f: X -+ * is the collapse map, show that f* and f-’ are the global
sections functor r and the constant sheaves functor, respectively. This
proves that r is right adjoint to the constant sheaves functor. By 2.6.1,  r
is left exact, as asserted in 2.5.4.

2. If x: * + X is the inclusion of a point in X, show that x* and x-l are the
skyscraper sheaf and stalk functors of 2.3.12.

Application 2.6.7 (Colimits) Let I be a fixed category. There is a diagonal
functor A from every category A to the functor category A'; if A E A, then
AA is the constant functor: (AA)i = A for all i. Recall that the colimit of a
functor F: I + A is an object of A, written colimi,Z  Fi, together with a nat-
ural transformation from F to A(colim Fi), which is universal among natural
transformations F + AA with A E A. (See the appendix or [MacCW,  111.31.)
This universal property implies that colim is a functor from A' to A, at least
when the colimit exists for all F: I -+ A.

Exercise 2.6.4 Show that colim is left adjoint to A. Conclude that colim is a
right exact functor when A is abelian (and colim exists). Show that pushout
(the colimit when Z is t . + .) is not an exact functor in Ab.

Proposition 2.6.8 The following are equivalentfor an abelian category A:

1. The direct sum @Ai exists in A for every set (Ai) of objects in A.
2. A is cocomplete, that is, colimiEZ  Ai exists in A for each functor A: Z -+
A whose indexing category Z has only a set of objects.

Proof As (1) is a special case of (2),  we assume (1) and prove (2). Given
A: Z + A, the cokernel C of

@ Ai+@Ai
(p:i+j iel

@[PI H Po(ai)  - ai

solves the universal problem defining the colimit, so C = c$iZm  Ai. 0
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Remark Ab, mod-R, Presheaves(X), and Sheaves(X) are cocomplete be-
cause (1) holds. (If I is infinite, the direct sum in Sheaves(X) is the sheafifica-
tion of the direct sum in Presheaves(X)). The category of finite abelian groups
has only$nite  direct sums, so it is not cocomplete.

Variation 2.6.9 (Limits) The limit of a functor A: I + A is the colimit of
the corresponding functor AOp:  lop + d"P, so all the above remarks apply in
dual form to limits. In particular, lim: A' + A is right adjoint to the diagonal
functor A, so lim is a left exact functor when it exists. If the product lIAi of
every set {At] of objects exists in A, then A is complete, that is, limier  At
exists for every A: I + A with I having only a set of objects. Ab, mod-R,
Presheaves(X), and Sheaves(X) are complete because such products exist.

One of the most useful properties of adjoint functors is the following result,
which we quote without proof from [MacCW,  VS].

Adjoints  and Limits Theorem 2.6.10 Let L: A + f3 be left adjoint to a
functor R: B + A, where A and t3 are arbitrary categories. Then

1. L preserves all colimits (coproducts, direct limits, cokernels, etc.). That
is, if A: I -+ A has a colimit, then so does LA: I + B, and

L(cT,$m  At) = cTF1rn  L(Ai).

2. R preserves all limits (products, inverse limits, kernels, etc.). That is, if
B:I-+L3hasalimit,thensodoesRB:I-+d,and

Here are two consequences that use the fact that homology commutes
with arbitrary direct sums of chain complexes. (Homology does not commute
with arbitrary colimits; the derived functors of colim intervene via a spectral
sequence.)

Corollary 2.6.11 If a cocomplete abelian category A has enough projectives,
and F: A -+ I3 is a left adjoint, then for every set {At] of objects in A:

Proof If Pi --+  At are projective resolutions, then so is @Pi  + @At. Hence

L*F($At)  = H*(F(@Pt))  2 H*(@F(Rt))  2 @H*(F(Rt))  = @L*E(At). 0
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Corollary 2.6.12 Tor,(A,  @ielf&)  = @iel ToMA,  &).

Proof If P + A is a projective resolution, then

Tor,(A, @Bi) = &(P %I (@Bi)) G Z&(@(P  @ &)) g @K(P  8 Bi)

= @Tor,(A,  Bi). 0

Definition  2.6.13 A nonempty  category I is called$ltered  if

1. Foreveryi,jEZtherearearrows~>ktOsOmekEZ.

2. For every two parallel arrows U, IJ: i =t j there is an arrow W: j + k

such that wu = WV.

A filtered co&nit in A is just the colimit of a functor A: I + A in which I
is a filtered category. We shall use the notation colim(Ai)  for such a filtered

---f
colimit.

If I is a partially ordered set (poset), considered as a category, then condi-
tion (1) always holds, and (2) just requires that every pair of elements has an
upper bound in I. A filtered poset is often called directed; filtered colimits over
directed posets are often called direct limits and are often written lim Ai.

We are going to show that direct limits and filtered cohmits; modules
are exact. First we obtain a more concrete description of the elements of
coJm(Ai).

Lemma 2.6.14 Let Z be a filtered category and A: Z + mod-R a functor.
Then

1. Every element a E co>m(Ai)  is the image of some element ai E Ai (for

some i E Z) under the canonical map Ai + coJm(Ai).

2. For every i, the kernel of the canonical map Ai -+ colim(Ai)  is the union

of the kernels of the maps C,O:  Ai -+ Aj (where ~0: i +-j is a map in Z).

Proof We shall use the explicit construction of colim(Ai).  Let hi: Ai +

@tcZAt be the canonical maps. Every element a of coG At is the image of

c hj(aj)
jEJ

for some finite set .Z = (il, . . . , i,). There is an upper bound i in Z fat
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(il, . . , i,); using the maps Aj + Ai we can represent each aj as an ele-
ment in Ai and take ai to be their sum. Evidently, a is the image of ai, so (1)
holds.

Now suppose that ai E Ai vanishes in coLm(Ai).  Then there are qjk:  j + k

in Z and ajk E Aj SO that ki(ai) = xhk(qjk(aj))  - hj(aj)  h @Ai. Choose
an upper bound t in I for all the i, j, k in this expression. Adding hr(cpitai) -
hi (ai) to both sides we may assume that i = t. Adding zero terms of the form

[bPjt(aj)  - kkcPjk(aj)l +  [%jr(-aj)  - hkPjk(-aj)13

we can assume that all the kís are t. If any qjr are parallel arrows in I, then by
changing t we can equalize them. Therefore we have

Mat> = b(CVjr(aj)) - C hj(aj)

with all the jís distinct and none equal to t. Since the hj are injections, all the
aj must be zero. Hence qit(ai) = ar = 0, that is, ai E ker(pir). 0

Theorem 2.6.15  Filtered colimits (and direct limits) of R-modules are exact,
considered as functors from (mod-R)í to mod-R.

Proof Set A = mod-R. We have to show that if I is a filtered category (e.g.,
a directed poset), then colim: A' + A is exact. Exercise 2.6.4 showed that+
colim is right exact, so we need only prove that if t: A + B is manic  in
+

d'(i.e.,  each ti is manic), then colim(Ai)  + colim(Bi)  is manic  in A. Let+ +
a E colim(Ai) be an element that vanishes in colim(Bi).  By the lemma above,

a is thzmage  of some ai E Ai. Therefore ti (ai)TBi  vanishes in colim(Bi),  SO
-

there is some p: i + j so that

0 = p(ti (ai)) = tj (q(ai)) in Bj.

Since tj is manic, q(ai)  = 0 in Aj. Hence a = 0 in co&m(Ai). 0

Exercise 2.6.5 (AB5) The above theorem does not hold for every cocomplete
abelian  category A. Show that if A is the opposite category AbíJ’  of abelian
groups, then the functor colim: A' + A need not be exact when Z is filtered.

An abelian  category dz said to satisfy axiom (AB5) if it is cocomplete
and filtered colimits are exact. Thus the above theorem states that mod-R and
R-mod satisfy axiom (AB5),  and this exercise shows that AbîP  does not.
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Exercise 2.6.6 Let f: X -+ Y be a continuous map. Show that the inverse
image sheaf functor f-t: Sheaves(Y) -+ Sheaves(X) is exact. (See 2.6.6.)

The following consequences are proven in the same manner as their coun-
terparts for direct sum. Note that in categories like R-mod for which filtered
colimits are exact, homology commutes with filtered colimits.

Corollary 2.6.16 If A = R-mod (or A is any abelian  category with enough
projectives, satisfying axiom CABS)), and F: A -+ t? is a left adjoint,  then for
every A: I + A with I filtered

L,F(co>m(Ai)) 2 co>m L,F(A).

Corollary 2.6.17 For everyjiltered B: I -+ R-mod and every A E mod-R,

Tor,(A,  co>m(Bi))  Z co>m Tor,(A,  Bi)

2.7 Balancing Tor and Ext

In earlier sections we promised to show that the two left derived functors
of A @R B gave the same result and that the two right derived functors of
Hom(A,  B) gave the same result. It is time to deliver on these promises.

Tensor Product of Complexes 2.7.1 Suppose that P and Q are chain com-
plexes of right and left R-modules, respectively. Form the double complex
P @R Q = { Pp @R Qq)  using the sign trick, that is, with horizontal differen-
tials d @J 1 and vertical differentials (-l)P @ d. P @R Q is called the tensor
product double complex, and Tot@(P  @.R Q) is called the (total) tensor prod-
uct chain complex of P and Q.

Theorem 2.7.2 L,(A@R)(B) CC L,(@RB)(A) = Tor:(A, B)for all n.

Proof Choose a projective resolution P 5 A in mod-R and a projective

resolution Q -% B in R-mod. Thinking of A and B as complexes concen-
trated in degree zero, we can form the three tensor product double complexes
P @3  Q, A &I Q, and P 63 B. The augmentations E and 77 induce maps from
P@QtoA@QandP@B.
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PO0 Q2 d P ,  0 Q2 & ...
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1
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1 1

Po@Q, & P ,  OQ, & P2@Qe, <_ . . .

d1 d 1 d

I

PO@ Qo & P,@Qo  &- P2@ Qo +____ . . .

PO  0 B & P,OB & P28B <_ . . .

Using the Acyclic Assembly Lemma 2.7.3, we will show that the maps

A @ Q = Tot(A @ Q) ë2  Tot(P @ Q) 2 Tot(P @ B) = P @ B

are quasi-isomorphisms, inducing the promised isomorphisms on homology:

L,(A@R)(B)  z WTot(P  ë8  Q,> 2 L,(@RB)(A).

Consider the double complex C obtained from P @I Q by adding A @
Q[-l] in the column p = - 1. The translate Tot(C)[  l] is the mapping cone
of the map E @ Q from Tot(P @ Q) to A 8 Q (see 1.2.8 and 1.5.1)  so in or-
der to show that .F @ Q is a quasi-isomorphism, it suffices to show that Tot(C)
is acyclic. Since each @Q4  is an exact functor, every row of C is exact, so
Tot(C) is exact by the Acyclic Assembly Lemma.

Similarly, the mapping cone of P 63 q: Tot( P @ Q) + P @ B is the trans-
late Tot(D)[l],  where D is the double complex obtained from P @ Q by
adding P @J B[ - l] in the row q = - 1. Since each Pp@  is an exact functor, ev-
ery column of D is exact, so Tot(D) is exact by the Acyclic Assembly Lemma
2.7.3. Hence cone( P @ q) is acyclic, and P @I q is also a quasi-isomorphism.

0

Acyclic Assembly Lemma 2.7.3 Let C be a double complex in mod-R.
Then
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l Tot"(C)  is an acyclic chain complex, assuming either of the following:
1. C is an upper half-plane complex with exact columns.
2. C is a right half-plane complex with exact rows.

l Tot@(C) is an acyclic chain complex, assuming either of the following:
3. C is an upper half-plane complex with exact rows.
4. C is a right half-plane complex with exact columns.

Remark The proof will show that in (1) and (3) it suffices to have every di-
agonal bounded on the lower right, and in (2) and (4) it suffices to have every
diagonal bounded on the upper left. See 5.5.1  and 5.5.10.

Proof We first show that it suffices to establish case (1). Interchanging rows
and columns also interchanges (1) and (2), and (3) and (4),  so (1) implies (2)
and (4) implies (3). Suppose we are in case (4), and let rnC be the double
subcomplex of C obtained by truncating each column at level n:

C ifq >n
(T,C)~~ = key(dî:  C,, + C,,,_l) i f q = n  .

0 ifqtn

Each rnC is, up to vertical translation, a first quadrant double complex with
exact columns, so (1) implies that Tot@(r,C)  = Totî(r,C)  is acyclic. This
implies that Tot@(C) is acyclic, because every cycle of Tot@(C) is a cycle
(hence a boundary) in some subcomplex Tot@(r,C).  Therefore (1) implies (4)
as well.

In case (l), translating C left and right, suffices to prove that Hu(Tot(C))  is
zero. Let

c = (. . . ) CLP$, . . . , c-2,2,  c-1,1,  co,o)  E n C-,,, = Tot(

be a O-cycle; we will find elements &,,,+I  by induction on p so that

dî(b-,,,+d  + dh(b-,+,,,)  = c_~,.,.

A s s e m b l i n g  t h e  b í s  w i l l  y i e l d  a n  e l e m e n t  b of n C_,,,+t such that d(b) = c,
proving that Hu(Tot(C))
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b_ P.P+’

I

e-P.P - b-,+1,,

I
c-~+~.p-~  - b-p+2,p-,

OXI - W=ho)

I
0

We begin the induction by choosing blo = 0 for p = -1. Since Co,-1  = 0,
dî(c&  = 0; since the Orb column is exact, there is a bnt E Co1 so that
dî(bol)  = COO.  Inductively, we compute that

dU(c-p,p - dh(b-p+l,,)) = dî(c_pp)  + dhdî(&,+l,,)

=dî(C-pp)  +&c-,+1,,_,)  - &h(b_,+2,,_1j

= 0.

Since the -pth  column is exact, there is a &,,,+I  so that

dî(b-,,,+I)  = c-~,~ - &b-,+1,,)

as desired. 0

Exercise 2.7.1 Let C be the periodic upper half-plane complex with C,, =
Z/4 for all p and q > 0, all differentials being multiplication by 2.
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12 12 12

2
. . . A n / 4  2- n / 4  2-- n / 4  - . .

b 12 L2

. . /2 214 12 n/4 .2-- 214 L . .

Show that ZZu(Totî(C))  z n/2 on the cycle (. . . , 1, 1, 1) E fl C_,,,
even though the rows of C are exact. Hint: First show that the O-
boundaries are n 2n/4.
Show that Tot@(C) is acyclic.
Now extend C downward to form a doubly periodic plane double com-
plex D with D,, = /n 4 for all p, q En. Show that Hu(Totî(D))  maps

onto Hu(Tot”  C) Y n/2. Hence Totî(D) is not acyclic, even though ev-
ery row and column of D is exact. Finally, show that Tot@(D) is acyclic.

Exercise 2.7.2

1. Give an example of a 2îd  quadrant double chain complex C with exact
columns for which Tot@(C) is not an acyclic chain complex.

2. Give an example of a 4íh  quadrant double complex C with exact columns
for which Totî(C) is not acyclic.

Horn Cochain Complex 2.7.4 Given a chain complex P and a cochain com-
plex I, form the double cochain complex Hom(P, I) = [Hom( P,,, 14)) using
a variant of the sign trick. That is, if f: P,, + 14, then dhf: Pp+l  + 14 by

(dhf)(p)  = f(dp), while we define dîf:  Pp -+ Zq+’  by

(díf)(p)  = (-l)pfq+ëd(fp) for p E Pp.

Hom( P, I) is called the Horn double complex, and Totî(Hom( P, I)) is called
the (total) Horn cochain complex. Warning: Different conventions abound in
the literature. Bourbaki [BX] converts Hom( P, Z) into a double chain complex
and obtains a total Horn chain complex. Others convert Z into a chain complex
Q with Qq = Z-4 and form Hom(P, Q) as a chain complex, and so on.

Morphisms and Horn 2.7.5 To explain our sign convention, suppose that C
and D are two chain complexes. If we reindex D as a cochain complex, then
an n-cycle f of Hom(C,  D) is a sequence of maps fp: C, -+ Dn-p = D,_,
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such that fpd = (- l)ìdf,+l,  that is, a morphism of chain complexes from
C to the translate D[-n] of D. An n-boundary is a morphism f that is null
homotopic. Thus H” Hom(C,  D) is the group of chain homotopy equivalence
classes of morphisms C -+ D[-n], the morphisms in the quotient category K
of the category of chain complexes discussed in exercise 1.4.5.

Similarly, if X and Y are cochain complexes, we may form Hom(X, Y) by
reindexing X. Our conventions about reindexing and translation ensure that
once again an n-cycle of Hom(X, Y) is a morphism X -+ Y[-n] and that
H” Hom(X, Y) is the group of chain homotopy equivalence classes of such
morphisms. We will return to this point in Chapter 10 when we discuss RHom
in the derived category D(A).

Exercise 2.7.3 To see why Tot@is used for the tensor product P @R Q of
right and left R-module complexes, while Totî is used for Horn, let Z be a
cochain complex of abelian groups. Show that there is a natural isomotphism
of double complexes:

HomAr,(Tot@(P  8.R Q), I) 2 HomR(P, Totî(HomAr,(Q,  I)).

Theorem 2.7.6 For every pair of R-modules A and B, and all n,

Exti(A, B) = R” HomR(A,  -)(B) g RîHomR(--,  B)(A).

Proof Choose a projective resolution P of A and an injective resolution Z
of B. Form the first quadrant double cochain complex Hom( P, Z). The aug-
mentations induce maps from Hom(A, Z) and Hom(P, B) to Hom(P, I). As
in the proof of 2.7.2, the mapping cones of Hom(A, I) + Tot(Hom(P, I))
and Hom(P, B) + Tot(Hom(P, Z)) are translates of the total complexes ob-
tained from Hom(P, I) by adding Hom(A, Z)[-l] and Hom(P, B)[-11,  re-
spectively. By the Acyclic Assembly Lemma 2.7.3 (or rather its dual), both
mapping cones are exact. Therefore the maps

Hom(A, Z) -+ Tot(Hom(P,  I)) t Hom(P, B)

are quasi-isomorphisms. Taking cohomology yields the result:

R* Hom(A, -)(B) = H* Hom(A, I)

Y H* Tot(Hom(P, I))

2 H* Hom(P, B) = R* Hom(-, B)(A). 0
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Hom(A,P)  1 Hom(P,,  P) + Hom(Pi,P)  + . . .

Hom(A, Ií) Hom(Pe,Zí)  + Hom(P,,Zí)  + Hom(P2,Z1)  + . . .

Hom(A, P) i Hom(PO,Za)  + Hom(Pt,F))  + Hom(P2,  P) + . . .

Hom(Pu,B) + Hom(Pt,B)  -+ Hom(P,,B)  --+ . . .

Definition 2.7.7 ([CE]) In view of the two above theorems, the following
definition seems natural. Let T be a left exact functor of p ìvariableî modules,
some covariant and some contravariant. T will be called right balanced under
the following conditions:

1. When any one of the covariant variables of T is replaced by an injective
module, T becomes an exact functor in each of the remaining variables.

2. When any one of the contravariant variables of T is replaced by a pro-
jective module, T becomes an exact functor in each of the remaining
variables. The functor Horn is an example of a right balanced functor,
as is Hom(A @ B, C).

Exercise 2.7.4 Show that all p of the right derived functors R*T (Al, . . ,
&, . . , A,)(Ai)  of T are naturally isomorphic.

A similar discussion applies to right exact functors T which are left bal-
anced. The prototype left balanced functor is A @ B. In particular, all of the
left derived functors associated to a left balanced functor are isomorphic.

Application 2.7.8 (External product for Tor) Suppose that R is a commuta-
tive ring and that A, Aí, B, Bí are R-modules. The external product is the map

Tori(A, B) 8.~ Torj(Aí,  Bí)  + Tori+j(A  @R Aí,  B ë8.R  Bí)
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constructed for every i and j in the following manner. Choose projective reso-
lutions P -+ A, Pí + Aí, and Pî + A @ Aí. The Comparison Theorem 2.2.6
gives a chain map Tot( P @ Pí) + Pî which is unique up to chain homotopy
equivalence. (We saw above that Hi Tot (P 8 Pí) = Tori (A, Aí), so we actu-
ally need the version of the Comparison Theorem contained in the porism
2.2.7.) This yields a natural map

H,(P @I  B @I Pí@  Bí) g H,(P @ Pí@  B @ Bí) -+ H,(Pî@  B @I  Bí)

= Tor,(A @ Aí, B @I  Bí).

On the other hand, there are natural maps Hi (C) @ Hj (Cí) -+ Hi+j Tot (C @
Cí) for every pair of complexes C, Cí; one maps the tensor product c @ c’
of cycles c E Ci and cí E Ci to c @ cí E Ci @ Cs. (Check this!) The external

product is obtained by composing the special case C = P @ B, C’ = P’ @ Bí:

Tor;(A, B) 8 Torj(Aí,  Bí) = Hi(P  8 B) @ Hj(Pí@  Bí) + Hi+j(P  C3 B C3 Pí@  Bí)

with the above map.

Exercise 2.7.5

1. Show that the external product is independent of the choices of P, Pí, P”
and that it is natural in all four modules A, Aí, B, Bí.

2. Show that the product is associative as a map to Tor,(A  8 Aí 8 Aî, B 8
Bí @I  Bî).

3. Show that the external product commutes with the connecting homomor-
phism 6 in the long exact Tor sequences associated to 0 -+ Bo -+ B +
B1 -+ 0.

4. (Internal product) Suppose that A and B are R-algebras. Use (1) and (2)
to show that Torf (A, B) is a graded R-algebra.



3

Tor and Ext

3.1 Tor for Abelian Groups

The first question many people ask about Tor,(A,  B) is ìWhy the name
ëTorí?î The results of this section should answer that question. Historically,
the first Tor groups to arise were the groups Tort(Z/p, B) associated to
abelian groups. The following simple calculation describes these groups.

Calculation 3.1.1 Torz(Z/p, B) = B/pB,  Torf(Zí/p,  B) = pB = (b E B :

pB = 0) and Torz(Z/p, B) = 0 for n 12. To see this, use the resolution

to see that Tor,(Z/p,  B) is the homology of the complex 0 -+

Proposition 3.1.2 For all abelian  groups A and B:

(a) TorT(A,  B) is a torsion abelian  group.
(b) Torz(A,  B) = Ofor n 12.

B~BBO.

Proof A is the direct limit of its finitely generated subgroups A,, so by 2.6.17
Tor, (A, B) is the direct limit of the Tor, (A,, B). As the direct limit of torsion
groups is a torsion group, we may assume that A is finitely generated, that is,
A~ZmcBh/p1@Z/p263.. . CT3  Z/pr  for appropriate integers m, ~1, . . . , pr.
As Z” is projective, Tor,(P, -) vanishes for n  # a n d  s o  w e  h a v e

Tor,(A,  B) S Tor,(Z/pt,  B) @ . . ~3 Tor,(Z/p,, B).

The proposition holds in this case by calculation 3.1.1 above.

66

0



3.1 Tor for Abelian G r o u p s 67

Proposition 3.1.3 Torf(Q/Z,  B) is the torsion subgroup of B for every
abelian  group B.

Proof As Q/Z is the direct limit of its finite subgroups, each of which is
isomorphic to Z/p for some integer p, and Tor commutes with direct limits,

To&Q/Z,  B) E l&Tor:(Z/p,  B) E 12(pB)  = U,{b E B : pb = 01,

which is the torsion subgroup of B. 0

Proposition 3.1.4 If A is a torsionfree abelian group, then Torf(A,  B) = 0
for n # 0 and all abelian groups B.

Proof A is the direct limit of its finitely generated subgroups, each of which is
isomorphic to Zm for some m. Therefore, Tor, (A, B) 2’ lim Tor, (Z”  , B) = 0.+

0

Remark (Balancing Tor) If R is any commutative ring, then Tor:(A, B) 2
Torf(B,  A). In particular, this is true for R = Z, that is, for abelian groups.
This is because for fixed B, both are universal b-functors over F(A) = A @
B Z B ~8 A. Therefore Torf(A,  Q/Z) is the torsion subgroup of A. From this
we obtain the following.

Corollary 3.1.5 For every abelian group A,

Torf(A,  -) = 0 ++ A is torsionfree + Tory(-,  A) = 0.

Calculation 3.1.6 All this fails if we replace Z by another ring. For example,
if we take R = z/m and A = Z/d with dim,  then we can use the periodic free
resolution

to see that for all Z/m-modules B we have

I B/dB ifn=O
Torzíì(Z/d,  B) = (b E B: db = O)l(m/d)B if n is odd, n > 0

{b E B: (m/d)b = O}/dB if n is even, n > 0.
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Example 3.1.7 Suppose that r E R is a left nonzerodivisor on R, that is,
,.R = (s E R : rs = 0} is zero. For every R-module B, set ,B = {b E B : rb =
0). We can repeat the above calculation with R/r R in place of Z/p to see that
Torg(R/rR,  B) = B/rB, Torp(R/rR,  B) = ,B and Torf(R/rR,  B) = 0 for
all B when n 1 2.

Exercise 3.1.1 If r R # 0, all we have is the non-projective resolution

O+ ,R-+  R-!k R+ RIrR+0.

Show that there is a short exact sequence

multiply
0  - Tor;(R/rR,  B) - ,.R@R B  - ,B --+ Torf(R/rR, B )  -+ 0

and that Torf(R/rR,  B) 2’ Torf_2(rR,  B) for n ? 3.

Exercise 3.1.2 Suppose that R is a commutative domain with field of frac-
tions F. Show that Torf(F/R,  B) is the torsion submodule (b E B : (3 #
0) rb = 0) of B for every R-module B.

Exercise 3.1.3 Show that Torf(R/I,  R/J) S # for every right ideal I and

left ideal J of R. In particular, Tort(R/Z,  R/Z) 2 Z/Z2  for every 2-sided ideal
I. Hint: Apply the Snake Lemma to

0 --f  IJ --f  I - I@R/J - 0

0 + J --+ R --+ R@R/J - 0.

3.2 Tor and Flatness

In the last chapter, we saw that if A is a right R-module and B is a left R-
module, then Torf(A,  B) may be computed either as the left derived functors
of A@R evaluated at B or as the left derived functors of @R B evaluated at A.
It fotlows that if either A or B is projective, then Tor,(A,  B) = 0 for n # 0.

Definition 3.2.1 A left R-module B isJlat  if the functor @RB is exact. Sim-
ilarly, a right R-module A is Jlat if the functor A@R is exact. The above
remarks show that projective modules are flat. The example R = Z, B = Q

shows that flat modules need not be projective.
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Theorem 3.2.2 Zf S is a central multiplicatively closed set in a ring R, then
S-’  R is a flat R-module.

Proof Form the filtered category I whose objects are the elements of S and
whose morphisms are HomZ(st,  ~2)  = {s E S : sls = q}. Then colim F(s) G’

S-ëR  for the functor F: I -+ R-mod defined by F(s) = R, F(SI  & ~2)  be-
ing multiplication by s. (Exercise: Show that the maps F(s) + S-ëR  sending
1 to l/s induce an isomorphism colim F(s) S S-ëR.)  Since S-ëR  is the fil-

tered colimit of the free R-modules;(s), it is flat by 2.6.17. 0

Exercise 3.2.1 Show that the following are equivalent for every left R-
module B.

1. B is flat.
2. Tor~(A,B)=Oforalln#OandallA.
3. Torr(A,  B) = 0 for all A.

Exercise 3.2.2 Show that if 0 + A + B + C -+ 0 is exact and both B and
C are flat, then A is also flat.

Exercise 3.2.3 We saw in the last section that if R = i? (or more generally,
if R is a principal ideal domain), a module B is flat iff B is torsionfree. Here
is an example of a torsionfree ideal I that is not a flat R-module. Let k be a
field and set R = k[x, y], I = (x, y)R. Show that k = R/Z has the projective
resolution

0+R+R2(XY!R+k+0.L-xí1

Then compute that Torf (I, k) 2 TorF(k, k) g k, showing that Z is not flat.

Definition 3.2.3 The Pontrjagin dual B* of a left R-module B is the right
R-module HomAb(B, Q/z); an element r of R aCtS via (fr)(b) = f(rb).

Proposition 3.2.4 The following are equivalentfor every left R-module B :

1. B is a flat R-module.
2. B* is an injective right R-module.
3. Z @R B z ZB = {xlbl + . . . +x,b,EB:xiEZ,biEB)CBforevery

right ideal Z of R.
4. Torf (R/Z, B) = 0 for every right ideal Z of R.
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Proof The equivalence of (3) and (4) follows from the exact sequence

0 + Tort(R/Z,  B) -+ I@ B --+ B -+ B/ZB -+ 0.

Now for every inclusion Aí c A of right modules, the adjoint functors @B  and
Hom(-, B) give a commutative diagram

H o m ( A ,  B * )  --+ Hom(Aí, B*)

J-2 q

(A 8 B)* = Hom(A 18 B, Q/Z) -+ Hom(Aí@  B, Q / Z ) = (Aí @  B)*.

Using the lemma below and Baerís criterion 2.3.1,  we see that

B* is injective + (A @3  B)* -+ (Aí @ B)* is surjective for all Aí c A.

+ Aí @ B + A 531  B is injective for all Aí c A + B is flat.

B* is injective ($ (R @I  B)* -+ (I @3  B)* is surjective for all I c R

+ Z @ B + R @I  B is injective for all Z

0 Z @ B G ZB for all I. 0

Lemma 3.2.5 A map f: B -+ C is injective ifs the dual map f *: C* + B* is
surjective.

Proof If A is the kernel of f, then A* is the cokernel of f *, because
Hom(-, Q/Z> is contravariant exact. But we saw in exercise 2.3.3 that A = 0
iffA*=O. 0

Exercise 3.2.4 Show that a sequence A + B --+ C is exact iff its dual C* +
B* --f A* is exact.

An R-module M is called finitely presented if it can be presented us-
ing finitely many generators (et, . . . , e,) and relations (C aijej  = 0, j =

1 ,..., m). That is, there is an m x n matrix a! and an exact sequence Rm %
R* -+ M + 0. If M is finitely generated, the following exercise shows that the
property of being finitely presented is independent of the choice of generators.

Exercise 3.2.5 Suppose that ~0: F + M is any surjection, where F is finitely
generated and M is finitely presented. Use the Snake Lemma to show that
ker((p)  is finitely generated.

Still letting A* denote the Pontrjagin dual 3.2.3 of A, there is a natural
map a: A* @R M + HomR(M,  A)* defined by a(f @I  m): h H f (h(m)) for
f E A*, m E M and h E Hom(M, A). (Exercise: If M = @E, R, show that 0
is not an isomorphism.)
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,emma  3.2.6 The map 0 is an isomorphism for every finitely presented M
md all A.

?oof  A simple calculation shows that u is an isomorphism if M = R. By
idditivity, D is an isomorphism if M = Rîí  or Rn. Now consider the diagram

A*@RRm  - A*@R” + A*@M + 0

+ UJ_E 4

Hom(Rm, A)* 2 Hom(Rn,  A)* ---+ Hom(M, A)* + 0.

lie rows are exact because @ is right exact, Horn is left exact, and Pontrjagin
rlual is exact by 2.3.3. The 5-lemma shows that (T is an isomorphism. 0

rheorem 3.2.7 Every  finitely presented Jlat R-module M is projective.

Proof In order to show that M is projective, we shall show that HomR(M,  -)
is exact. To this end, suppose that we are given a surjection B + C. Then
C* + B* is an injection, so if M is flat, the top arrow of the square

(C*)@RM  -+ (B*)@RM

2 1 z 1
Hom(M, C)” + Hom(M, B)*

is an injection. Hence the bottom arrow is an injection. As we have seen, this
implies that Hom(M, B) + Hom(M, C) is a surjection, as required. 0

Flat Resolution Lemma 3.2.8 The groups Tor,( A, B) may be computed us-
ing resolutions by$at  modules. That is, if F --+  A is a resolution of A with the
F,, being  flat modules, then Tor,(A,  B) 2 H*( F 8 B). Similarly, if Fí + B is
a resolution of B byflat modules, then Tor,(A,  B) Z H,(A @ Fí).

Proof We use induction and dimension shifting (exercise 2.4.3) to prove that
Tor, (A, B) Z H,, (F @ B) for all n; the second part follows by arguing over
R*p. The assertion is true for n = 0 because 63B is right exact. Let K be such
that 0 -+ K -+ FO + A + 0 is exact; if E = (. . . + F2 + F1 + 0), then
E + K is a resolution of K by flat modules. For n = 1 we simply compute

Torl(A,  B) = ker(K @I B -+ FO @ B)

= ker
Fl ~3 B

im(F2 @ B)
+ Fo @J B

I
= HI(F  8 B).



3.2 Tor and Flatness 71

Lemma 3.2.6 The map o is an isomorphism for every finitely presented M
and all A.

Proof A simple calculation shows that u is an isomorphism if M = R. By
additivity, u is an isomorphism if M = Rîí  or Rî.  Now consider the diagram

A*@Rîí  + A*@Rn - A*@M + 0

+ + DI

Hom(Rm, A)* 2 Hom(Rî,  A)* - Hom(M, A ) * - 0 .

The rows are exact because @ is right exact, Horn is left exact, and Pontrjagin
dual is exact by 2.3.3. The 5-lemma shows that o is an isomorphism. 0

Theorem 3.2.7 Every  finitely presented flat R-module M is projective.

Proof In order to show that M is projective, we shall show that HomR(M,  -)
is exact. To this end, suppose that we are given a surjection B -+ C. Then
C* + B* is an injection, so if M is flat, the top arrow of the square

cc*)  @R M + (B*)@RM

1 I E 1
Hom(M, C)* --f Hom(M, B)*

is an injection. Hence the bottom arrow is an injection. As we have seen, this
implies that Hom(M, B) + Hom(M, C) is a surjection, as required. 0

Flat Resolution Lemma 3.2.8 The groups Tor,(A,  B) may be computed us-
ing resolutions byjat modules. That is, tf F -+ A is a resolution of A with the
F,, beingjat  modules, then Tor,(A,  B) 2 H,(F @ B). Similarly, if Fí + B is
a resolution of B byflat modules, then Tor,(A,  B) Y H,(A @ Fí).

Proof We use induction and dimension shifting (exercise 2.4.3) to prove that
Tor,(A,  B) 2 H,,(F @ B) for all n; the second part follows by arguing over
Rotí.  The assertion is true for n = 0 because @B is right exact. Let K be such
that 0 + K -+ Fo --+ A + 0 is exact; if E = (. . . + F2 + F) -+ 0), t h e n
E + K is a resolution of K by flat modules. For n = 1 we simply compute

Tort(A,  B) = ker(K @ B -+ FO @ B)

= ker
Fl 63 B

im(F2 @ R)
+ Fo @ B

I
= H)(F  @3 B).
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For n > 2 we use induction to see that

Tor,(A,  B) ” Tar,-t(K,  B) E &-I(E  @ R) = &(F 63 R). 0

Proposition 3.2.9 (Flat base change for Tor) Suppose R + T is a ring map
such that T is flat as an R-module. Then for all R-modules A, all T-modules
C and all n

Tor:(A,  C) Z TorT(A  CUR T, c>.

Proof Choose an R-module projective resolution P -+ A. Then Tor:(A, C)
is the homology of P @R C. Since T is R-flat, and each P,, @R T is a pro-
jective T-module, P @ T + A @ T is a T-module projective resolution. Thus
TorT(A  ë8.R  T, C) is the homology of the complex (P @R T) @- C g P @R C
as well. 0

Corollary 3.2.10 Zf R is commutative and T is a flat R-algebra, then for all
R-modules A and B, and for all n

T @R Tori(A,  R) E TorT(A  @R T, T @R B).

Proof Setting C = T @.R B, it is enough to show that Tor$(A,  T @ B) =
T @ Torf(A,  B). As T@R is an exact functor, T 8 TorF(A,  B) is the homol-
ogy of T @R (P 8.R B) 2 P @R (T @R B), the complex whose homology is
Torf(A,  T @ B). 0

Now we shall suppose that R is a commutative ring, so that the Tar: (A, B)
are actually R-modules in order to show how Tor, localizes.

Lemma 3.2.11 Zf p: A -+ A is multiplication by a central element r E R, so
are the induced maps p*: Torf  (A, B) + Tor$(A,  B) for all n and B.

Proof Pick a projective resolution P + A. Multiplication by r is an R-
module chain map ,G: P + P over p (this uses the fact that r is central), and
fi @ B is multiplication by r on P @ B. The induced map CL.+ on the subquo-
tient Tor,(A,  B) of P,, @I B is therefore also multiplication by r. 0

Corollary 3.2.12 Zf A is an R/r-module, then for every R-module B the R-
modules Torf(A,  B) are actually R/r-modules, that is, annihilated by the
ideal r R.
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Corollary 3.2.13 (Localization for Tor) If R is commutative and A and B are
R-modules, then the following are equivalent for each n:

1. Torf(A,  B) = 0.

2. For every prime ideal p of R Torp(A,,, BP) = 0.

3. For every maximal ideal m of R Tar? (A,,, , B,) = 0.

Proof For any R-module 44, + Mp = 0 for every prime p + M, = 0
for every maximal ideal m. In the case A4 = Torg  (A, B) we have

M, = R, @R M = TorfP(A,,  Bp). 0

3.3 Ext for Nice Rings

We first turn to a calculation of Exts groups to get a calculational feel for what
these derived functors do to abelian groups.

Lemma 3.3.1 Ext$(A,  B) = 0 for n 1 2 and all abelian  groups A, B.

Proof Embed B in an injective abelian group IO; the quotient It is divisible,
hence injective. Therefore, Ext*(A, B) is the cohomology of

0 + Hom(A, Ií)  + Hom(A, Ií)  + 0. 0

Calculation 3.3.2 (A = Z/p)  Ext$(Z/p, B) = ,,B, Ext#/p,  B) = B/pB
and Ext;(Z/p, B) = 0 for n > 2. To see this, use the resolution

0 + Z L ?Z + Z/p + 0 and the fact that Horn@, B) Z B

to see that Ext*@/p,  B) is the cohomology of 0 t B 8- B t 0.
Since Z is projective, Extt(Z,  B) = 0. Hence we can calculate Ext*(A, B)

for every finitely generated abelian group A &’ Z” @ Z/p1 @ . . . CD Z/p, by
taking a finite direct sum of Ext*(Z/p,  B) groups. For infinitely generated
groups, the calculation is much more complicated than it was for Tor.

Example 3.3.3 (B = Z) Let A be a torsion group, and write A* for its Pon-
trjagin dual Hom(A, Q/Z) as in 3.2.3. Using the injective resolution 0 +
Z + Q -+ Q/Z + 0 to compute Ext*(A, Z), we see that Ext$(A,  Z) = 0 and
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Extk(A,  Z) = A*. To get a feel for this, note that because Zpm is the union
(colimit) of its subgroups Z/pî,  the group

Ext&?+, Z) = (z,cu)*

A
is the torsionfree group of p-adic integers, Z, = lim(Z/pn).  We will calculate

t
Ext&,m, B) more generally in section 3.5, using limí.

-

Exercise 3.3.1 Show that Exti(Z[$],  Z) g 2,/i? 2 Z,m. This shows that

Extt (-, Z) does not vanish on flat abelian groups.

Exercise 3.3.2 When R = Z/m and B = Z/p with plm, show that

is an infinite periodic injective resolution of B. Then compute the groups
Ext$,m(A,  Z/p) in terms of A* = Hom(A, Z/m).  In particular, show that if

p*\m, then Ext$,,,,(Z/p,  Z/p) z Z/p for all n.

Proposition 3.3.4 For all n and all rings R

1. Extî,(@,A,,  B) z n, ExtîR(A,,  B).
2. ExtîR(A,  n, Bs) z n, Ext;(A, BP).

Proof If P, + A, are projective resolutions, so is @P, + @A,. If Bg +
Zb are injective resolutions, so is n BP -+ n 2~ . Since Hom(@P,,  B) =
nHom(P,, B) and Hom(A, n Zg)  = nHom(A,  Zg), the result follows from
the fact that for any family C, of cochain complexes,

H*(n C,) s n H*(Cv). 0

Examples 3.3.5

1. If p*lm and A is a Z/p-vector space of countably infinite dimension,
then Extsjm(A,  Z/p) 2 nEî=,  Z/p is a Z/p-vector space of dimen-

sion 2îO.
2. If B is the product Z/2 x Z/3 x Z/4 x Z/5 x . . . then B is not a torsion

group, and

Ext*(A, B) = fi A/pA = 0
p=2

vanishes if and only if A is divisible.
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Lemma 3.3.6 Suppose that R is a commutative ring, so that HomR(A,  B)
and the Ext*,(A,  B) are actually R-modules. If p: A + A and v: B + B are
multiplication by r E R, so are the induced endomorphisms p* and v* of
Extî,(A,  B) for all n.

Proof Pick a projective resolution P + A. Multiplication by r is an R-
module chain map /Yi: P -+ P over 1 (as r is central); the map Horn@,  B)
on Hom(P, B) is multiplication by r, because it sends f E Hom(P,,  B) to
f ji, which takes p E P,, to f (rp) = rf (p). Hence the map p* on the subquo-
tient Extî (A, B) of Hom( P, , B) is also multiplication by r. The argument for
v* is similar, using an injective resolution B -+ I. 0

Corollary 3.3.7 If R is commutative and A is actually an R/r-module, then
for every R-module B the R-modules Ext*,(A,  B) are actually R/r-modules.

We would like to conclude, as we did for Tor, that Ext commutes with local-
ization in some sense. Indeed, there is a natural map @ from S-’  HOmR  (A, B)
to HomS-lR(FIA,  SYíB),  but it need not be an isomorphism. A sufficient

condition is that A be finitely presented, that is, some Rîí  --% R” + A + 0
is exact.

Lemma 3.3.8 If A is a finitely presented R-module, then for every central
multiplicative set S in R, @ is an isomorphism:

@ : S-’  HomR(A,  B) % Horns-l,(S-ëA,  S-ëB).

Proof 0 is trivially an isomorphism when A = R; as Horn is additive, Q is
also an isomorphism when A = Rm. The result now follows from the 5-lemma
and the following diagram:

0  + S-ëHomR(A,  B) + S-ëHomR(Rî,  B )  > S-’  HomR(Rm,  B)

QJ 21 %i

0  + Hom(S-ëA,S-ëB)  + Hom(S-ëRî,SpíB)  : Hom(S-ëRm,SmíB).  0

Definition 3.3.9 A ring R is (right) noetherian if every (right) ideal is finitely
generated, that is, if every module R/Z is finitely presented. It is well known
that if R is noetherian, then every finitely generated (right) R-module is
finitely presented. (See [BAII,$3.2].)  It follows that every finitely generated
module A has a resolution F -+ A in which each F,, is a finitely generated
free R-module.



76 Tor and Ext

Proposition 3.3.10 Let A be a finitely generated module over a commutative
noetherian ring R. Then for every multiplicative set S, all modules B, and
all n

Q: S-l Extn,(A, B) Z Extn,_,,(S-ëA,  S-ëB).

Proof Choose a resolution F + A by finitely generated free R-modules.
Then S-ëF  + S-’  A is a resolution by finitely generated free S-’  R-modules.
Because S-’  is an exact functor from R-modules to S-’  R-modules.

S-’  Ext*,(A,  B) = S-ë(H*HomR(F,  B)) G’ H*(S-’ HomR(F, B))

g H* Homs-l,(S-’  F, S-ëB)  = Extz_,R(S-lA,  S-ëB).o

Corollary 3.3.11 (Localization for Ext) Zf R is commutative noetherian and
A is a finitely generated R-module, then the following are equivalent for all
modules B and all n:

1. ExtîR(A,  B) = 0.
2. For every prime ideal p of R, Extip (A,, BP) = 0.

3. For every maximal ideal m of R, Extim (A,,, , B,) = 0.

3.4 Ext and Extensions

An extension c of A by B is an exact sequence 0 + B + X + A + 0. Two
extensions 6 and <’ are equivalent if there is a commutative diagram

c: O-B-X-A-0

6í:  O---+B-+Xí-A+0

An extension is split if it is equivalent to 0 + B 9 A @ B -+ A -+ 0.

Exercise 3.4.1 Show that if p is prime, there are exactly p equivalence
classes of extensions of Z/p by Z/p in Ab: the split extension and the ex-
tensions

o+z/p-Iltz~p2~z/p+o (i = 1,2, . . , p - 1).
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Lemma 3.4.1 Zf Extí (A, B) = 0, then every extension of A by B is split.

Proof Given an extension $, applying Ext*(A, -) yields the exact sequence

Hom(A, X) + Hom(A, A) --% Extí(A,  B)

so the identity map idA lifts to a map 0: A + X when Ext’  (A, B) = 0. As (T
is a section of X + A, evidently X g A @ B and 6 is split. 0

Porism 3.4.2 Taking the construction of this lemma to heart, we see that
the class O(e)  = a(idA) in Extí (A, B) is an obstruction to 6 being split: 6
is split iff idA lifts to Hom(A, X) iff the class O(t) E Extí(A,  B) vanishes.
Equivalent extensions have the same obstruction by naturality of the map Cl, so
the obstruction 0 (0 only depends on the equivalence class of c.

Theorem 3.4.3 Given two R-modules A and B, the mapping 0: c H a(idA)
establishes a l-l correspondence

equivalence classes of

extensions of A by B
ti Extí(A,  B)

in which the split extension corresponds to the element 0 E Extí(A,  B).

Proof Fix an exact sequence 0 -+ M A P -+ A + 0 with P projective.
Applying Hom(-, B) yields an exact sequence

Hom(P, B) + Hom(M,  B) & Extí(A,  B) + 0.

Given x E Extí(A,  B), choose /I E Hom(M, B) with a(B) =x. Let X be the
pushout of j and /3, i.e., the cokernel of M + P @ B (m H (j(m), -p(m))).
There is a diagram

where the map X --f A is induced by the maps B --!?-+  A and P + A. (Exer-
cise: Show that the bottom sequence 6 is exact.) By naturality of the connect-
ing map a, we see that O(c)  = x, that is, that 0 is a surjection.
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In fact, this construction gives a set map \Ir from Extí(A,  B) to the set of
equivalence classes of extensions. For if /I’  E Hom(M, B) is another lift of x,
then there is an f E Hom( P, B) so that B’  = B + fj. If Xí is the pushout  of j
and Bí,  then the maps i: B -+ X and (T + if: P + X induce an isomorphism
Xí % X and an equivalence between <’ and 6. (Check this!)

Conversely, given an extension 6 of A by B, the lifting property of P gives
a map t : P + X and hence a commutative diagram

O - M A P - A - 0

(*) Ly Lr II

6: O-BLX-A-0.

Now X is the pushout of j and y. (Exercise: Check this!) Hence \v(O(c))  =
c, showing that 0 is injective. 0

Definition 3.4.4 (Baer sum) Let e : 0 + B+X+A+Oandtí:O+  B-+
Xí + A + 0 be two extensions of A by B. Let Xî be the pullback {(x, xí) E
X x Xí : X = X’  in A}.

x”  - x’

I’  1
X - A

Xî contains three copies of B : B x 0,O x B, and the skew diagonal {(-b,  b) :
b E B]. The copies B x 0 and 0 x B are identified in the quotient Y of Xî by
the skew diagonal. Since Xî/O  x B S X and X/B 2 A, it is immediate that
the sequence

cp: O+B-+Y-+A+O

is also an extension of A by B. The class of (D is called the Baer sum of the
extensions $ and <ë,  since this construction was introduced by R. Baer in 1934.

Corollary 3.4.5 The set of (equiv. classes of) extensions is an abelian group
under Baer sum, with zero being the class of the split extension. The map 0 is
an isomorphism of abelian groups.

Proof We will show that O(cp) = O(t) + O(<ë)  in Extí(A,  B). This will
prove that Baer sum is well defined up to equivalence, and the corollary will
then follow. We shall adopt the notation used in (*) in the proof of the above
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theorem. Let tî: P + X" be the map induced by t : P + X and tí: P -+ Xí,

and let t: P -+ Y be the induced map. The restriction of t to M is induced by
the map y + yí:  M + B, so

O--+M-+P----+A-0

(D:O--+B+Y-A-0

commutes. Hence, O(q)  = a(y + ví),  where 8 is the map from Hom(M, B)
to Extí(A,  B). But a(y + ví)  = a(y) + Qyí)  = O(t) + O(tí). 0

Vista 3.4.6 (Yoneda Ext groups) We can define Extí(A,  B) in any abelian
category A, even if it has no projectives and no injectives, to be the set of
equivalence classes of extensions under Baer sum (if indeed this is a set).
The Freyd-Mitchell Embedding Theorem 1.6.1 shows that Ext'(A, B) is an
abelian group-but one could also prove this fact directly. Similarly, we can
recapture the groups Extî(A,  B) without mentioning projectives or injectives.
This approach is due to Yoneda. An element of the Yoneda ExP(A,  B) is an
equivalence class of exact sequences of the form

c: O-+B+X,-+~.~+X1+A+O.

The equivalence relation is generated by the relation that c’  - 6” if there is a
diagram

6î: 0 ---+ B ---+ X; --+ . . . ----+ X;l --+ A ----+ 0.

To ìaddî < and 6’  when II 2 2, let Xy be the pullback of Xl and X; over A, let
Xi be the pushout of X, and Xt under B, and let Y, be the quotient of Xl by
the skew diagonal copy of B. Then 6 + c’ is the class of the extension

Now suppose that A has enough projectives. If P + A is a projective res-
olution, the Comparison Theorem 2.2.6 yields a map from P to c, hence a
diagram
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0 - M - P,_I + . . - PO + A ---to

fi.L 1 Yn I II

6: 0 - B + X, + ... + X1 + A + 0.

By dimension shifting, there is an exact sequence

Hom(P,_t, B) + Hom(M, B) & Extî(A,  B) -+ 0.

The association O(t) = i3(/3)  gives the l-l correspondence between the
Yoneda Extî and the derived functor Extî. For more details we refer the reader
to [BX, $7.51  or [MacH,  pp. 82-871.

3.5 Derived Functors of the Inverse Limit

Let Z be a small category and A an abelian category. We saw in Chapter 2 that
the functor category A' has enough injectives, at least when A is complete and
has enough injectives. (For example, A could be Ah, R-mod, or Sheaves(X).)
Therefore we can define the right derived functors R” limi,Z from A' to A.

We are most interested in the case in which A is Ab and Z is the poset
. . . + 2 + 1 + 0 of whole numbers in reverse order. We shall call the objects
of Ab’ (countable) towers of abelian groups; they have the form

(Ail: . ..--+A2+Al+Ao.

In this section we shall give the alternative construction limt of R1 lim for

countable towers due to Eilenberg and prove that R” lim = O%r n # 0, rThis

construction generalizes from Ab to other abelian czgories  that satisfy the
following axiom, introduced by Grothendieck in [Tohoku]:

(AB4*) A is complete, and the product of any set of surjections is a surjection.

Explanation If Z is a discrete set, A' is the product category IIie,d  of in-
dexed families of objects {Ai} in A. For {Ai} in A', 1imieZ  Ai is the product
fl Ai. Axiom (A B4*)  states that the left exact functor n from A' to A is exact
for all discrete I. Axiom (AB4*)  fails (nzî=,  is not exact) for some impor-
tant abelian categories, such as Sheaves(X). On the other hand, axiom (AB4*)
is satisfied by many abelian categories in which objects have underlying sets,
such as Ab, mod-R, and Ch(mod-R).
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Definition 3.5.1 Given a tower (Ai} in Ab, define the map

a:fiAi+fiAi
i=O i=o

by the element-theoretic formula

A(. . . , Ui, . . ë,  ~0) = (. ë.  , Ui  - ai+t,  ë.  . , ~1 - a~, UO - al),

where ai+l denotes the image of ai+t E Ai+l in Ai. The kernel of A is lim Ai

(check this!). We define l@’  Ai to be the cokemel  of A, so that limes at
functor from Ab’ to Ab. We also set limo Ai = lim Ai and limî Ai = 0 forC C C
n#O, 1.

Lemma 3.5.2 The functors (li$ë)  form a cohomologicul S-functor.

Proof If 0 + (Ai] + (Bi} + (Ci}  + 0 is a short exact sequence of towers,
apply the Snake Lemma to

to get the requisite natural long exact sequence. 0

Lemma 3.53 If all the maps Ai+l + Ai are onto, then limí Ai = 0. More-C
over lim Ai # 0 (unless every Ai = 0), because each of the natural projections

lim A> Aj are onto.t

Proof Given elements bi E Ai (i = 0, 1, . . .), and any au E Ao, inductively
choose ai+t E Ai+l to be a lift of ai - bi E Ai. The map A sends (. . , ~1, ~0)
to (..., bl, bo), so A is onto and coker(A)  = 0. If all the bi = 0, t h e n

( ~..,u~,uo) l 1imAi. 0C

Corollary 3.54 1E’  Ai Z (I?’ l$)(Ai) and Rîl@  = Ofor n # 0, 1.

Proof In order to show that the li$ forms a universal &functor, we only need

to see that lim’ vanishes on enough injectives. In Chapter 2 we constructed
t
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enough injectives by taking products of towers

k,E: . ..= E=E-+O-+O..~-+O

with E injective. All the maps in k,E (and hence in the product towers) are
onto, so lim’ vanishes on these injective towers. 0C

Remark If we replace Ab by A = mod-R, Ch(mod-R) or any abelian cat-
egory A satisfying Grothendieckís axiom (AB4*), the above proof goes
through to show that lim’  = Rí(lim)  and Rn(lim) = 0 for n # 0, 1 as func-t t t
tors on the category of towers in A. However, the proof breaks down for other
abelian categories.

Example 3.5.5  Set A0 = Z and let Ai = píZ  be the subgroup generated by
pi. Applying lim to the short exact sequence of towers

t

0 + {píq  + (Z) -+ {Z/píZ)  -+ 0

with p prime yields the uncountable group

Here iP = lim Z/pí72  is the group of p-adic integers.
t

Exercise 3.5.1 Let (Ai} be a tower in which the maps Ai+l -+ Ai are in-
clusions. We may regard A = A0  as a topological group in which the sets
Q + Ai(a E A, i > 0) are the open sets. Show that lim Ai = nAi is zero iff A

C
is Huusdorjf  Then show that liml Ai = 0 iff A is complete in the sense that

every Cauchy sequence has a l&it, not necessarily unique. Hint: Show that A
is complete iff A S l@(A/Ai).

Definition 3.5.6 A tower {Ai] of abelian groups satisfies the Mittag-Lefler
condition if for each k there exists a j 2 k such that the image of Ai + Ak
equals the image of Aj + Ak for all i > j. (The images of the Ai in & satisfy
the descending chain condition.) For example, the Mittag-Leffler condition is
satisfied if all the maps Ai+l + Ai in the tower (Ai) are onto. We say that {Ai}
satisfies the trivial Mittag-Leffler condition if for each k there exists a j > k
such that the map Aj -+ Ak is zero.
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Proposition 3.5.7  If { Ai} satis$es the Mittag-Lefler condition, then

1imíAi  =O.
C
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Proof If {Ai} satisfies the trivial Mittag-Leffler condition, and bi E Ai are
given, set ak = bk + bk+l  + . . . + bj-1, where bi denotes the image of bi in
Ak. (Note that bi = 0 for i 1 j.) Then A maps (. . . , al, ao) to (. . . , bl, bo).
Thus A is onto and 1E’  Ai = 0 when (Ai] satisfies the trivial Mittag-Leffler

condition. In the general case, let & 2 Ak be the image of Ai + Ak for large
i. The maps &+t -+ Bk are all Onto,  so limí Bk = 0. The tower (&l&J  sat-

t
isfies the trivial Mittag-Leffler condition, so limí Ak/Bk  = 0. From the shortt
exact sequence

0 + (Bi} + (Ai) + (Ai/Bi) + 0

of towers, we see that limí Ai = 0 as claimed.
C 0

Exercise 3.5.2 Show that limí Ai = 0 if (Ai} is a tower of finite abelian

groups, or a tower of finite-d&ensional  vector spaces over a field.

The following formula presages the Universal Coefficient theorems of the
next section, as well as the spectral sequences of Chapter 5.

Theorem 3.5.8 Let. . . + Cl + CO be a tower of chain complexes of abelian
groups satisfying the Mittag-Lefler condition, and set C = lim Ci. Then theret
is an exact sequence for each q:

0-+limíHq+t(Ci)-+H4(C)+limH~(Ci)+0.
C C

Proof Let Bi g Zi C Ci be the subcomplexes of boundaries and cycles in the
complex Ci, so that Zi / Bi is the chain complex H* (Ci) with zero differentials.

Applying the left exact functor l@ to 0 + (Zi) + (Ci] 5 (Ci[-  11) shows

that in fact lim Zi is the subcomplex Z of cycles in C. (The [- l] refers to theC
surpressed subscript on the chain complexes.) Let B denote the subcomplex
d(C)[l]  = (C/Z)[l] of boundaries in C, so that Z/B is the chain complex
H,(C) with zero differentials. From the exact sequence of towers

0 + (Zi) + (Ci) 5 (Bi[-11)  + 0
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we see that limí Bi = (lim ’  Bi[-l])[+l]  = 0 and thatt t

O+ B[-l]+l@Bi[-l]+l@ëZi+O

is exact. From the exact sequence of towers

0 + (Bi] + (Zi} + H*(Ci) -

we see that lim’ Zi g lim’  H,(Ci)  and that
t C

0 -+ lim Bi + Z + l$ H*(Ci)
t

is exact. Hence C has the filtration by subcomplexes

OcBzlimBicZcC
t

l

_

0

+O

whose filtration quotients are B, limí H,(Ci)[  I], lim H*(Ci), and C/Z respec-
C

tively. The theorem follows, sincz/B = H,(C). 0

Variant If . . + Ct + Co is a tower of cochain complexes satisfying the
Mittag-Leffler condition, the sequences become

0 -+ lim ëHq-ë(Ci)  + Hí(C)  + l@ Hí(Ci)  --+ 0.
C

Application 3.59 Let H*(X) denote the integral cohomology of a topolog-
ical CW complex X. If {Xi)  is an increasing sequence of subcomplexes with
X = UXi,  there is an exact sequence

(*) 0 + lim ëHî-ë(Xi)  + Hq(X) -+ lim Hí(Xi)  + 0
t C

for each q. This use of l@’  to perform calculations in algebraic topology was

discovered by Milnor in 1960 [Milnor] and thrust l@’  into the limelight.

To derive this formula, let Ci denote the chain complex Hom(S(Xi),  Z)
used to compute H*(Xi).  Since the inclusion S(Xi) C S(Xi+t) splits (because
each &(Xi+t)/&(Xi)  is a free abelian group), the maps Ci+t + Ci are onto,
and the tower satisfies the Mittag-Leffler condition. Since X has the weak
topology, S(X) is the union of the S(Xi),  and therefore H*(X) is the coho-
mology of the cochain complex

Hom(US(Xi),  Z) = limHom(S(Xi),  Z) = lim Ci.
t t
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A historical remark: Milnor proved that the sequence (*) is also valid if
H* is replaced by any generalized cohomology theory, such as topological
K-theory.

Application 3.510 Let A be an R-module that is the union of submodules
. . . g Ai L Ai+l g . . . . Then for every R-module B and every q the sequence

0 + l@ ’ Ext;-l(Ai,  B) + Exti(A, B) + limExti(Ai,  B) + 0
t

is exact. For Zpm = UZ/pí,  this gives a short exact sequence for every B:

0 + lim ’  Hom(Z/pí,  B) + Exti(Zpm,  B) + h, + 0,t

where the group BP = lim(B/píB)  is the p-adic completion of B. This gener-
t

alizes the calculation Exti(Z,co, i2)  ?Z 2, of 3.3.3. To see this, let E be a fixed
injective resolution of B, and consider the tower of cochain complexes

Hom(Ai+t,  E) + Hom(Ai,  E) + . . . + 

E , )  
 E )   B ) ,  B )  

Hom(UAi,  l@Hom(Ai,

Exercise 3.53 S h o w  t h a t  Ext#[i], 72) g 2,/Z B[b] Up-ëZ;  c f .

exercise 3.3.1. Then show that  B)(nP h,)/B.

A p p l i c a t i o n  3.5.11 C,, be a double chain complex, viewed as a
lattice in the plane, and let T,,C
brutally truncating C at the vertical line p  =  -n:

Then Tot(C) is the inverse limit of the tower of surjections

. . + Tot(Ti+tC)  + Tot(TiC) + . . . + Tot(TuC).

q:

+ 12 ëHq+t(Tot(&C))  + Hq(Tot(C))  + 1E Hq(Tot(TiC))  + 0.
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This is especially useful when C is a second quadrant double complex, be-
cause the truncated complexes have only a finite number of nonzero rows.

Exercise 3.5.4 Let C be a second quadrant double complex with exact rows,
and let Bi4 be the image of dh: C,, -+ C,_I,,.  Show that HP+4  Tot(T_,C)  %

Z$ (B;*> dí).  Then let b = dh(a)  be an element of Biq representing a cycle
< in HP+4  Tot(T_,C)  and show that the image of C; in HP+4  Tot(T_,_tC)

is represented by dî(a) E Bi+, q_l. This provides an effective method for
’calculating H*  Tot(C).

Vista 3.5.12 Let Z be any poset and A any abelian category satisfying
(AB4*). The following construction of the right derived functors of lim is
taken from [Roos] and generalizes the construction of limí in this section.

Given A: Z + A, we define Ck to be the product ovz the set of all chains
ik < . < io in Z of the objects Ai,,. Letting prik . . ëil  denote the projection of
Ck onto the (Zk < . . < il)” factor and fu denote the map Ai, + Ai, associ-
ated to il < io, we define do: C&l + Ck to be the map whose (ik < . . . < io)ëh
factor is fu(pri, . . ëi, ). For 1 5 p 5 k, we define dP: C&l -+ Ck to be the

map whose (Zk < . . -c io)ëh  factor is the projection onto the (Zk < . . .<i^,<
. . . -c i~)ë~  factor. This data defines a cochain complex C,A whose differential

Ck_t -+ Ck is the alternating sum ~~=O(-l)PdP, and we define lirnyE1  A to
be Hî(C,A).  (The data actually forms a cosimplicial object of A; see Chap-
ter 8.)

It is easy to see that limye, A is the limit limiel A. An exact sequence 0 -+

A -+ B + C + 0 in A' gives rise to a short exact sequence 0 + C,A +
C,B + C,C -+ 0 in A, whence an exact sequence

0~limA~limB-tlimC~limíA-tlim1B~lim1C~lim2A~~~~.
itl iel i d iEl i d i d iSI

Therefore the functors (lim~el)  form a cohomological 8-functor. It turns out
that they are universal when A has enough injectives, so in fact Rn  1imi.Z  E
limy,_, .

Remark Let &j denote the dfh  infinite cardinal number, Ku being the cardinal-
ity of {1,2,.. .}. If Z is a directed poset of cardinality &, or a filtered cate-
gory with Rd morphisms, Mitchell proved in [Mitch] that Rn  lim vanishes for

n>d+2.
t

Exercise 3.5.5 (Pullback) Let + t denote the poset {x, y, z}, x < z and y <
z, SO that lim Ai is the pullback of A, and A, over A,. Show that lim ’ Ai+c +c
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is the cokemel  of the difference map A, x A, -+ A, and that limî = 0 for+c
n#O,  1.

3.6 Universal Coefficient Theorems

There is a very useful formula for using the homology of a chain complex P to
compute the homology of the complex P @ M. Here is the most useful general
formulation we can give:

Theorem 3.6.1 (Kiinneth formula) Let P be a chain complex ofjat right R-
modules such that each submodule d (P,,) of P,- 1 is alsoflat. Then for every n
and every left R-module M, there is an exact sequence

0 + H,(P) 8~ M + H,(P @R M) + Torf(H,-t(P),  M) + 0.

Proof The long exact Tor sequence associated to 0 + Z, + P,, -+ d(P,)  -+
0 shows that each Z, is also flat (exercise 3.2.2). Since Torf(d(P,),  M) = 0,

O+Z,@M+  P,@M+d(P,)@M+O

is exact for every n. These assemble to give a short exact sequence of chain
complexes 0 + Z @ M + P @I M + d(P) @I  M + 0. Since the differentials
in the Z and d(P) complexes are zero, the homology sequence is

H,+l(dP ~3 M) A Hn(Z 8 M) + H,(P@M)  + H,,(dP@M)  : Ha-I(Z@ M )

d(fírc+I)  @ M zn 8 M d(Prd @ M &-I 8 M.

Using the definition of a, it is immediate that 8 = i @4 M, where i is the
inclusion of d( P,+l)  in Z,. On the other hand,

0 + d(Pn+l)  -!-+ Z, --f H,(P) + 0

is a flat resolution of H,,(P), so Tor, (H, (P), M) is the homology of

0 + d(P,+])  @ M & Z, @ M -+ 0.
0

Universal Coefficient Theorem for Homology 3.6.2 Let P be a chain com-
plex offree abelian groups. Then for every n and every abelian group M the
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Kiinneth formula 3.6. I splits noncanonically, yielding a direct sum decom-
position

H,(P 8 M) ” Hn(P) @ M CD To&H,-t(P),  M).

Proof We shall use the well-known fact that every subgroup of a free abelian
group is free abelian [KapIAB, section 151.  Since d(P,)  is a subgroup of
Pn+l, it is free abelian. Hence the surjection P,, + d(P,)  splits, giving a
noncanonical decomposition

P,, g Z, @I  d(P,).

Applying @M, we see that Z, @ M is a direct summand of P,, @ M; a fortiori,
Z, @I M is a direct summand of the intermediate group

ker(d,  @ 1: P, @ M + P,_l  @I  M).

Modding out Z, @ M and ker(d,, @ 1) by the common image of dn+l @
1, we see that H,(P) @ M is a direct summand of H,, (P @ M). Since P
and d(P) are flat, the Kiinneth formula tells us that the other summand is

Torl(H,-l(P),  M). 0

Theorem 3.6.3 (Ktinneth formula for complexes) Let P and Q be right and
left R-module complexes, respectively. Recall from 2.7.1 that the tensor prod-
uct complex P @R Q is the complex whose degree n part is @p+q=n P,, @ Q4
and whose difSerentia1  is given by d(a 8 b) = (da) @ b + (- l)pa @ (db) for
a E P,,, b E Q4.  If P,, and d(P,) are flat for each n, then there is an exact
sequence

O+ a3 H,(P) @ H,(Q)  + &(J'@R  Q) -+ @ Torf(ff,(P),  H,(Q)) + 0
p+q=n p+4=

n-1

for each n. If R = Z and P is a complex offree abelian groups, this sequence
is noncanonically split.

Proof Modify the proof given in 3.6.1 for Q = M. 0

Application 3.6.4 (Universal Coefficient Theorem in topology) Let S(X) de-
note the singular chain complex of a topological space X; each S,(X)  is a free
abelian group. If M is any abelian group, the homology of X with ìcoeffi-
cientsî in M is

f&(X;  M) = H,(S(X)  C3 M).
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Writing H*(X) for H* (X; Z), the formula in this case becomes

H,,(X;  M) r H,(X) @M @ Torf(H,_t(X),  M).
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This formula is often called the Universal Coefficient Theorem in topology.
If Y is another topological space, the Eilenberg-Zilber theorem 8.5.1 (see

[MacH,  VIII.81)  states that H,(X x Y) is the homology of the tensor product
complex S(X) @ S(Y). Therefore the Ktinneth formula yields the ìKtinneth
formula for cohomology:”

ffî(X  x Y) g 6 HP(X)  c3 H,-,(Y)  63 (jporf(H,_1(X),  H"_p(Y))  .1 p=o 1 I p=l 1
We now turn to the analogue of the Ktinneth formula for Horn in place

of@

Universal Coefficient Theorem for Cohomology 3.6.5 Let P be a chain
complex of projective R-modules such that each d( P,,) is also projective. Then
for every n and every R-module M, there is a (noncanonically) split exact
sequence

0 + Extk(H,_i(P),  M) -+ Hî(HomR(P,  M)) + HomR(H,(P),  M) + 0.

Proof Since d( P,) is projective, there is a (noncanonical) isomorphism P,, Y
Z, $ d (P,) for each n. Therefore each sequence

0 + Hom(d(P,),  M) + Hom(P,,  M) + Hom(Z,, M) -+ 0

is exact. We may now copy the proof of the Ktinneth formula 3.6.1 for 8,
using Hom(-, M) instead of @M, to see that the sequence is indeed exact.
We may copy the proof of the Universal Coefficient Theorem 3.6.2 for @ in
the same way to see that the sequence is split. 0

Application 3.6.6 (Universal Coefficient theorem in topology) The cohomol-
ogy of a topological space X with ìcoefficientsî in M is defined to be

H*(X; M) = H*(Hom(S(X),  M))

In this case, the Universal Coefficient theorem becomes

H*(X;  M) g Hom(H,(X),  M) @ ExtL(H,_i(X),  M).



90 Tor and Ext

Example 3.6.7 If X is path-connected, then Ho(X)  = ?? and H’ (X; H) 2
Hom(H1  (XL Z).

Exercise 3.6.1 Let P be a chain complex and Q a cochain complex of R-
modules. As in 2.7.4, form the Horn double cochain complex Hom(P,  Q) =
{HomR(PP,  Qq)), and then write H*Hom(P, Q) for the cohomology of
Tot(Hom(P, Q)). Show that if each P, and d(P,) is projective, there is an
exact sequence

O- nExt~(Hp(P),H4(Q))+  H"Hom(P,Q)+  n HomR(H,(P),  Hy(Q))+O.
P+4 p+4=n-1 "

Exercise 3.6.2 A ring R is called right hereditary if every submodule of
every (right) free module is a projective module. (See 4.2.10 and exercise
4.2.6 below.) Any principal ideal domain (for example, R = I!) is hereditary,
as is any commutative Dedekind domain. Show that the universal coefficient
theorems of this section remain valid if Z is replaced by an arbitrary right
hereditary ring R.
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Homological Dimension

4.1 Dimensions

Definitions 4.1.1 Let A be a right R-module.

1. The projective dimension pd(A) is the minimum integer II (if it exists)
such that there is a resolution of A by projective modules

0 --f P,, -+ . . -+ P1 -+ PO + A + 0.

2. The injective dimension id(A) is the minimum integer rz (if it exists)
such that there is a resolution of A by injective modules

3. The Jlat  dimension fd(A)  is the minimum integer n (if it exists) such
that there is a resolution of A by flat modules

0 -+ F,, -+ . . . + F1 + Fo + A + 0.

If no finite resolution exists, we set pd(A), id(A), or fd(A)  equal to 00.
We are going to prove the following theorems in this section, which allow

us to define the global and Tor dimensions of a ring R.

Globai Dimension Theorem 4.1.2 The following numbers are the same for
any ring R:

1. sup{id(B)  : B E mod-R}
2. sup{pd(A)  : A E mod-R)
3. sup(pd(R/Z)  : Z is a right ideal of R)
4. sup[d : Extd,(A, B) # 0 for some right modules A, B)

91
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This common number (possibly cc ) is called the (right) global dimension of
R, rgl. dim(R). Bourbaki [BX] calls it the homological dimension of R.

Remark One may define the left global dimension L.gl.  dim(R) similarly. If
R is commutative, we clearly have C.gl. dim(R) = rgl. dim(R). Equality also
holds if R is left and right noetherian. Osofsky [Osofl proved that if every one-
sided ideal can be generated by at most K, elements, then le.gl. dim(R) -
r.gl. dim(R) ( 5 n + 1. The continuum hypothesis of set theory lurks at the
fringe of this subject whenever we encounter non-constructible ideals over
uncountable rings.

Tor-dimension Theorem 4.1.3 The following numbers are the same for any
ring R:

1. sup{ f d(A) : A is a right R-module}
2. sup{ f d(R/ J) : J is a right ideal of R}
3. sup{ f d(B) : B is a left R-module]
4. sup{ f d(R/I)  : I is a left ideal of R}
5. sup{d : Torf(A,  B) # Ofor some R-modules A, B}

This common number (possibly co) is called the Tor-dimension of R. Due to
the influence of [CE], the less descriptive name weak dimension of R is often
used.

Example 4.1.4 Obviously every field has both global and Tor-dimension
zero. The Tor and Ext calculations for abelian groups show that R = Z has
global dimension 1 and Tor-dimension 1. The calculations for R = Z/m  show
that if some p2\m (so R isnít a product of fields), then Z/m  has global dimen-
sion oc and Tor-dimension oo.

As projective modules are flat, f d(A) 5 pd(A) for every R-module A. We
need not have equality: over Z, f d(Q) = 0, but pd(Q) = 1. Taking the supre-
mum over all A shows that Tor-dim( R) ( r.gl. dim(R). We will see exam-
ples in the next section where Tor-dim(R) # r.gl. dim(R). These examples
are perforce non-noetherian, as we now prove, assuming the global and Tor-
dimension theorems.

Proposition 4.1.5 If R is right noetherian, then

1. f d(A) = pd(A) for every$nitely  generated R-module A.
2. Tar-dim(R)  = r.gl. dim(R).

Proof Since we can compute Tar-dim(R)  and r.gl. dim(R) using the mod-
ules R/I, it suffices to prove (1). Since f d(A) ( pd(A),  it suffices to suppose
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that fd(A) = n < 00 and prove that pd(A) I n. As R is noetherian, there is a
resolution

O-+  M+ P,_l + . . .+Pl-+Po-+A+O

in which the Pi are finitely generated free modules and M is finitely presented.
The fd lemma 4.1.10 below implies that the syzygy M is a flat R-module, so
M must also be projective (3.2.7). This proves that pd(A) 5 n, as required. 0

Exercise 4.1.1 Use the Tor-dimension theorem to prove that if R is both left
and right noetherian, then r.gl. dim(R) = l.gl. dim(R).

The pattern of proof for both theorems will be the same, so we begin with
the characterization of projective dimension.

pd Lemma 4.1.6 The following are equivalent for a right R-module A:

1. pd(A) 5 d.
2. Extî,(A,  B) = 0 for all n > d and all R-modules B.

3. ExtFí(A,  B) = 0 for all R-modules B.
4. ZfO-,MdíPd_líPd_2í...ëP1íP0íAíOisanyreso-

lution with the P ës  projective, then the syzygy Md is also projective.

Proof Since Ext*(A, B) may be computed using a projective resolution of A,
it is clear that (4) + (1) =+ (2) + (3). If we are given a resolution of A as
in (4) then Extd+t  (A, B) g Extí(Md,  B) by dimension shifting. Now Md is
projective iff Extí(Md,  B) = 0 for all B (exercise 2.5.2),  so (3) implies (4). 0

Example 4.1.7 In 3.1.6 we produced an infinite projective resolution of A =
Z/p over the ring R = Z/p2.  Each syzygy was Z/p, which is not a projective
H/p2-module. Therefore by (4) we see that Z/p has pd = 00 over R = i?/p2.
On the other hand, Z/p has pd = 0 over R = Z/p and pd = 1 over R = Z.

The following two lemmas have the same proof as the preceding lemma.

id Lemma 4.1.8 The following are equivalent for a right R-module B:

1. id(B) 5 d.
2. Extî,(A,  B) = 0 for all n > d and all R-modules A.

3. ExtdRfí(A,  B) = Ofor all R-modules B.
4. Zf0-t  B+ Eî+  . ..--+ Ed-’ -+ Md + 0 is a resolution with the E’

injective, then Md is also injective.
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Example 4.1.9 In 3.1.6 we gave an infinite injective resolution of B = ?Z/p
over R = Z/p2 and showed that Exti(z/p,  Z/p) g iz/p for all n. Therefore

z/p has id = ca over R = z/p2.  On the other hand, it has id = 0 over R =
z/p and id = 1 over n.

fd Lemma 4.1.10 The following are equivalentfor a right R-module A:

1. fd(A) I: d.
2. Tori(A, B) = 0 for all n > d and all left R-modules B.
3. Torf+t(A,  B) = 0 for all left R-modules B.
4 .  ZfO -+ Md + Fd-1 -+ Fd_2  + ... --+ FO + A -+ 0 is a resolution with

the Fi allfiat,  then Md is also a flat R-module.

Lemma 4.1.11 A left R-module B is injective iff Extí(  R/Z, B) = 0 for all left
ideals I.

Proof Applying Hom(-, B) to 0 --+ Z --+ R + R/I + 0, we see that

Hom(R, B) + Hom(Z, B) + Extí(R/Z,  B) + 0

is exact. By Baerís criterion 2.3.1, B is injective iff the first map is surjective,
that is, iff Ext ’  (R/Z, B) = 0. 0

Proof of Global Dimension Theorem The lemmas characterizing pd(A) and
id(A) show that SUP(~)  = SUP(~)  = sup(l). As SUP(~)  > SUP(~),  we may
assume that d = sup(pd(R/Z)) is finite and that id(B) > d for some R-
module B. For this B, choose a resolution

with the Eís injective. But then for all ideals I we have

0 = ExtFí(R/Z,  B) 2 Ext;(R/Z, M).

By the preceding lemma 4.1.11, M is injective, a contradiction to id(B) > d.
0

Proof of Tor-dimension theorem The lemma 4.1.10 characterizing f d(A) over
R shows that SUP(~)  = sup(  1) > SUP(~).  The same lemma over Rot’ shows that
sup(s)  = sup@)  1 SUP(~).  We may assume that SUP(~)  5 SUP(~),  that is, that
d = sup{ f d(R/J) : J is a right ideal} is at most the supremum over left ideals.
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We are done unless d is finite and fd(B)  > d for some left R-module B. For
this B, choose a resolution 0 + M -+ Fd-1 -+ . . . + FO -+ B + 0 with the
Fís flat. But then for all ideals J we have

0 = Tordq,l(R/J,  B) = Torr(R/J,  M).

We saw in 3.2.4 that this implies that M is flat, contradicting fd(B) > d. 0

Exercise 4.1.2 If 0 -+ A + B + C -+ 0 is an exact sequence, show that

pd(B) 5 max{pd(A),  pd(C)]  with equality except when pd(C) =
pd(A) + 1.
id(B) 5 max{id(A),  id(C)) with equality except when id(A) =
id(C) + 1.
fd(B) i max{fd(A),  fd(C)}  with equality except when fd(C) =
fd(A) + 1.

Exercise 4.1.3

Given a (possibly infinite) family {Ai} of modules, show that

pd (@ Ai) = suP{pd(Ai))

Conclude that if S is an R-algebra and P is a projective S-module con-
sidered as an R-module, the pdR(P)  p pdR(S).
Show that if r.gl. dim(R) = 00, there actually is an R-module A with
pd(A) = co.

4.2 Rings of Small Dimension

Definition 4.2.1 A ring R is called (right) semisimple if every right ideal is a
direct summand of R or, equivalently, if R is the direct sum of its minimal ide-
als. Wedderbumís theorem (see [Lang]) classifies semisimple rings: they are
finite products R = nr=,  Ri of matrix rings Ri = Mni(Di)  = EndD,(Vi)  (ni =
dim( vi)) over division rings Di. It follows that right semisimple is the same as
left semisimple, and that every semisimple ring is (both left and right) noethe-
rian. By Maschkeís theorem, the group ring k[G] of a finite group G over a
field k is semisimple if char(k) doesnít divide the order of G.

Theorem 4.2.2 The following are equivalent for every ring R, where by ìR-
moduleî we mean either left R-module or right R-module.
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1. R is semisimple.
2. R has (left and/or right) global dimension 0.
3. Every R-module is projective.
4. Every R-module is injective.
5. R is noetherian, and every R-module isjlat.
6. R is noetherian and has Tor-dimension 0.

Proof We showed in the last section that (2) e (3) + (4) for left R-modules
and also for right R-modules. R is semisimple iff every short exact sequence
0 + Z + R + R/Z -+ 0 splits, that is, iff pd(R/Z)  = 0 for every (right
and/or left) ideal I. This proves that (l)+ (2). As (1) and (3) imply (5), and
(5)+ (6) by definition, we only have to show that (5) implies (1). If Z is an
ideal of R, then (5) implies that R/Z is finitely presented and flat, hence pro-
jective by 3.2.7. Since R/Z  is projective, R + R/Z  splits, and Z is a direct
summand of R, that is, (1) holds. 0

Definition 4.2.3 A ring R is quasi-Frobenius if it is (left and right) noetherian
and R is an injective (left and right) R-module. Our interest in quasi-Frobenius
rings stems from the following result of Faith and Faith-Walker, which we
quote from [Faith].

Theorem 4.2.4 The following are equivalent for every ring R:

I. R is quasi-Frobenius.
2. Every projective right R-module is injective.
3. Every injective right R-module is projective.
4. Every projective left R-module is injective.
5. Every injective left R-module is projective.

Exercise 4.2.1 Show that i2/m is a quasi-Frobenius ring for every integer m.

Exercise 4.2.2 Show that if R is quasi-Frobenius, then either R is semisimple
or R has global dimension 00. Hint: Every finite projective resolution is split.

Definition 4.2.5 A Frobenius algebra over a field k is a finite-dimensional al-
gebra R such that R 2 Homk(R,  k) as (right) R-modules. Frobenius algebras
are quasi-Frobenius; more generally, Homk(R,  k) is an injective R-module
for any algebra R over any field k, since k is an injective k-module and
Homk(R,  -) preserves injectives (being right adjoint to the forgetful functor
mod-R + mod-k). Frobenius algebras were introduced in 1937 by Brauer
and Nesbitt in order to generalize group algebras k[G] of a finite group, espe-
cially when char(k) = p divides the order of G so that k[G] is not semisimple.
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Proposition 4.2.6 If G is a finite group, then k[G] is a Frobenius algebra.

Proof Set R = k[G] and define f: R + k by letting f(r) be the coefficient
of g = 1 in the unique expression r = xREG  rgg  of every element r E k[G].
Let CZ: R -+ Homk(R,  k) be the map a(r):x H f(rx). Since o(r) = fr, a! is
a right R-module map; we claim that cz is an isomorphism. If a(r) = 0 for
r = c rgg, then r = 0 as each rg = f(rg-ë)  = a(r)(ggí)  = 0. Hence cx is an
injection. As R and Homk(R,  k) have the same finite dimension over k, a! must
be an isomorphism. 0

Vista 4.2.7 Let R be a commutative noetherian ring. R is called a Goren-
stein ring if id(R) is finite; in this case id(R) is the Krull dimension of R,
defined in 4.4.1. Therefore a quasi-Frobenius ring is just a Gorenstein ring of
Km11  dimension zero, and in particular a finite product of O-dimensional local
rings. If R is a O-dimensional local ring with maximal ideal m, then R is quasi-
Frobenius + annR(m) = {r E R : rm = 0) cz R/m. This recognition criterion
is at the heart of current research into the Gorenstein rings that arise in alge-
braic geometry.

Now we shall characterize rings of Tor-dimension zero. A ring R is called
von Neumann regular if for every a E R there is an x E R for which axa = a.
These rings were introduced by J. von Neumann in 1936 in order to study
continuous geometries such as the lattices of projections in ìvon Neumann
algebrasî of bounded operators on a Hilbert space. For more information about
von Neumann regular rings, see [Good].

Remark A commutative ring R is von Neumann regular iff R has no nilpotent
elements and has Km11 dimension zero. On the other hand, a commutative ring
R is semisimple iff it is a finite product of fields.

Exercise 4.2.3 Show that an infinite product of fields is von Neumann regu-
lar. This shows that not every von Neumann regular ring is semisimple.

Exercise 4.2.4 If V is a vector space over a field k (or a division ring k),
show that R = Endk(V)  is von Neumann regular. Show that R is semisimple
iff dimk(V)  < 00.

Lemma 4.2.8 If R is von Neumann regular and I is a finitely generated right
ideal of R, then there is an idempotent e (an element with e2 = e) such that
I = eR. In particular I is a projective R-module, because R L?? Z @ (1 - e)R.

Proof Suppose first that I = aR and that axa = a. It follows that e = ax is
idempotent and that I = eR. By induction on the number of generators of
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I, we may suppose that I = aR + bR with a E I idempotent. Since bR =
abR + (1 - a)bR, we have I = aR + CR for c = (1 - a)b. If cyc = c, then
f = cy is idempotent and af = a(1 - a)by = 0. As fu may not vanish, we
consider e = f( 1 - a). Then e E I, ue = 0 = ea, and e is idempotent:

e* = f(l - a)f(l - a) = f(f - uf)(l - a) = f*(l - a) = f(1 - a) = e.

Moreover, eR = CR because c = fc = ffc = f(1 - u)fc = ef c. Finally, we
claim that I equals J = (a + e) R. Since a + e E I, we have J C I; the reverse
inclusion follows from the observation that a = (a + e)a E J and e = (a +
e)e E .Z. 0

Exercise 4.2.5 Show that the converse holds: If every fin. gen. right ideal I of
R is generated by an idempotent (i.e., R Y I 6~ R/Z), then R is von Neumann
regular.

Theorem 4.2.9 The following are equivalent for every ring R:

1. R is von Neumann regular
2. R has Tor-dimension 0.
3. Every R-module isjlut.
4. R/I is projective for every finitely generated ideal I.

Proof By definition, (2) ($ (3). If I is a fin. generated ideal, then R/I is
finitely presented. Thus R/I is flat iff it is projective, hence iff R r Z @ R/I
as a module. Therefore (3) j (4) es (1). Finally, any ideal I is the union of
its finitely generated subideals I,, and we have R/I = 12(R/Ia).  Hence (4)

implies that each R/I is flat, that is, that (2) holds. 0

Remark Since the Tor-dimension of a ring is at most the global dimen-
sion, noetherian von Neumann regular rings must be semisimple (4.1.5). Von
Neumann regular rings that are not semisimple show that we can have Tor-
dim(R) < gl. dim(R). For example, the global dimension of flrt Q is > 2,
with equality iff the Continuum Hypothesis holds.

Definition 4.2.10 A ring R is called (right) hereditary if every right ideal is
projective. A commutative integral domain R is hereditary iff it is a Dedekind
domain (noetherian, Krull dimension 0 or 1 and every local ring R, is a
discrete valuation ring). Principal ideal domains (e.g, 72 or k[t]) are Dedekind,
and of course every semisimple ring is hereditary.

Theorem 4.2.11 A ring R is right hereditary tjfr.gl.  dim(R) 5 1.
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Proof The exact sequences 0 -+ I + R -+ R/I + 0 show that R is heredi-
tary iff r.gl. dim(R) ( 1. 0

Exercise 4.2.6 Show that R is right hereditary iff every submodule of every
free module is projective. This was used in exercise 3.6.2.

4.3 Change of Rings Theorems

General Change of Rings Theorem 4.3.1 Let f: R + S be a ring map, and
let A be an S-module. Then as an R-module

&R(A) i pds(A) + pdR(S).

Proof There is nothing to prove if pds(A) = co or pdR(S) = co, so assume
that pds(A) = n and pdR(S)  = d are finite. Choose an S-module projective
resolution Q -+ A of length n. Starting with R-module projective resolutions
of A and of each syzygy in Q, the Horseshoe Lemma 2.2.8 gives us R-module
projective resolutions ?)Lq + Q4 such that p*q  + ?)*,q_2  is zero. We saw in
section 4.1 that pdR ( Q4)  5 d for each q. The truncated resolutions P*4 -+ Q4

of length d (Piq = 0 for i > d and Rdy = pdq/im(pd+t,q),  as in 1.2.7) have
the same property. By the sign trick, we have a double complex P**  and an
augmentation PO* + Q*.

O I O
0 0

111 1 1
Q,, 1 Pan +--- PI,, - . . - . . ’  +--- Pd,, - 0

l/l 1 1
. . . . . . . . . . . . . .

l/1 1 1
Ql 1 Pal  - P11 - P21 - ... - Pdl - 0

Qo 1 Pm - Plo - P20  - . . - PdO - 0

0 0 0 0 0

The argument used in 2.7.2 to balance Tor shows that Tot(P) + Q is a quasi-
isomorphism, because the rows of the augmented double complex (add Q[- I]
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in column -1) are exact. Hence Tot(P) + A is an R-module projective reso-
lution of A. But then PDF is at most the length of Tot(P), that is, d + n.

0

Example 4.3.2 If R is a field and pds(A) # 0, we have strict inequality.

Remark The above argument presages the use of spectral sequences in get-
ting more explicit information about Ext*,(A, B). An important case in which
we have equality is the case S = R/xR when x is a nonzerodivisor, so
pdR(R/xR)  = 1.

First Change of Rings Theorem 4.3.3 Let x be a central nonzerodivisor in
a ring R. If A # 0 is a R/x-module with pdRl,(A)jnite,  then

pdR(A) = 1+ pdR/,(A).

Proof As xA = 0, A cannot be a projective R-module, so pdR(A) > 1. On
the other hand, if A is a projective R/x-module, then evidently pdR(A)  =
pdR(R/x)  = 1. If pdRlx(A) > 1, find an exact sequence

with R a projective R/x-module, so that pdR/,(A) = pdR,,(M)  + 1. By in-
duction, pdR(M) = 1 + pdR/,(M) = pdRl,(A) 1 1. Either pdR(A)  equals
pd,y(M) + 1 or 1 = pdR(P)  = sup(pdR(M),  pdR(A)]. We shall conclude the
proof by eliminating the possibility that pdR(A) = 1 = pdRl,(A).

Map a free R-module F onto A with kernel K. If pdR(A) = 1, then K is
a projective R-module. Tensoring with R/xR yields the sequence of R/x-
modules:

0 -+ Torp(A,  R/x) + K/xK + F/xF --+  A + 0.

If pdRl,(A) 5 2, then Torf(A,  R/x)  is a projective R/x-module. But

Torf(A,  R/x) Z {a E A : xa = 0) = A, so pdR,,(A)  = 0. 0

Example 4.3.4 The conclusion of this theorem fails if pdR,,(A)  = 00 but
pdR(A) c CXI. For example, pdz,J(Z/2)  = 00 but pd&Z/2)  = 1.

Exercise 4.3.1 Let R be the power series ring k[[xl,  . . . , x,]] over a field
k. R is a noetherian local ring with residue field k. Show that gl. dim(R) =
pdR(k) = n.
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Second Change of Rings Theorem 4.3.5  Let x be a central nonzerodivisor
in a ring R. If A is an R-module and x is a nonzerodivisor on A (i.e., a # 0 j
xa # 0), then

pdR(A) 2 pdR/,(AlxA).

Proof If pdn(A)  = 00, there is nothing to prove, so we assume pdu(A) =
n < co and proceed by induction on n. If A is a projective R-module, then
A/xA is a projective R/x-module, so the result is true if pdR(A) = 0. If
PDF # 0, map a free R-module F onto A with kernel K. As pdR(K) =
n - 1, pdRi,(K/xK)  5 n - 1 by induction. Tensoring with R/x  yields the
sequence

0 + Torp(A,  R/x) + K/xK + F/xF + A/xA -+ 0.

As x is a nonzerodivisor on A, Tort (A, R/x) E {a E A : xa = 0) = 0. Hence
either A/xA is projective or pdR/,(A/xA)  = 1 + pdRl,(K/xK)  5 1 + (n -
1) = pdR(A). 0

Exercise 4.3.2 Use the first Change of Rings Theorem 4.3.3 to find another
proof when pdnl, (A/x A) is finite.

Now let R[x]  be a polynomial ring in one variable over R. If A is an R-
module, write A[x] for the R[x]-module R[x] @.R A.

Corollary 4.3.6 pdRrx](A[x])  = pdR(A)for  every R-module A.

Proof Writing T = R[x], we note that x is a nonzerodivisor on A[x] =
T @R A. Hence pdr(A[x]) > pdR(A) by the second Change of Rings theo-
rem 4.3.5. On the other hand, if P + A is an R-module projective resolution,
then T 8.R P + T @R A is a T-module projective resolution (T is flat over

R), so pdR(A)  2 p&V C3 A). 0

Theorem 4.3.7 Zf R[xl , ’ . . , x,] denotes a polynomial ring in n variables,
thengl.dim(R[xl,... , x,]) = n + gl. dim(R).

Proof It suffices to treat the case T = R[x]. If gl. dim(R) = co, then by the
above corollary gl. dim(T) = co, so we may assume gl. dim(R) = n < co. By
the first Change of Rings theorem 4.3.3, gl. dim(T) 2 1 + gl. dim(R). Given
a T-module M, write U(M) for the underlying R-module and consider the
sequence of T-modules

(*) O+T@RU(M)LT@RU(M) zM+O,
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where p is multiplication and /3 is defined by the bilinear map B(t 63 m) =
t[x C9 m - 1 @J (xm)] (t E T, m E M). We claim that (*) is exact, which yields
the inequality p&(M)  I 1 + pdr(T @,R U(M)) = 1 + pd~(u(M))  5 1 + II.
The supremum over all M gives the final inequality gl. dim(T) ( 1 + II.

To finish the proof, we must establish the claim that (*) is exact. We first
observe that, since T is a free R-module on basis { 1, X, x2, . . .), we can write
every nonzero element f of T 63 U(M) as a polynomial with coefficients
mi E MI

f =xk@mk+.. ë+x2@m2+x@mml  + 1 @m()  (mk#o).

Since the leading term of B(f) is xkfl 8 ink, we see that B is injective. Clearly
@ = 0. Finally, we prove by induction on k (the degree of f) that if f E
ker(p),  then f E im(/3). Since ~(1 @J m) = m, the case k = 0 is trivial (if
p(f) = 0, then f = 0). If k # 0, then p(f) = p(g) for the polynomial g =
f - B(Xk-’  @ mk) Of 1 ower degree. By induction, if f E ker(p),  then g =
,6(h) for some h, and hence f = ,6(/z + xk-’  63 mk). 0

Corollary 4.3.8 (Hilbertís theorem on syzygies) Ifk is a jield,  then the poly-
nomial ring k[xl,  . . , x,] has global dimension n. Thus the (n - 1)” syzygy
of every module is a projective module. 0

We now turn to the third Change of Rings theorem. For simplicity we deal
with commutative local rings, that is, commutative rings with a unique maxi-
mal ideal. Here is the fundamental tool used to study local rings.

Nakayamaís Lemma 4.3.9 Let R be a commutative local ring with unique
maximal ideal m and let B be a nonzero$nitely  generated R-module. Then

I. B # mB.
2. If A 2 B is a submodule such that B = A + mB, then A = B.

Proof If we consider B/A then (2) is a special case of (1). Let m be the
smallest integer such that B is generated bl , . . . , b,; as B # 0, we have m # 0.
If B = mB, then there are ri E m such that b, = c ribi. This yields

(1 - rm)b,  = rlbl + . . . + r,,_lb,,_~.

Since 1 - r,,, em, it is a unit of R. Multiplying by its inverse writes b, as
a linear combination of (bl, . . . , b,_l  J, so this set also generates B. This
contradicts the choice of m. 0
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Remark If R is any ring, the set

J = {r E R : (Vs E R) 1 - rs is a unit of R]

is a 2-sided ideal of R, called the Jacobson radical of R (see [BAII, 4.21). The
above proof actually proves the following:

General Version of Nakayamaís Lemma 4.3.10 Let B be a nonzero finitely
generated module over R and J the Jacobson radical of R. Then B # J B.

Proposition 4.3.11 A finitely generated projective module P over a commu-
tative local ring R is a free module.

Proof Choose u 1, . , un E P whose images form a basis of the k-vector
space P/mP. By Nakayamaís lemma the UíS  generate P, so the map E: Rn +
P sending (rl, . . . , rn) to C riui is onto. AS P is projective, c is split, that
is, Rn 2 P @ ker(c).  As k” = R*/mRn 2~ P/mP, we have ker(c)  C: mRî.

But then considering P as a submodule of Rn we have Rn = P + mRî,  so
Nakayamaís lemma yields R” = P. 0

Third Change of Rings Theorem 4.3.12 Let R be a commutative noethe-
rian local ring with unique maximal ideal m, and let A be a$nitely generated
R-module. If x E m is a nonzerodivisor on both A and R, then

P&(A)  = PdR/AAlxA).

Proof We know 2 holds by the second Change of Rings theorem 4.3.5, and
we shall prove equality by induction on n = pdR/,(A/xA).  If n = 0, then
AIxA  is projective, hence a free R/x-module because R/x is local.

Lemma 4.3.13 If A/x A is a free R/x-module, A is a free R-module.

Proof Pick elements u 1, . . , un mapping onto a basis of A/xA; we claim
they form a basis of A. Since (ut , . . , u,)R + xA = A, Nakayamaís lemma
states that (U 1, . . . , u,) R = A, that is, the uís span A. To show the uís are lin-
early independent, suppose c riui = 0 for ri E R. In A/xA,  the images of the
uís are linearly independent, so ri E x R for all i. As x is a nonzerodivisor on
R and A, we can divide to get ri/x E R such that C(ri/x)ui  = 0. Continuing
this process, we get a sequence of elements ri, ri/x, ri /x2, . . . which generates
a strtctly ascending chain of ideals of R, unless ri = 0. As R is noetherian, all
the ri must vanish. 0
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Resuming  the proof of the theorem, we establish the inductive step n # 0.
Map a free R-module F onto A with kernel K. As Torr(A,  R/x) = (a E A :

xa = 0) = 0, tensoring with R/x yields the exact sequence

0 -+ K/xK -+ F/xF + AIxA + 0.

As F/x F is free, pdRl,(K/x  K) = n - 1 when n # 0. As R is noetherian,
K is finitely generated, so by induction, pdR(K)  = n - 1. This implies that
pdR(A) = n, finishing the proof of the third Change of Rings theorem. 0

Remark The third Change of Rings theorem holds in the generality that R is
right noetherian, and x E R is a central element lying in the Jacobson radical of
R. To prove this, reread the above proof, using the generalized version 4.3.10
of Nakayamaís lemma.

Corollary 4.3.14  Let R be a commutative noetherian local ring, and let A be
ajnitely  generated R-module with pdR(A) < 00. If x E m is a nonzerodivisor
on both A and R, then

pdR(A/xA)  = 1 + pdR(A).

Proof Combine the first and third Change of Rings theorems. 0

Exercise 4.3.3 (Injective Change of Rings Theorems) Let x be a central
nonzerodivisor in a ring R and let A be an R-module. Prove the following.

First Theorem. If A # 0 is an R/xR-module  with idRlxR(A) finite, then

idR(A) = 1 + idRlxR(A).

Second Theorem. If x is a nonzerodivisor on both R and A, then either A is
injective (in which case A/xA = 0) or else

idR(A) 2 1 + idRlxR(A/xA).

Third Theorem. Suppose that R is a commutative noetherian local ring, A is
finitely generated, and that x E m is a nonzerodivisor on both R and A.
Then

idR(A) = idR(A/xA)  = 1 + idRixR(A/xA).

4.4 Local Rings

In this section a local ring R will mean a commutative noetherian local ring
R with a unique maximal ideal m. The residue field of R will be denoted
k = R/m.
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Definitions 4.4.1 The Krull dimension of a ring R, dim(R), is the length d
of the longest chain pu c pt c . . . c pd of prime ideals in R; dim(R) < 00 for
every local ring R. The embedding dimension of a local ring R is the finite
number

emb. dim(R) = dimk(m/m2).

For any local ring we have dim(R) ( emb. dim(R); R is called a regular local
ring if we have equality, that is, if dim(R) = dimk(m/m2).  Regular local rings
have been long studied in algebraic geometry because the local coordinate
rings of smooth algebraic varieties are regular local rings.

Examples 4.4.2 A regular local ring of dimension 0 must be a field. Every
l-dimensional regular local ring is a discrete valuation ring. The power series
ring @[xl, . . , x,]] over a field k is regular local of dimension n, as is the local
ring k[xl, . . . , .dm, m = 6.3, . . . ,x,).

Let R be the local ring of a complex algebraic variety X at a point P. The
embedding dimension of R is the smallest integer n such that some analytic
neighborhood of P in X embeds in Cî. If the variety X is smooth as a mani-
fold, R is a regular local ring and dim(R) = dim(X).

More Definitions 4.4.3 If A is a finitely generated R-module, a regular se-
quence on A, or A-sequence, is a sequence (xl, . . . , x,) of elements in m such
that x1 is a nonzerodivisor on A (i.e., if a # 0, then xla # 0) and such that
each xi (i > 1) is a nonzerodivisor on A/(x1,.  . . , xi-l)A. The grade of A,
G(A), is the length of the longest regular sequence on A. For any local ring
R we have G(R) 5 dim(R).

R is called Cohen-Macaulay if G(R) = dim(R). We will see below that
regular local rings are Cohen-Macaulay; in fact, any xl, . . . , Xd E m mapping
to a basis of m/m2 will be an R-sequence; by Nakayamaís lemma they will
also generate m as an ideal. For more details, see [KapCR].

Examples 4.4.4 Every O-dimensional local ring R is Cohen-Macaulay (since
G(R) = 0), but cannot be a regular local ring unless R is a field. The l-
dimensional local ring k[[x, E]]/(xE = c2 = 0) is not Cohen-Macaulay; every
element of m = (x, E) R kills E E R. Unless the maximal ideal consists entirely
of zerodivisors, a l-dimensional local ring R is always Cohen-Macaulay; R
is regular only when it is a discrete valuation ring. For example, the local
ring k[[x]]  is a discrete valuation ring, and the subring k[[x2,  x3]]  is Cohen-
Macaulay of dimension 1 but is not a regular local ring.
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Exercise 4.4.1 If R is a regular local ring and XI,  . . , Xd E m map to a basis
of m/mí,  show that each quotient ring R/(x1,  . . . , xi) R is regular local of
dimension d - i.

Proposition 4.4.5 A regular local ring is an integral domain.

Proof We use induction on dim(R). Pick x E m - m2; by the above exercise,
RIxR  is regular local of dimension dim(R) - 1. Inductively, R/xR is a do-
main, so x R is a prime ideal. If there is a prime ideal Q properly contained in
x R, then Q c xnR for all n (inductively, if 4 = rxn E Q, then r E Q c x R, so
qEx .ë+ëR)  In this case Q C 17xîR  = 0, whence Q = 0 and R is a domain.
If R were not a domain, this would imply that xR is a minimal prime ideal
of R for all x E m - m2. Hence m would be contained in the union of m2 and
the finitely many minimal prime ideals PI, . . . , Pt of R. This would imply that
m 5 Pi for some i. But then dim(R) = 0, a contradiction. 0

Corollary 4.4.6 If R is a regular local ring, then G(R) = dim(R), and any
Xl,ìë, Xd E m mapping to a basis Of III/III2 is an R-sequence.

Proof As G(R) 5 dim(R), and xt E R is a nonzerodivisor on R, it suffices
to prove that x2, . , Xd form a regular sequence on R/xl R. This follows by
induction on d. 0

Exercise 4.4.2 Let R be a regular local ring and Z an ideal such that R/Z
is also regular local. Prove that I = (xl, . . . , xt)R, where (xl, . . , xi) form a
regular sequence in R.

Standard Facts 4.4.7 Part of the standard theory of associated prime ideals
in commutative noetherian rings implies that if every element of m is a zerodi-
visor on a finitely generated R-module A, then m equals (r E R : ra = 0) for
some nonzero a E A and therefore a R E R/m = k. Hence if G(A) = 0, then
HOmR(k, A)# 0.

If G(A) # 0 and G(R) # 0, then some element of m - m2 must also be
a nonzerodivisor on both R and A. Again, this follows from the standard
theory of associated prime ideals. Another standard fact is that if x E m is a
nonzerodivisor on R, then the Krull dimension of R/x R is dim(R) - 1.

Theorem 4.4.8 If R is a local ring and A # 0 is a finitely generated R-
module, then every maximal A-sequence has the same length, G(A). More-
over, G(A) is characterized as the smallest n such that Ext$(k, A) # 0.
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Proof We saw above that if G(A) = 0, then HomR(k, A) # 0. Conversely, if
HomR(k, A) # 0, then some nonzero a E A has aR 2 k, that is, ax = 0 for all
x E m. In this case G(A) = 0 is clear. We now proceed by induction on the
length n of a maximal regular A-sequence x1, . , xn on A. If IZ 2 1, x = XI is

a nonzerodivisor on A, so the sequence 0 + A & A -+ A/xA  + 0 is exact,
and x2, . . , xn is a maximal regular sequence on A/xA.  This yields the exact
sequence

Extí-ë(k,  A) x\ Extí-ë(k,  A) -+ Extí-ë(k,  A/xA)  + Extí(k,  A) -% Extí(k,  A).

Now xk = 0, so Exti(k, A) is an R/xR-module.  Hence the maps ìx”  in this
sequence are zero. By induction, this proves that Extí (k, A) = 0 for 0 5 i < n
and that Extî(k,  A) # 0. This finishes the inductive step, proving the theorem.

0

Remark The injective dimension id(A) is the largest integer n such that
Extî,(k,  A) # 0. This follows from the next result, which we cite without proof
from [KapCR,  section 4.51  because the proof involves more ring theory than
we want to use.

Theorem 4.4.9  If R is a local ring and A is a finitely generated R-module,
then

id(A) I d + Extî,(k,  A) = 0 for all n > d.

Corollary 4.4.10 Zf R is a Gorenstein local ring (i.e., idu(R) < oo), then R
is also Cohen-Macaulay. In this case G(R) = idR(R) = dim(R) and

Ext:(k,  R) # 0 + a = dim(R).

Proof The last two theorems imply that G(R) ( id(R). Now suppose that
G(R) = 0 but that id(R) # 0. For each s E R and n > 0 we have an exact
sequence

Ext;(R,  R) + Extn,(sR,  R) -+ ExtîR+ë(R/sR,  R).

For n = id(R) > 0, the outside terms vanish, so Exti(sR,  R) = 0 as well.
Choosing s E R so that s R Y k contradicts the previous theorem so if G(R) =
0 then id(R) = 0. If G(R) = d > 0, choose a nonzerodivisor x E m and
set S = R/xR.  By the third Injective Change of Rings theorem (exercise



108 Homological Dimension

4.3.3),  ids(S) = idR(R) - 1, so S is also a Gorenstein ring. Inductively,
S is Cohen-Macaulay, and G(S) = i&(S) = dim(S) = dim(R) - 1. Hence
idR(R)  = dim(R). If x2, . . . , Xd ix-e &mentS Of m mapping Onto a maximal
S-sequence in mS, then x1, x2, . . . , Xd forms a maximal R-sequence, that is,

G(R) = 1 + G(S) = dim(R). 0

Proposition 4.4.11  If R is a local ring with residue field k, then for every
finitely generated R-module A and every integer d

pd(A) 5 d es Tot$+t(A,  k) = 0.

In particular, pd(A) is the largest d such that Torf  (A, k) # 0.

Proof As fd (A) ( pd (A), the + direction is clear. We prove the converse by
induction on d. Nakayamaís lemma 4.3.9 states that the finitely generated R-
module A can be generated by m = dimk(A/mA)  elements. Let (ut, . . . , u,}
be a minimal set of generators for A, and let K be the kernel of the sutjection
E: Rîí  + A defined by e(r1, . . . , r,) = C riui. The inductive step is clear,
since if d # 0, then

Tord+t(A,  k) = Tord(K,  k) and pd(A) 5 1 + pd(K).

If d = 0, then the assumption that Torl(A, k) = 0 gives exactness of

0  ---+ K@k - Rîë@k  - A@k  ---+ 0

0 + K/mK - km
t@k

-----+  A/mA - 0 .

By construction, the map E @I k is an isomotphism.  Hence K/mK  = 0, so
the finitely generated R-module K must be zero by Nakayamaís lemma. This
forces Rm 2’ A, so pd(A) = 0 as asserted. 0

Corollary 4.4.12 If R is a local ring, then gl. dim(R) = pdR(  R/m).

P r o o f  pd(R/m) 5 gl.dim(R) = sup{pd(R/Z)) I fd(R/m)  I pd(R/m). 0

Corollary 4.4.13  If R is local and x E m is a nonzerodivisor on R, then
eithergl.dim(R/xR)  =ooorgl.dim(R) = 1 +gl.dim(R/xR).

Proof Set S = R/xR  and suppose that gl. dim(S) = d is finite. By the First
Change of Rings Theorem, the residue field k = R/m = S/mS  has

pda(k)  = 1 + pds(k)  = 1 + d . 0
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Grade 0 Lemma 4.414 If R is local and G(R) = 0 (i.e., every element of
the maximal ideal m is a zerodivisor on R), then for any finitely generated
R-module A,

either pd(A) = 0  o r  pd(A) = oo.

Proof If 0 < pd(A) -C cc for some A then an appropriate syzygy M of A is
finitely generated and has pd(M) = 1. Nakayamaís lemma states that M can
be generated by m = dimk(M/mM)  elements. If u 1, . . . , u,,, generate M, there

is a projective resolution 0 -+ P + Rîí  & M -+ 0 with e(r1, . . . , r,) =
Criut; visibly Rîí  JmRm  Z k” E MJmM. But then P C mRîë,  SO SP = 0,
where s E R is any element such that m = {r E R : sr = 0). On the other hand,
P is projective, hence a free R-module (4.3.1 l), so s P = 0 implies that s = 0,
a contradiction. 0

Theorem 4.4.15 (Auslander-Buchsbaum Equality) Let R be a local ring,
and A afinitely generated R-module. If pd(A) -C oc), then G(R) = G(A) +
pd(A).

Proof If G(R) = 0 and pd( A) < 00, then A is projective (hence free) by
the Grade 0 lemma 4.4.14. In this case G(R) = G(A), and pd(A) = 0. If
G(R) # 0, we shall perform a double induction on G(R) and on G(A).

Suppose first that G(R) # 0 and G(A) = 0. Choose x E m and 0 # a E A
so that x is a nonzerodivisor on R and mu = 0. Resolve A:

O+K+RîëtA+O

and choose u E Rîí  with E(U) = a. Now mu g K so xu E K and m(xu) E xK,
yet xu # x K as u 6 K and x is a nonzerodivisor on Rm. Hence G( K/x K) = 0.
Since K is a submodule of a free module, x is a nonzerodivisor on K. By the
third Change of Rings theorem, and the fact that A is not free (as G(R) #
G(A)),

p&/,dK/xK) = @R(K) = p&(A) - 1.

Since G(R/x  R) = G(R) - 1, induction gives us the required identity:

G(R) = 1 + G(R/xR) = 1+ G(K/xK)  + pdR/,R(K/xK)  = pdR(A).

Finally, we consider the case G(R) # 0, G(A) # 0. We can pick x E m,
which is a nonzerodivisor on both R and A (see the Standard Facts 4.4.7
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cited above). Since we may begin a maximal A-sequence with x, G(A/xA)  =
G(A) - 1. Induction and the corollary 4.3.14 to the third Change of Rings
theorem now give us the required identity:

G(R) = G(A/xA)  + pd~(A/xA)

= (G(A) - 1) + (1 + @R(A))

=G(A)+~~R(A). 0

Main Theorem 4.4.16 A local ring R is regular ifsgl. dim(R) < 00. In this
case

G(R) = dim(R) = emb. dim(R) = gl. dim(R) = @R(k).

Proof First, suppose R is regular. If dim(R) = 0, R is a field, and the result
is clear. If d = dim(R) > 0, choose an R-sequence x1, . . , Xd
andsetS= R/xtR.Thenx2,..., xd iS an S-SeqUenCe  generating the UMXiUMl

ideal of S, so S is regular of dimension d - 1. By induction on d, we have

gl. dim(R) = 1 + gl. dim(S) = 1 + (d - 1) = d.

If gl. dim(R) = 0, R must be semisimple and local (a field). If gl. dim(R) #
0, cc then m contains a nonzerodivisor x by the Grade 0 lemma 4.4.14;
we may even find an x = x1 not in m2 (see the Standard Facts 4.4.7 cited
above). To prove that R is regular, we will prove that S = R/xR is regu-
lar; as dim(S) = dim(R) - 1, this will prove that the maximal ideal mS of
S is generated by an S-sequence ~2, . . . , yd. Lift the yi E mS to elements
Xi E m (i = 2, . . . , d). By definition x1, . . , Xd is an R-sequence generating
m, so this will prove that R is regular.

By the third Change of Rings theorem 4.3.12 with A = m,

pds(m/xm)  = pdR(m) = pdR(k)  - 1 = gl. dim(R) - 1.

Now the image of m/xm in S = R/xR  is m/xR = mS, so we get exact se-
quences

O+xR/xm+m/xm+mS+O and O--+mS-+S+k+O.

Moreover, xR/xm 2: Torf(R/xR,  k) 2 {a E k : xa = 0) = k, and the image
of x in x R/xm is nonzero. We claim that m/xm Y mS @ k as S-modules. This
will imply that

gl. dim(S) = pds(k)  ( pds(m/xm) = gl. dim(R) - 1.
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By induction on global dimension, this will prove that S is regular.
To see the claim, set r = emb. dim(R) and find elements x2, . . . , xr in

m such that the image of (xl, . . . , x,) in m/m2 forms a basis. Set I =

(x2, . . . I x,)R + xm and observe that Ilxm g m/xm maps onto mS. As the
kernel xR/xm of m/xm + mS is isomorphic to k and contains x $ I, it fol-
lows that (xR/xm)  fl (Z/xm)  = 0. Hence Z/xm Z mS and k @ mS 2 m/xm,
as claimed. 0

Corollary 4.417  A regular ring is both Gorenstein and Cohen-Macaulay.

Corollary 4.4.18 rf R is a regular local ring and p is any prime ideal of R,
then the localization R, is also a regular local ring.

Proof We shall show that if S is any multiplicative set in R, then the local-
ization S-ëR  has finite global dimension. As R, = S-’ R for S = R - p, this
will suffice. Considering an S-ëR-module  A as an R-module, there is a pro-
jective resolution P + A of length at most gl. dim(R). Since S-ëR  is a flat
R-module and S-t A = A, S-’ P + A is a projective S-ëR-module  resolution
of length at most gl. dim(R). 0

Remark The only non-homological proof of this result, due to Nagata, is very
long and hard. This ability of homological algebra to give easy proofs of re-
sults outside the scope of homological algebra justifies its importance. Here is
another result, quoted without proof from [KapCR], which uses homological
algebra (projective resolutions) in the proof but not in the statement.

Theorem 4.4.19 Every regular local ring is a Unique Factorization Domain.

4.5 Koszul Complexes

An efficient way to perform calculations is to use Koszul complexes. If x E R
is central, we let K(x) denote the chain complex

concentrated in degrees 1 and 0. It is convenient to identify the generator of the
degree1partofK(x)astheelemente,,sothatd(e,)=x.Ifx=(x~,~~~,x,)
is a finite sequence of central elements in R, we define the Koszul complex
K(x) to be the total tensor product complex (see 2.7.1):

K(xl) ë8R  K(x2) ë8R  . . . @R Kbd.
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Notation 4.5.1 If A is an R-module. we define

H,(x, A) = H,(K(x)  @R  A);

Hq(x,  A) = Hq(Hom(K(x),  A)).

The degree p part of K(x) is a free R-module generated by the symbols

ei, A... A eip = 1 C3 . . 63 1 @ eX,,  @ . . . @ eXip 8 . . . @I 1 (ii < . . . < iP).

In particular, K,,(X)  is isomorphic to the Rrh exterior product APR*  of Rn
a n d  h a s  r a n k  (ì,I,  s o  K(x) exterior algebra complex. 

derivative Kp(x) + Kp-l(x)  s e n d s  ei,  A  . . . A eip to C(-l)k+lXikei,  A  .  .  .  A

gik A . A eip. As an example, K(x, y) is the complex

o- (X3-Y)
R - R2 2 R + 0.

basis: {eX  A ey) le,, e,J 111

DG-Algebras 4.5.2 A graded R-algebra K, is a family {Kp, p 2 0) of R-
modules, equipped with a bilinear product K, @R Kq + K,+,  and an ele-
ment 1 E Ko  making Ko and @K, into associative R-algebras with unit. K,
is graded-commutative if for every a E K,, b E K, we have a.b = (-1)Jíqb.a.
A differential graded algebra, or DG-algebra, is a graded R-algebra K,
equipped with a map d: K, -+ K,_l, satisfying d2 = 0 and satisfying the
Leibnitz rule:

d(a . b) = d(a) . b + (-l)Pa  . d(b) for a E K,.

Exercise 4.51

1.

2.

3.

Let K be a DG-algebra. Show that the homology H,(K) = {HP(K)}
forms a graded R-algebra, and that H*(K) is graded-commutative when-
ever K, is.
Show that the Koszul complex K(x) E A* (Rî)  is a graded-commutative
DG-algebra. If R is commutative, use this to obtain an external product

HP& A) @R  Hqk W + Hp+q(x, A @R B). Conclude that if A is a
commutative R-algebra then the Koszul homology H,(x, A) is a graded-
commutative R-algebra.
Ifxt,... E I and A = R/Z, show that H,(x, A) is the exterior algebra
A*(Aî).
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Exercise 4.5.2 Show that (H,(x,  -)} is a homological 6-functor, and that
{Hq(x,  -)) is a cohomological &functor

Ho@,  A) = A/(x1,  . . . , x,)A

Ho&, A) = Hom(R/xR,  A) = {a E A : xia = 0 for all i}.

Then show that there are isomorphisms H,(x, A) 2 Hî-fí(x,  A) for all p.

Lemma 4.5.3 (Ktinneth formula for Koszul complexes) Zf C = C, is a chain
complex of R-modules and x E R, there are exact sequences

0 -+ Ho(x, ffq(C)) + ff,(K(x)  8í~  Cl + ffl(x,  H,-l(C))  + 0.

Proof Considering R as a complex concentrated in degree zero, there is a
short exact sequence of complexes 0 + R -+ K(x) -+ R[- l] + 0. Tensoring
with C yields a short exact sequence of complexes whose homology long exact
sequence is

ffq+l(C[-ll) 5 ffq(C)  + ffqW(x)  ~3 ë3  + ff,(C[-ll)  L Hq(C).

Identifying Hq+t (C[- 11) with H,(C), the map i3 is multiplication by x (check
this!), whence the result. 0

Exercise 4.5.3 If x is a nonzerodivisor on R, that is, Ht (K (x)) = 0, use the
Ktinneth formula for complexes 3.6.3 to give another proof of this result.

Exercise 4.5.4 Show that if one of the xi is a unit of R, then the complex
K(x) is split exact. Deduce that in this case H,(x,  A) = H*(x, A) = 0 for all
modules A.

Corollary 4.5.4 (Acyclicity) If x is a regular sequence on an R-module
A, then Hq(x, A) = Ofor q # 0 and Ho(x, A) = A/xA, where xA = (xl, . . . ,
AA.

Proof Since x is a nonzerodivisor on A, the result is true for n = 1. Induc-
tively, letting x = x,,, y = (xl, . . . , x,+1), and C = KCy)  @ A, Hq(C) = 0 for
q # 0 and K(x) 63 Ho(C) is the complex

0 + A/yA A A/yA + 0.

The result follows from 4.5.3, since x is a nonzerodivisor on A/yA. 0
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Corollary 4.55  (Koszul resolution) If x is a regular sequence in R, then
K(x) is a free resolution of R/I, Z = (xl, . . . , x,) R. That is, the following
sequence is exact:

In this case we have

Tori(R/I,  A) = H&,  A);

ExtP,(R/Z,  A) = Hî(x,  A).

Exercise 4.5.5 If x is a regular sequence in R, show that the external and
internal products for Tor (2.7.8 and exercise 2.7.5(4))  agree with the external
and internal products for H,(x, A) constructed in this section.

Exercise 4.5.6 Let R be a regular local ring with residue field k. Show that

Tori(k,  k) 2 Exti(k, k) 2 APk” 2 k(z), where n = dim(R).

Conclude that idR(k) = dim(R) and that as rings Tort(k,  k) g r\*(kn).

Application 4.56 (Scheja-Starch)  Here is a computational proof of Hilbertís
Syzygy Theorem 4.3.8. Let F be a field, and set R = F[xl, . . . , x,], S =
R[yl,  . . , y,J. Let t be the sequence (tl, . . , t,J of elements ti = yi - Xi of
S. Since S = R[tl, . . . , t,], t is a regular sequence, and Ho@,  S) 2 R, so the
augmented Koszul complex of K(t) is exact:

0 + AîS”  + An-ë,.?  -+ . . . + A2Sn --I+ Sn & S + R + 0.

Since each APSn is a free R-module, this is in fact a split exact sequence
of R-modules. Hence applying BRA  yields an exact sequence for every R-
module A. That is, each K(t) @R A is an S-module resolution of A. Set Rí =

FLYI,  . . . , yn], a subring of S. Since ti = 0 on A, we may identify the R-
module structure on A with the Rí-module structure on A. But S @R A E
Rí @,G A is a free Rí-module because F is a field. Therefore each APS” @R A
is a free Rí-module, and K(t) @R A is a canonical, natural resolution of A by
free Rí-modules. Since K(t) @R A has length n, this proves that

for every R-module A. On the other hand, since Torf(F,  F) E F, we see that
pd~(  F) = n. Hence the ring R = F[xl , . . . , x,] has global dimension n.
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Definition 4.6.1 If I is a finitely generated ideal in a commutative ring R and
A is an R-module, we define

H:(A) = {a E A : (3i)Zía  = 0) = l&Hom(R/Zí,  A).

Since each Hom(R/Zí,  -) is left exact and lim is exact, we see that HI0 is an
+

additive left exact functor from R-mod to itself. We set

H;(A) = (R4H;)(A).

Since the direct limit is exact, we also have

H;(A) = 12Ext;(R/Zí,  A).

Exercise 4.6.1 Show that if .Z E Z are finitely generated ideals such that I’  C
J for some i, then H;(A)  Y H:(A)  for all R-modules A and all 9.

Exercise 4.6.2 (Mayer-Vietoris sequence) Let Z and J be ideals in a noethe-
rian ring R. Show that there is a long exact sequence for every R-module A:

. . . L H;+J(4 6
+ H;(A) @ H;(A)  --+ H;ì/(A)  + H;;;(A) - . . . .

Hint: Apply Ext*(-, A) to the family of sequences

0 -+ R/Z’ n J’ + R/Z’ @ R/J’ + R/(Z’ + Jí)  -+ 0.

Then pass to the limit, observing that (I + J)2i C (I’ + Jí)  C: (I + J)’ and
that, by the Artin-Rees lemma ([BA II, 7.13]),  for every i there is an N > i so
that IN n JN 2 (I n J)’ G I’ II Jí.

Generalization 4.6.2 (Cohomology with supports; See [GLC]) Let Z be a
closed subspace  of a topological space X. If F is a sheaf on X, let Hg(X,  F)
be the kernel of Hí(X,  F) -+ Hî(X  - 2, F), that is, all global sections of
F with support in Z. Hg is a left exact functor on Sheaves(X), and we write
Hg(X, F) for its right derived functors.

If Z is any ideal of R, then H;(A)  is defined to be Hg(X,  A), where X =

Spec(R) is the topological space of prime ideals of R, Z = (p :I g p}, and 2
is the sheaf on Spec(R) associated to A. If Z is a finitely generated ideal, this
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agrees with our earlier definition. For more details see [GLC], including the
construction of the long exact sequence

0  --+ H$(X,  F) + Hí(X,  F) + Hî(X  - Z, F) + H;(X, F) + . . . .

A standard result in algebraic geometry states that Hn(Spec(R),  A) = 0 for
n # 0, so for the punctured spectrum U = Spec( R) - Z the sequence

O+ H,O(A)+A+Hî(U,;i)+  H;(A)+0

is exact, and for n # 0 we can calculate the cohomology of A on U via

Hî(U,  A) 21 H;+ë(A).

Exercise 4.6.3 Let A be the full subcategory of R-mod consisting of the
modules with H:(A) = A.

1. Show that A is an abelian category, that HF: R-mod + A is right ad-
joint to the inclusion 1: A c, R-mod, and that 1 is an exact functor.

2. Conclude that Hf preserves injectives (2.3.10),  and that A has enough
injectives.

3. Conclude that each H:(A)  belongs to the subcategory A of R-mod.

Theorem 4.6.3 Let R be a commutative noetherian local ring with maximal
ideal m. Then the grade G(A) of any jnitely generated R-module A is the
smallest integer n such that H;(A) # 0.

Proof For each i we have the exact sequence

Ext+t(&/mí+*,  A) + Ext"(R/m',  A) + Extî(R/mí+ë,  A) -+  Extî(mí/mí+ë,  A).

We saw in 4.4.8 that ExP(R/m, A) is zero if n < G(A) and nonzero if n =
G(A); as mi/mi+’ is a finite direct sum of copies of R/m, the same is true
for Extî (mí /mi+ë,  A). By induction on i, this proves that Extî (R/mí+ë,  A) is
zero if n -C G(A) and that it contains the nonzero module Extî(R/mî,  A) if
n = G(A). Now take the direct limit as i + co. 0

Application 4.6.4 Let R be a 2-dimensional local domain. Since G(R) # 0,
Hi(R)  = 0. From the exact sequence

O+mí-+  R+  R/mí-+0
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we obtain the exact sequence

0 -+ R + HomR(mí,  R) -+ Extk(R/mí,  R) + 0.

As R is a domain, there is a natural inclusion of HomR(mí,  R) in the field F
of fractions of R as the submodule

m-i = (X E F : .xm’  C R).

Set C = Urn-ë.  (Exercise: Show that C is a subring of F.) Evidently

HA(R) = leExtí(R/mí,  R) 2 C/R.

If R is Cohen-Macaulay, that is, G(R) = 2, then Hi(R)  = 0, so R = C
and HOmR(mî,  R) = R for all i. Otherwise R # C and G(R) = 1. When
the integral closure of R is finitely generated as an R-module, C is actu-
ally a Cohen-Macaulay ring-the smallest Cohen-Macaulay ring containing
R [EGA, IV.5.10.17].

Here is an alternative construction of local cohomology due to Serre [EGA,
III.l.l].  If x E R there is a natural map from K(xí+ë)  to K(xí):

xl+l

O--tRw R+O

XI II

O-+RAR-0.

By tensoring these maps together, and writing xi for (xi, . . . , XL), this gives

a map from K (x ë+ë) to K(xí),  hence a tower {H*(K (xi)) of R-modules. Ap-
plying HomR(-, A) and taking cohomology yields a map from Hq (xi, A) to
Hq(xí+ë,  A).

Definition 4.6.5 Hz(A) = 1% Hq(xi, A).

For our next result, recall from 3.5.6 that a tower {Ai} satisfies the trivial
Mittag-L&leer  condition if for every i there is a j > i so that Aj + Ai is zero.

Exercise 4.6.4 If (Ai) + {Bi] --+ (Ci] is an exact sequence of towers of R-
modules and both (Ai] and (CL) satisfy the trivial Mittag-Leffler condition,
then (Bi} also satisfies the trivial Mittag-Leffler condition (3.5.6).

Proposition 4.6.6 Let R be a commutative noetherian ring and A a finitely
generated R-module. Then the tower { H,(xí,  A)) satisjes the trivial Mittag-
l&fleer condition for every q #
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Proof We proceed by induction on the length n of x. If n = 1, one sees im-
mediately that Hl(xí,  A) is the submodule Ai = {a E A : ?a = 0). The sub-
modules Ai of A form an ascending chain, which must be stationary since
R is noetherian and A is finitely generated. This means that there is an inte-
ger k such that Ak = Ak+l = . . . , that is, xkAi = 0 for all i. Since the map
A;+j + Ai is multiplication by x j, it is zero whenever j > k. Thus the lemma_
holdsifn= I.

Inductively, set y = (xl, . . . , q-1) and write x for xn. Since K(xí)  18
KCyí)  = K(xí),  the Ktlnneth formula for Koszul complexes 4.5.3 (and its
proof) yields the following exact sequences of towers:

U&&+>  A)} + &(-&A))  -+ V&-,6+,  A)};

(H,(yí,  A)] + {H,(xí,  A)} + {H,(xí,  A/yíA)]  + 0.

If 4 > 2, the outside towers satisfy the trivial Mittag-Leffler condition by in-
duction, SO { Hq(xi,  A)} does too. If q = 1 and we set Aij = [a E A/y' A :
xja = 0) = HI (xj, A/yíA),  it is enough to show that the diagonal tower {Aii)
satisfies the trivial Mittag-Leffler condition. For fixed i, we saw above that
there is a k such that every map Aij -+ Ai,j+k is zero. Hence the map Aii -+
Ai,i+k + Ai+k,i+k is zero, as desired. 0

Corollary 46.7 Let R be commutative noetherian, and let E be an injective
R-module. Then Hj (E) = 0 for all q # 0.

Proof Because E is injective, HOmR(-,  E) is exact. Therefore

H4(xi, E) = Hq  HomR(K(xí,  R), E) G HomR(Hq(xi,  R), E).

Because the tower ( Hq (xi, R)) satisfies the trivial Mittag-Leffler condition,

Hz(E) Z lg HomR(Hq(Xi,  R), E) = 0. 0

Theorem 4.6.8 If R is commutative noetherian, x = (xl, . . . , x,) is any se-
quence of elements of R, and I = (xl, . . . , x,) R, then for every R-module A

H;(A) &z H?(A).

Proof Both Hf and H,” are universal Sfunctors,  and

H:(A) = leHom(R/xíR,  A) = 12 Hí(xí,  A) = Hi(A). 0
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Corollary 4.6.9 R  i s  a  n o e t h e r i a n  l o c a l  r i n g ,  t h e n  Hz(A) # 0 only when
G(A) 5 q 5 dim(R). In particulal;  if R is a Cohen-Macauley  local ring, then

Hi(R)  # 0 + q = dim(R).

Proof Set d = dim(R). By standard commutative ring theory ([KapCR,
Thm.1531) there is a sequence x = (xl, . . . , xd) of elements of m such
that rnj c I C m for some j, where I = (xl, . . . , xd)R. But then Hz(A) =
H:(A) = H2(A),  and this vanishes for q > d because the Koszul complexes

K(xí)  have length d. Now use (4.6.3). 0

Exercise 4.6.5  If I is a finitely generated ideal of R and R + S is a ring
map, show that H:(A) 2 H:s(A) for every S-module A. This result is rather
surprising, because there isnít any nice relationship between the groups
Ext*,(R/Zí,  A) and Ext*,(S/Ií,  A). Consequently, if annR(A) denotes {r E
R : rA = O), then H;(A)  = 0 for q > dim(R/annR(A)).

Application 4.6.10 (Hartshorne) Let R = Q[xl,  x2, yl, ~21,  P = (xl, xz)R,
Q = (~1, ydR, and I = P IT Q. As P, Q, and m = P + Q = (XI, x2, yl, y2)R
are generated by regular sequences, the outside terms in the Mayer-Vietoris
sequence (exercise 4.6.2)

H;(R) @ H;(R) + H;(R) -+ H;(R) + H;(R) @ H;(R)

vanish, yielding H:(R) Y H;(R) # 0. This implies that the union of two

planes in Q4 that meet in a point cannot be described as the solutions of only
two equations ft = f2 = 0. Indeed, if this were the case, then we would have
I’ C (fr, f2)R E I for some i, so that H:(R) would equal H;(R), which is
zero.
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Spectral Sequences

5.1 Introduction

Spectral sequences were invented by Jean Leray, in a concentration camp
during World War II, in order to compute the homology (or cohomology) of
a chain complex [Leray]. They were made algebraic by Koszul in 1945.

In order to motivate their construction, consider the problem of computing
the homology of the total chain complex T* of a first quadrant double complex
E,,. As a first step, it is convenient to forget the horizontal differentials and
add a superscript zero, retaining only the vertical differentials d” along the
columns Ei,.

. . . .. . .

. . . .4

Et*:

j_

i i i i ...

L i i i ë..
P

If we write Ekq for the vertical homology Hq(Ei.J at the (p, q) spot, we
may once again arrange the data in a lattice, this time using the horizontal
diffentials dh.

120
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. . . .

T
. . . .
. . . .9

t*+--ït.+. . . .

P

Now we write E&  for the horizontal homology H,(E.&)  at the (p, q) spot.

In a sense made clearer by the following exercises, the elements of E& are a
second-order approximation of the homology of T* = Tot( E,,).

Exercise 5.1.1 Suppose that the double complex E consists solely of the two
columns p and p - 1. Fix n and set 9 = n - p, so that an element of H,,(T)
is represented by an element (a, b) E E,_I,,+I  x E,,. Show that we have
calculated the homology of T = Tot(E) up to extension in the sense that there
is a short exact sequence

0 -+ E$-1,,+1 + Hp+4  -+ E& -+ 0.

Exercise 5.1.2 (Differentials at the E2 stage)

1. Show that E& can be presented as the group of all pairs (a, b) in

E,-l,,+t  x E,, such that 0 = dub = dîa  + dhb,  modulo the rela-

tion that these pairs are trivial: (a, 0); (dhx,  dîx)  for x E E,,,+l;  and
(0, dhc) for all c E E,+l,, with dîc  = 0.

2. If dh(a)  = 0, show that such a pair (a, b) determines an element of

HP+4(T).
3. Show that the formula d(a, b) = (0, dh(a))  determines a well-defined

map

Exercise 5.1.3 (Exact sequence of low degree terms) Recall that we have
assumed that Ei4 vanishes unless both p > 0 and q > 0. By diagram chasing,

show that E& = Ho(T)  and that there is an exact sequence

H2(T)  -+ Ezo  -& .E& + HI(T)  + ET0 + 0.



Spectral Sequences

P P
Figure 5.1. The steps E2  and E3  of the spectral sequence.

There is an algorithm for computing H,(T) up to extension, called a spec-
tral sequence, and we have just performed the first two steps of this algorithm.
The next two steps are illustrated in Figure 5.1.

5.2 Terminology

Definition 5.2.1 A homology spectral sequence (starting with Ea) in an
 c a t e g o r y  A consists of the following data:

1. A family ( EL41  of objects of A defined for all integers p, q, and r > a

2. Maps  d;,: ELs -+ Ei_rq+r-l that are differentials in the sense that

dídí = 0, so that the ìlines of slope -(r + 1)/r” in the lattice E:, form
chain complexes (we say the differentials go ìto the leftî)

3. Isomorphisms between EL;’ and the homology of E:, at the spot Es4:

E rtl
P4 Zker(dj;q)limage  (d~+r,q_r+l)

Note that EL:’ is a subquotient of ELq.  The total degree of the term EL4
is n = p + q; the terms of total degree n lie on a line of slope - 1, and each
differential dLq  decreases the total degree by one.

There is a category of homology spectral sequences; a morphism f: Eí +

E is a family of maps fiq:  Ezq -+ EL4 in A (for r suitably large) with díf’  =

fíd’  such that each ff;,” is the map induced by fiq on homology.

Example 5.2.2 A first quadrant (homology) spectral sequence is one with
ELq  = 0 unless p > 0 and q 2 0, that is, the point (p, q) belongs to the first
quadrant of the plane. (If this condition holds for r = a, it clearly holds for all
r.) If we fix p and q, then EL4 = Eî+l  for all large r (r > max{p,  q + 1) will
do), because the d’ landing in the (y, q) spot come from the fourth quadrant,
while the d’ leaving Es4 land in the second quadrant. We write EE for this
stable value of ELq.
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Dual Definition 52.3 A cohomology spectral sequence (starting with E,) in
A is a family (EFí}  of objects (r > a), together with maps d:” going ìto the
rightî:

dpq. EPq  ~ EF+ëlq-r+l,r. r

which are differentials in the sense that drdr = 0, and isomorphisms between
E,.+I and the homology of E,. In other words, it is the same thing as a homol-
ogy spectral sequence, reindexed via E/” = EL,,_,,  so that dr increases the
total degree p + q of ELs by one.

There is a category of cohomology spectral sequences; a morphism f : Eí +

E is a family of maps f:ì:  Ep -+ Eeq in A (for r suitably large) with
dr fr = frdr such that each fryI is the map induced by fr'.

Mapping Lemma 5.2.4  Let f: {EL*)  -+ ( Eiq} be a morphism of spectral

sequences such that for some fixed r, f r : Eb4 % Ezq is an isomorphism for

all p and q. The 5lemma  implies that fî:  Ei4 g E&for all s > r as well.

Bounded Convergence 52.5  A homology spectral sequence is said to be
bounded if for each n there are only finitely many nonzero terms of total
degree n in E&. If so, then for each p and q there is an rg such that Ebs =

Eí+’  for all r > t-0. We write Erq for this stable value of EG4.
P4 -

We say that a bounded spectral sequence converges to H* if we are given a
family of objects H,, of A, each having afinite filtration

0 =  FSH,, E..’ G Fp_lH,,  g F,H,, C_ Fp+lH,, c... c F,H,, = H,,,

and we are given isomorphisms Eg 21 FpHpfq/FpPl  Ht,+4. The traditional
symbolic way of describing such a bounded convergence is like this:

Similarly, a cohomology spectral sequence is called bounded if there are
only finitely many nonzero terms in each total degree in E,**. In a bounded
cohomology spectral sequence, we write E,” for the stable value of the terms
Efq and say the (bounded) spectral sequence converges to H* if there is a
finite filtration

0 = FíHn  c . . . Fp+lH”  C FPHn..  . C FSH” = H” so tha t

Epq g FPHPfq/FP+ëHP+q,cc
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Example 5.2.6 If a first quadrant homology spectral sequence converges to
H,, then each H, has a finite filtration of length n + 1:

o=F_IH,cFoH,c.. 2 F,,-] H,, 2 F,,H,,  = H,,.

The bottom piece FoH,,  = Eg of H,, is located on the y-axis, and the top quo-
tient H,JF,_l  Hn Z Ez is located on the x-axis. Note that each arrow landing
on the x-axis is zero, and each arrow leaving the y-axis is zero. Therefore each
Eg is a subobject of Et,,, and each E,? is a quotient of Ei,. The terms E&,  on
the y-axis are called thejiber  terms, and the terms Eio on the x-axis are called
the base terms for reasons that will become apparent in the next section. The
resulting maps E& --f Eoy C H,,  and Hti + E,$ c EiO are k n o w n  a s  t h e  edge
homomorphisms of the spectral sequence for the obvious visual reason. Simi-
larly, if a first quadrant cohomology spectral sequence converges to H*, then
H” has a finite filtration:

0 = Fî+ëH”  c FîH”  2.. . C FíH”  c FíH”  = Ha.

In this case, the bottom piece FîH”  ?Z E,no is located on the x-axis, and the
top quotient Hî/FíH”  G Eg is located on the y-axis. In this case, the edge
homomorphisms are the maps E,ìí  -+ Eg c Hn and Hn + Eg c E,oî.

Definition 5.2.7 A (homology) spectral sequence collapses at Eí(r  1 2) if
there is exactly one nonzero row or column in the lattice ( EL4).  If a collapsing
spectral sequence converges to H,, we can read the H,, off:  Hn  is the unique
nonzero ELs with p + q = n. The overwhelming majority of all applications

of spectral sequences involve spectral sequences that collapse at E1 or Eí.

Exercise 5.2.1 (2 columns) Suppose that a spectral sequence converging to
H* has E& = 0 unless p = 0, 1. Show that there are exact sequences

O-+ ET,,_, -+ H, -+ E& -+ 0.

Exercise 5.2.2 (2 rows) Suppose that a spectral sequence converging to H*
has E& = 0 unless q = 0, 1. Show that there is a long exact sequence

. . . HP+1 -+ E;,, o -& E&  1 -+ HP --+ Et0 L E& , -+ HP-l....

If a spectral sequence is not bounded, everything is more complicated, and
here is no uniform terminology in the literature. For example, a filtration in
CE] is ìregularî if for each n there is an N such that H,(F,C)  = 0 for p < N,



5.2 Terminology 125

and all filtrations are exhaustive. In [MacH]  exhaustive filtrations are called
ìconvergent above.î In [EGA, Otrt( 11.2)] even the definition of spectral se-
quence is different, and ìregularî spectral sequences are not only convergent
but also bounded below. In what follows, we shall mostly follow the terminol-
ogy of Bourbaki [BX, p. 1751.

Em  Terms 5.2.8 Given a homology spectral sequence, we see that each E$ 1
is a subquotient of the previous term EL4. By induction on r, we see that there
is a nested family of subobjects of E& :

such that EL4 ” ZL4/BL4.  We introduce the intermediate objects

02 co

Bpîs  =  u BL4 a n d  zpî4=  nz;,

and define EFq = Zg/Bg.  In a bounded spectral sequence both the union
and intersection are finite, so BP7  = BL4 and Zrq = ZL4 for large r. Thus we
recover our earlier definition: Erq = ELs  for large r.

Warning: In an unbounded spectral sequence, we will tacitly assume that BE,
Zg, and EE  exist! The reader who is willing to only work in the category of
modules may ignore this difficulty. The queasy reader should assume that the
abelian category A satisfies axioms (AB4) and (AB4*).

Exercise 5.2.3 (Mapping Lemma for Em) Let f: { EL4}  + {E&)  be a mor-
phism of spectral sequences such that for some r (hence for all large r
by 5.2.4) f’ : EL4 z E& is an isomorphism for all p and q. Show that

f Oî:  Eg Y EL:  as well.

Definition 5.2.9 (Bounded below) Bounded below spectral sequences have
good convergence properties. A homology spectral sequence is said to be
bounded below if for each IZ there is an integer s = s(n) such that the terms
E& of total degree n vanish for all p < s. Bounded spectral sequences are
bounded below. Right half-plane homology spectral sequences are bounded
below but not bounded.

Dually, a cohomology spectral sequence is said to be bounded below if
for each n the terms of total degree n vanish for large p. A left half-plane
cohomology spectral sequence is bounded below but not bounded.

Definition 52.10 (Regular) Regularity is the most useful general condition
for convergence used in practice; bounded below spectral sequences are also
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regular. We say that a spectral sequence is regular if for each p and q the
differentials dL4 (or dFy) leaving ELs (or E?ì)  are zero for all large r. Note
that a spectral sequence is regular iff for each p and q: Z;p4 = ZLq  for all
large r.

Convergence 5.2.11  We say the spectral sequence weakly converges to H* if
we are given objects H, of A, each having a filtration

together with isomorphisms BP4: Eg 2 Ft, Ht,f4 / Fp_ 1 Ht,+4 for all p and q.
Note that a weakly convergent spectral sequence cannot detect elements of
n F,, H,,, nor can it detect elements in H, that are not in UFP H,.

We say that the spectral sequence (E&) approaches H* (or abuts to H*)
if it weakly converges to H* and we also have H,, = UF,,H,, and nFp H,, = 0
for all 12. Every weakly convergent spectral sequence approaches UFt,H,/  f?

FpH,.
We say that the spectral sequence converges to H* if it approaches H,, it

is regular, and H,, = lim(H,/FpH,,) for each n. A bounded below spectral

sequence converges to&, whenever it approaches H+, because the inverse
limit condition is always satisfied in a bounded below spectral sequence.

To show that our notion of convergence is a good one, we offer the fol-

lowing Comparison Theorem. If ( Eiq} and ( Ezq] weakly converge to H*

and H:, respectively, we say that a map h: H.+ -+ Hi is compatible with a
morphism f: E + E’ if h maps F,,H,,  to F,,HA  and the associated maps
FpHn/Fp_~H,,  + F,,H~IF~_)H~  correspondunderfi  andpíto  f;: Eg -+

E;: (q = n - p).

Comparison Theorem 5.2.12  Let { EL4} and ( Ezq} converge to He and HL,

respectively. Suppose given a map h: H* + H: compatible with a morphism

f: E + Eí of spectral sequences. If f r : Ebq 2 Ezq is an isomorphism for
all p and q and some r (hence for r = ca by the Mapping Lemma), then
h: H* + Hi is an isomorphism.

Proof Weak convergence gives exact sequences

0 + Fp_lH,,/F,H,,  + Ft,H,,/FsH,,  ---, E&, - 0

0  - F,-IH;IF,H; - Ft,H;IF,H; ----f E&, ---, 0 .
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Fixing s, induction on p shows that FpH,,lFsH,,  2 F,,HAIF,H,!,  for all p .
Since H,, = UF, Hn, this yields H,,/ F, H,, g Hhl Fs H,f, for all s. Taking inverse
limits yields the desired isomorphism H,, !Z H,. 0

Remark The same spectral sequence may converge to two different graded
groups H,, and it can be very difficult to reconstruct a picture of H* from
this data. For example, knowing that a first quadrant spectral sequence has
Eg 2 Z/2 for all p and q does not allow us to determine whether H3 is Z/16

or Z/2 @ Z/8, or even the group (Z/2)4.  The Comparison Theorem 5.2.12
helps us reconstruct He without the need for convergence.

Multiplicative Structures 52.13 Suppose that for r = a we are given a bi-
graded product

(*) %1 x %42 + E;I+P2.41+42

such that the differential d’ satisfies the Leibnitz relation

(**I dr(xlx2)  = dr(xl)x2 + (-l)ìëXtdí(x2), xi E ELi4,.

Then the product of two cycles (boundaries) is again a cycle (boundary), and
by induction we have (*) and (**)  for every r > a. We shall call this a multi-
plicative structure on the spectral sequence. Clearly this can be a useful tool in
explicit calculations.

5.3 The Leray-Serre Spectral Sequence

Before studying the algebraic aspects of spectral sequences, we shall illustrate
their computational power by citing the topological applications that led to
their creation by Leray. The material in this section is taken from [MacH,
x1.21.

Definition 5.3.1 A sequence F 4 E & B of based topological spaces is
called a Serre j&ration if F is the inverse image n-ë(*B)  of the basepoint
of B and if n has the following ìhomotopy lifting propertyî: if P is any
finite polyhedron and I is the unit interval [0, 11, g: P + E is a map, and
H: P x I -+ B is a homotopy between ng = H(-, 0) and hl = H(-, l),

PxI - B
H
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there is a homotopy G: P x Z + E between g and a map gt = G(-, 1) which
lifts H in the sense that rrG = H. The spaces F, E, and B are called the
Fiber, total space (Espace totale for Leray), and Base space, respectively. The
importance of Serre fibrations lies in the fact (proven in Serreís thesis) that
associated to each fibration is a long exact sequence of homotopy groups

. ..n.+l(B)  L n,(F) --+ n,(E) + n,(B) -% . . . .

In order to simplify the presentation below, we shall assume that B is sim-
ply connected, that is, that nu( B) = nl (B) = 0. Without this assumption, we
would have to introduce the action of nt (B) on the homology of F and talk
about the homology of B with ìlocal coefficientsî in the twisted bundles

&(F).

Theorem 5.3.2 (Leray-Serre spectral sequence) Let F i\ E 5 B be a
Serre  jbration such that B is simply connected. Then there is a first quadrant
homology spectral sequence starting with E2 and converging to H,(E):

E& = Hp(B; H,(F)) =+ Hpfq(E).

Addendum I Ho(B) = Z, so along the y-axis we have E$ = H,(F). Because

E2 = 0 for p < 0
P4 , the groups E3oqíì”  oqEn+’ = Eoy are successive quotients

of E$. The theorem states that EoT  z FoHq(  E), so there is an ìedge map”

H,(F) = Eiq - Eo; C Hq(-O

This edge map is the map i,: H,(F) -+ H,(E).

Addendum 2 Suppose that no(F)  = 0, so that Ho(F) = 22. Along the x-
axis we then have Et0 = H,(B).  Because E,,2 = 0 for q < 0, the groups

Ezo,  . . . , E;;’ = Era  are successive subgroups of Eio. The theorem states
that Eg 2 Hp(E)/Fp_l H,(E), so there is an ìedge map”

HP(E)  - EFo c--, Ego = HP(B).

This edge map is the map n,: H,(E) + H,(B).

Remark The Universal Coefficient Theorem 3.6.4 tells us that

Hp(B; H,(F))  g H,(B) @ Hq(F)  @ Torf(Hp--I(B), Hq(~)).
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Therefore the terms E&  are not hard to calculate. In particular, since nl (B) =
0 we have HI(B) = Hr (B; H4 (F)) = 0 for all q. By the Hurewicz homomor-
phism, x2(B)  2 Hz(B) and therefore H2(B; H,(F)) G Hz(B) ~3 H,(F) for
all q as well.

Application 53.3 (Exact sequence of low degree terms) In the lower left
comer of this spectral sequence we find

H2(F) K lc* : ì? +H;B)+2 3 H (B)4

The kernel of the map d2 = d& is the quotient Eg of Hz(E), because the

maps d.&, are zero for r 1 3. Similarly, the cokemel  of d2 is the subgroup EoS,
of HI(E).  From this we obtain the exact homology sequence in the following
diagram:

m(fv - JO(F)  - rz(E) - JQ(W - XI(F) - XI(E) - 0

1%

X =+ Hz(F)  + Hz(E)  + Hz(B)  5 HI(F)  - HI(E)  + 0 .

Here the group labeled X contains the image in Hz(F)  of E& !Z Hz(B) 8

HI(F) and elements related to E:. = H3(B).  Thus Hz(B) @ HI(F)  is the first
obstruction involved in finding a long exact sequence for the homology of a
fibration.

Application 53.4 (Loop spaces) Let P B denote the space of based paths in
B, that is, maps [0, l] + B sending 0 to *B. The subspace of based loops
in B (maps [0, I] + B sending 0 and 1 to *B) is written QB. There is a

fibration S2B  + P B -% B, where n is evaluation at 1 E [0, 11. The space
P B is contractible, because paths may be pulled back along themselves to the
basepoint, so H, (P B) = 0 for IZ # 0. Therefore, except for E& = Z, we have
a spectral sequence converging to zero. From the low degree terms (assuming
that xl(B)  = O!), we see that Hl(QB) Y Hz(B)  and that

H4(B) 2 Hz(B) @I Hz(B) 2 Hz(QB) + Hj(B) -+ 0

is exact. We can use induction on n to estimate the size of H,,(Q B).



Exercise 5.3.1 Show that if n 2 2 the loop space RS’  has

Hp(s2Sî)  2
Z i f  - 1) divides p, p 2 0
0 otherwise.

Application 5.3.5 (Wang sequence) If F 5 E --% S” is a fibration
base space is an n-sphere (n # 0, l), there is a long exact sequence

whose

. . . + Hq(F) & H , ( E )  + H,-,(F) s Hq-I(F) & Hq_l(E) -+ . . . .

In particular, Hq (F) Z Hq (E) if 0 5 4 F n - 2.

Proof Hp(Sn)  = 0 for p # 0, n and H,,(Y) = Ho(Y)  = Z. Therefore the
nonzero terms E& all lie on the two vertical lines p = 0, n and E& = H*(F)
for p = 0 or n. All the differentials d& must therefore vanish for r # n, so

E2 = E”
P4 P9

and EFz’ = E&.  The description of En+’ as the homology of E”
amounts to the exactness of the sequences

0 - Erq
d”

- H , ( F )  - Hq+n-l(F)  - Erq+,_, - 0 .

Ho(F)

On the other hand, the filtration of H,(E) is given by the EE, so it is deter-
mined by the short exact sequence

0 -+ Eoj -+ H,(E) -+ Enyq_a  + 0.

The Wang sequence is now obtained by splicing together these two families of
short exact sequences. 0
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Example 5.3.6 The special orthogonal group SO(3) is a 3-dimensional Lie
group acting on S2 C [w3.  This action gives rise to the Serre fibration

SO(l)  + SO(3)  -+ S2.

Because SO(l)  = Sí,  we get H3(SO(3))  % Z and the exact sequence

0 -+ &_(SO(3))  -+ z -% z + Ht(S0(3)) + 0.

Classically, we know that ntSO(3) = Z/2, so that Ht(SO(3))  = Z/2. There-
fore Hz(SO(3))  2 12, although &(SO(3))  + H2(S2)  is not an isomorphism.

Application 5.3.7 (Gysin sequence) If S” -+ E 5 B is a fibration with B
simply connected and n # 0, there is an exact sequence

. . + HP_,(B)  -+ HPE 2-, H,(B) 5 HP-n-l(B) + HP-l(E)  * ....

In particular, HP(E) G’ HP(B) for 0 L p < n

Proof This is similar to the Wang sequence 5.35, except that now the nonzero
terms E& all lie on the two rows q = 0, n. The only nontrivial differentials are

dill from H,(B) = Eí$’  to Ei?A_, n Z HP-,-l(B). 0

Exercise 5.3.2 If n # 0, the complex projective n-space QPn is a simply con-
nected manifold of dimension 2n. As such Hp(QBn)  = 0 for p > 2n. Given
that there is a fibration S’  -+ S2nf’  -+ QPî,  show that for 0 ( p 5 2n

5.4 Spectral Sequence of a Filtration

A filtration F on a chain complex C is an ordered family of chain subcom-
plexes . . . c F,-1C c FPC E.. . of C. In this section, we construct a spectral
sequence associated to every such filtration; we will discuss convergence of
the spectral sequence in the next section.

We say that a filtration is exhaustive if C = UF,C. It will be clear from the
construction that both U FPC and C give rise to the same spectral sequence. In
practice, therefore, we always insist that filtrations be exhaustive.
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Construction Theorem 5.4.1 A filtration F of a chain complex C naturally
determines a spectral sequence starting with Ez4 = FPCP+q/F,,-lCP+q  and

EA4  = HP+&*).

Before constructing the spectral sequence, let us make some elementary
remarks about the ìshapeî of the spectral sequence.

Definition 5.4.2 A filtration on a chain complex C is called bounded if for
each n there are integers s < t such that F,C,, = 0 and F,C, = C,. In this case,
there are only finitely many nonzero terms of total degree n in Ef,, so the
spectral sequence is bounded. We will see in 5.5.1 that the spectral sequence
always converges to H*(C).

A filtration on a chain complex C is called bounded below if for each n there
is an integer s so that F,C, = 0, and it is called bounded above if for each
n there is a t so that F,C, = C,. Bounded filtrations are bounded above and
below. Being bounded above is merely an easy way to ensure that a filtration
is exhaustive. Bounded below filtrations give rise to bounded below spectral
sequences. The Classical Convergence Theorem 55.1 of the next section says
that the spectral sequence always converges to H,(C) when the filtration is
bounded below and exhaustive.

Example 5.4.3 (First quadrant spectral sequences) We call the filtration
canonically bounded if F-1 C = 0 and F,,C, = C, for each n. As Ei4 =

F,C,+,IF,-IC,+,, every canonically bounded filtration gives rise to a first
quadrant spectral sequence (converging to H,(C)). For example, the Leray-
Serre spectral sequence 5.3.2 arises from a canonically bounded filtration of
the singular chain complex S,(E).

Here are some related notions, which we introduce now in order to give a
better perspective on the construction of the spectral sequence.

Definition 5.4.4 A filtration on a chain complex C is called HausdorfS  if
nF,C = 0. It will be clear from the construction that both C and its Hausdorff
quotient Ch = C/ n FPC give t-i6 to the same spectral sequence.

A filtration on C is called complete if C = lim C/F&.  Complete filtra-
,

tions are Hausdorff because nF,C is the kezl of the map from C to
its completion E = lim C/F,C (which is also a filtered complex: F,? =

lim F,,C/F,C). Bounrd  below filtrations are complete, and hence Hausdorff,

bzause  FS H, (C) = 0 for each n. The following addendum to the Construc-
tion Theorem 5.4.1 explains why the most interesting applications of spectral
sequences arise from complete filtrations. It will follow from exercise 5.4.1.
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Addendum 5.45 The two spectral sequences arising from C and e are the
same.

The Construction 5.4.6 For legibility, we drop the bookkeeping subscript q
and write nP for the surjection FPC -+ FPC/FP-~C = Ej. Next we introduce

A; = {c E FPC  : d(c) E F,_,C},

the elements of F& that are cycles modulo Fp_rC  (ìapproximately cyclesî)

and their images ZL = r],(Aí,)  in Ej and Bs?].  = q,_,(d(A;))  in E:_,.  The

indexing is chosen so that Zb and BT, = q,,(d(AL;:_,))  are subobjects of Ej.
Set Zp” = n,ì=rZL  and B;P  = UTzl  Bb. Assembling the above definitions,

we see that we have defined a tower of subobjects of each Ej:

O=B~cB:,c...~B~c...EB~_  p _C Zm  C . & Z; c . . s Z; 5 Z; = E;.

Note that AL n Ft._1 C = A;::, so that Zi z AL/AL:ël.  Hence

A; + Fp-I Cc> N Aí;,
d(Aíd-:r-,)  + F,-l(C)  - d(A:;:l_,)  + A;;l, ’

Let ds: EL -+ Es_, be the map induced by the differential of C. To define the

spectral sequence, we only need to give the isomorphism between Eí+l  and

WEí).

Lemma 5.4.7 The map d determines isomorphisms

Proof This is largely an exercise in decoding notation. First, note that d(Ak)n

Fp_r_lC = d(Ai++ë),  so that B;;f_).  2 d(Aí,)/d(AL+ë)  and hence Bh?L/B;;_,

is isomorphic to d(Aí,)/d(AL+’ ’ ’+ API,). The other term ZL/ZPr+’ is isomor-

phic to AL/(Aípf’ + ALL\). As the kernel of d: AL -+ FP-,C is contained in

Ar+l, the two sides are isomorphic.
P

0

Resuming the construction of the spectral sequence, the kernel of dT, is

I z E Aí,: d(z) E d(A;?,)  + A;:;_l 1 A;:; + Aí+’P
zr+l

P

d($,lír-1)  +  A;::

cx _.

=  d(A;;:,_J  +  A$ - B;
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By lemma 5.4.7, the map d; factors as

From this we see that the image of ds is B1;I!I:/B&;  replacing p with p + r,

the image ofdb,, is Bí+’  B’ This provides the isomorphismp / P.

r+l _E, - p / p = ker(dj;)lWdl;+,)Zr+l Bífl  _

needed to complete the construction of the spectral sequence. 0

Observation Fix p and k > 1, and set C’ = C/Fp-kC, C” = F,+kC/F,_kC.
The complex Cí is bounded below, C” is bounded, and there are maps C +
Cí t Cî. For 0 5 r I k these maps induce isomorphisms on the associated
groups A>/FP_& and [d(A~$,) + Fp_kC}/Fp_kC.  (Check this!) Hence

the associated groups Z>, BT, and Ei are isomorphic. That is, the associated

spectral sequences for C, Cí, and Cî agree in the (p, q) spots through the Ek
terms.

Exercise 5.4.1 Recall that the completion ? is also a filtered complex. Show
that C/ Fp_kC and ??/ Fp_k? are naturally isomorphic.

We can now establish the addendum 5.45. For each p, q, and k, we
have shown that the maps C + ? -+ Cí induce isomorphisms between the
corresponding Ef& terms. Letting k go to infinity, we see that the map

(fi4: E&(C) + EL,(?)} of spectral sequences is an isomorphism. because
each f;, is an isomorphism.

Exercise 5.4.2 Show that the spectral sequences for C, UF,C,  and C/ n F&
are all isomorphic.

Multiplicative Structure 5.4.8 Suppose that C is a differential graded alge-
bra (45.2) and that the filtration is multiplicative in the sense that for every s
and t, (F,C)(F,C) C F,+,C.  Since Ei,n_p is F,C,/F,,_lC,,  it is clear that
we have a product

satisfying the Leibnitz relation. Hence the spectral sequence has a multiplica-
tive structure in the sense of 5.2.13. Moreover, we saw in exercise 4.5.1 that
H,(C) is an algebra and that the images F,H,(C)  of the H,(F,C)  form a
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multiplicative system of ideals in H,(C). Therefore whenever the spectral
sequence (weakly) converges to H,(C) it follows that E co is the associated
graded algebra of H,(C). This convergence is the topic of the next section.

5.5 Convergence

A filtration on a chain complex C induces a filtration on the homology of
C : F,H,(C) is the image of the map H,(F,C) + H,(C). If the filtration on
C is exhaustive, then the filtration on Hn  is also exhaustive (Hn = UFPH,),
because every element of Hn  is represented by an element c of some F,C,
such that d(c) = 0. If the filtration on C is bounded below then the filtration on
each H,(C) is also bounded below, since F,C = 0 implies that F,H,(C) = 0.

Exercise 5.5.1 Give an example of a complete Hausdorff filtered complex
C such that the filtration on Ho(C) is not Hausdorff, that is, such that

nF,Ho(C) # 0.

Here are the two classical criteria used to establish convergence; we will
discuss convergence for complete filtrations later on.

Classical Convergence Theorem 5.51

1. Suppose that the$ltration  on C is bounded. Then the spectral sequence
is bounded and converges to H,(C):

EAq = ff,+,(F,CIF,-1C)  =+ H,,+q(C).

2. Suppose that the filtration on C is bounded below and exhaustive. Then
the spectral sequence is bounded below and also converges to H,(C).

Moreover, the convergence is natural in the sense that if f: C + C’
is a map of filtered complexes, then the map f*: H,(C) -+ H,(Cí)  is
compatible with the corresponding map of spectral sequences.

Example 5.5.2 (First quadrant spectral sequences) Suppose that the filtration
is canonically bounded (F-IC = 0 and F,,C,,  = C, for each n), so that the
spectral sequence lies in the first quadrant. Then it converges to H,(C). Along
the y-axis of E’ we have E& = H,(FoC),  and EoT  is a quotient of this (see

’5.2.6). Along the x-axis, E,, is the homology HP(C) of Cís top quotient chain

complex C, C, = C,/F,_lC,;  ET0  is therefore a subobject of Ht,(C).

Corollary 55.3 Zf theJiltration is canonically bounded, then EE is the image

ofZZ,(FoC)  in Hq(C) and EFo is the image of H,(C) in HP(C).
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Proof By definition, Eg = FoH4(C) is the image of H,(FuC)  in H,(C).
Now consider the exact sequence of chain complexes 0 + Fp_ 1 C -+ C, -+
C, + 0. From the associated homology exact sequence we see that the image

of HP(C) in H,(C) is the cokemel  of the map from H,(Fp-lC)  to H,(C),
which by definition is E,,co = Hp(C)lFp-~Hp(C). 0

Proof of Classical Convergence Theorem Suppose that the filtration is exhaus-
tive and bounded below (resp. bounded). Then the filtration on H* is exhaus-
tive and bounded below (resp. bounded), and the spectral sequence is bounded
below (resp. bounded). By Definition 5.2.11, the spectral sequence will con-
verge to H*  whenever it weakly converges. For this, we observe that since the
filtration is bounded below and p and n are fixed, the groups A; = {c E FpCn  :
d(c)  E Ft,_rCn_l}  stabilize for large r; write AT for this stable value, and ob-
serve that since ZL = np(AL) we have Z,O” = np(Ay). Now A: is the kernel
of d: FpCn -+ F&,-I,  (dC) n FpC is the union of the d(A>+,),  and A:_,  is

the kernel of the map qP: AT -+ E&.  Thus

FPK(C)IFP-lK(C)  g A:/{$?,  + ~(UA;+,)l

g Al n&J-$,+,)

= Z;/BF = E;. 0

When the filtration is not bounded below, convergence is more delicate. For
example, the filtration on H,(C) need not be Hausdorff. This is not surprising,
since by 5.4.5 the completion e has the same spectral sequence but different
homology. (And see exercise 55.1.)

Example 5.54 Let C be the chain complex 0 --+  Z -% Z -+ 0, and let FpC
be 2PC. Then the Hausdorff quotient of H,(C) is zero, because F,H,(C) =

H,(C) for all p, even though Ho(C) = Z/3. Each row of E” is Z/2 A Z/2
and the spectral sequence collapses to zero at El, so the spectral sequence is
weakly converging (but not converging) to H,(C). It converges to H,(z) = 0.

Theorem 5.5.5  (Eilenberg-Moore Filtration Sequence for complete com-
plexes) Suppose that C is complete with respect to a filtration by subcom-
plexes. Associated to the tower (C/F&) is the sequence of 3.5.8:

0 --f lim ëH,+1(C/F,C)  + H,(C) 5 l$ H,(C/FpC)  -+ 0.C
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This sequence is associated to the filtration on H,(C) as follows. The left-
hand term liml H,,+l  (C/F&) is flF,H,,(C), and the right-hand term is the

Hausdo#qyotient  of H,(C):

H,(C)/ n F,H,,(C)  s i@ H,,(C)/F,H&C) g ëE  H&C/F&).

Proof Taking the inverse limit of the exact sequences of towers

0 -+ IF,&(C)) + H,(C) + {H,(C)/F$A+t(C))  + 0;

0 -+ {H,(C)/F,HdC)}  + I&(CIFpC)I

shows that H,(C)/ n F,H,(C) is a subobject of lim H,(C)/F,,H,(C),  which
t

is in turn a subobject of lim H,(C/Ft,C). Now combine this with the lim’
C C

sequence of 3.5.8. 0

Corollary 55.6 If the spectral sequence weakly converges, then H,(C) 2
&(6.

A careful reading of the proof of the Classical Convergence Theorem
5.5.1  yields the following lemma for all Hausdorff, exhaustive filtrations. To
avoid confusion, we reintroduce the fixed subscripts q and n = p + q. Write
ACO = no0 A’

P4 r=l pq’ recalling that in our notation AL4  = {c E FpCn : d(c) E

Fp_,.Cn_t]. In E,, -o - FpC,/Fp_lC,,  np(Ayq)  is contained in Zpî4  and con-
tains BE = np(FpC  fl d(C)). (Check this!) Hence epî4  = np(Ar$)/Bg  is
contained in Erq.

Lemma 5.5.7  Assume that the filtration on C is Hausdog  and exhaustive.
Then

1. Ayq is the kernel of d: FpCn + F,C,_);

2. F,H,(C) 2 AZ/ Uzl d(A;+r  q-r+l);
3. The subgroup erq of Eg is related to H,(C) by

e; g F,H,(C)IF,-IH,(C).

Proof Recall that Fp H,(C) is the image of the map H,( FpC) + H,,(C).
Since flF,C = 0, the kernel of d: FpCn + F,C,_l  is Ag, so H,(F,C) Z
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AFq/d(Ft,C,+I).  As UF& = C, the kernel of Ayq + H,(C) is the union

ìd(A;+&q-r+l ). For part (3) observe that AZ n F,_lC, = AT_?_,,,+,  by def-

inition, so that npAFq = Ar*/AF_,,,+,.  Hence we may calculate in EF4

FpHrz(C)IF,-~H,(C)  z AZ/A;,,,+,  + ëJd(A;+r,,_,+I)

” np(Ag)l U npd(Aí,+r,,-,+,)

= n,(Ag)IBg = ez. 0

Corollary 5.58  (Boardmanís Criterion) Let Qt, denote limí{Aí,,}  forfiedC
p and q. The inclusions A~~ë,,,,,  c AL4  induce a map a: Qp_l + Qt,,  and
there is an exact sequence

O+<rp  E)P + Qp_l -% Qt, + lim ë{ZL,}  -+ 0.
-

In particular; tf the filtration is Hausdorfs and exhaustive, then the spectral
sequence weakly converges to H,(C) tf and only tf the maps a: Qp_l  + Qt,
are all injections.

Proof The short exact sequence of towers from 5.4.6

0 -+ (A;:ë,)  --+ (Aí,} L (Z;} --f 0

yields

Now mod out by Br, recalling that eg is n(Ag)/Bz. 0

Exercise 55.2 Set R, = n, image(H(FrC)  + H(F,C)].  Show that the
spectral sequence is weakly convergent iff the maps R,_I --+  R, are injections
for all p. Hint: R, c Qp.

Exercise 5.53  Suppose that the filtration on C is Hausdorff and exhaustive.
If for any p + q = n we have EL4 = 0, show that FpHn(C)  = Fp_lHn(C).
Conclude that H,(C) = nF,H,(C),  provided that every EL,4  with p + q
equalling IZ vanishes.

Proposition 5.5.9 (Boardman) Suppose that thejltration  on C, is complete,
andform the tower of groups Qt, = limí{A~,n_p]  as in 5.5.8 along the maps

-r
a: Qp_l  -+ Qt,. Then l@ QP = 0. 0
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Proof Let Z denote the poset of negative numbers . < p - 1 < p < p + 1 <

. . . < 0. For each negative p and t, the subgroups A(p, t) = A;-’ = (c E
F&,, : d(c)  E FrC,_l)  of C, form a functor A: Z x Z + Ab, that is, a
ìdouble towerî of subgroups. If we fix t and vary p, then for p 5 t we
have A(p, t) = FpCn.  Hence we have lim A(p, t) = lim F,,C, = 0 a n d

+P -P

limí A(p, t) = lim’ F&,, = 0 (see 3.5.7). We assert that the derived func-
+P -P

tor R’ limZxZ  from double towers to abelian groups fits into two short exact
sequences:

0 + l@ë(l@  A(p, t)) + R’ !,ìI  A(p, t) -+ lE(l@ëA(p,  t)) --+ 0,
t P t P

(t)
0 -+ l@l(l@  A(p, t)) + R’ FXy  A(p, t) + l@(lEíA(p,  t)) + 0.

P t P f

We will postpone the proof of this assertion until 5.8.7 below, even though it
follows from the Classical Convergence Theorem 55.1, as it is an easy appli-
cation of the Grothendieck spectral sequence 5.8.3. The first of the sequences
in (t) implies that R’ 1imZ  XZ A(p, t) = 0, so from the second sequence in (t)
we deduce that lE,(lim: A(p, t)) = 0.

To finish, it suffices to prove that lim’  A(p, t) is isomorphic to Qp for each

p < 0. Fix p, so that there is a short z&t sequence of towers in t:

(*I 0 --+ (A(P,  P + t)l+ {A(p, t>l + (A(p,  t)/A(p, p + t)l + 0.

If t’  -c p + t the map A(p, tí)/A(p,  p + tí) + A(p, t)/A(p, p + t) is obvi-
ously zero. Therefore the third tower of (c) satisfies the trivial Mittag-Leffler
condition (3.5.6),  which means that

l@ A(P, t)/A(p,  P + t) = li$A(p,  t)/A(p, p + t) = 0.
t t

From the lim exact sequence of (*) we obtain the described isomorphism-

Qp = lim A; = lim A(t t p, p + t) ” l@ A(p, t). 0
t t t

Complete Convergence Theorem 5.510  Suppose that thejiltrution  on C is
complete and exhaustive and the spectral sequence is regular (5.2.10). Then

1. The spectral sequence weakly converges to H,(C).
2. lfthe spectral sequence is bounded above, it converges to H,(C).
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Figure 5.2. Complete convergence for regular, bounded above spectral sequences.

Proof When the spectral sequence is regular, Zg equals ZL4 = qpAí,,  for
large r. By Boardmanís criterion 55.8, all the maps QP_t + QP are onto,
and the spectral sequence weakly converges if and only if QP = 0 for all p.
This is indeed the case since the group I@ QP maps onto each QP (3.5.3),

and we have just seen in 5.5.9 that 1E Q,, = 0. This proves (1).

To see that the spectral sequence converges to H,(C), it suffices to show
that the filtration on H,(C) is Hausdortf.  By the Eilenberg-Moore Filtration
Sequence 5.5.5, it suffices to show that the tower (H,(C/FtC)}  is Mittag-
Leffler for every n, since then its limí groups vanish by 3.5.7. Each C/F,C
has a bounded below filtration, so it has a convergent spectral sequence whose
associated graded groups Er*(C/F,C) are subquotients of E&(C)  for p > t.
For m < t, the images of the maps Eg(C/F,C)  -+ Eg(C/FíC)  are the
associated graded groups of the image of H,(C/F,C) -+ H,(C/F,C), so it
suffices to show that these images are independent of m as m + --oo.

Now assume that the spectral sequence for C is regular and bounded above.
Then for each n and t there is an M such that the differentials EL4(C) +
E’p_r,q+,_r(C)  are zero whenever p + q = n, p > t, and p - r 5 M. B y

inspection, this implies that Erq(C) = Erq(C/ F,C)  for every p + q = n with
p > t and every m F M. Thus the image of Eg(C/FMC)  + EE(C/F,C)  is
independent of m p M for p + q = n and p > t, as was to be shown. 0

Exercise 5.5.4 (Complete nonconverging spectral sequences) Let Z < x >
denote an infinite cyclic group with generator x, and let C be the chain com-
plex with

cl=&cxi>.  co= jy z<yyi>, c, = 0 for n # 0, 1
i=l i=-00
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and d: Cl -+ Co defined by d(xi) = yl-i - y-i. For p 5 0 define F&l = 0
and F&O = nicP iz < yi >; this is a complete filtration on C._

1. Show that FPHo(C) = Ho(C) for every p 5 0, so that the filtration on
Ho(C) is not Hausdorff. (Since Cl is countable and Co is not, we have
Ho(C) # 0.) Hence no spectral sequence constructed with this filtration
can approach H,(C), let alone converge to it; such a spectral sequence
will weakly converge to H,(C) if and only if it converges to zero.

2. Here is an example of an (essentially) second quadrant spectral sequence
that weakly converges but does not converge to H,(C). For p 2 1 define
F&I = Cl and F&o = Co. The resulting spectral sequence has Eye =

CI, E;,-p = Z < yP B for p 5 0 and E,, -’ - 0 otherwise. Show that
dí(x,)  is [yt_,] and dí(xi)  = 0 for i # r, and conclude that EE = 0 for
every p and q.

3. Here is a regular spectral sequence that does not converge to H,(C). For
p 2 1 let F&l be the subgroup of Cl spanned by x1, . . . , xp and set

F&J = Co. The resulting spectral sequence has Ei l_P = Z < xP > for

p > 1, E;,-p  = Z < yP > for p 5 0 and E,, -’ - 0 otherwise. Show that
this spectral sequence is regular and converges to zero.

5.6 Spectral Sequences of a Double Complex

There are two filtrations associated to every double complex C, resulting in
two spectral sequences related to the homology of Tot(C). Playing these spec-
tral sequences off against each other is an easy way to calculate homology.

Definition 5.6.1 (Filtration by columns) If C = C,, is a double complex, we
may filter the (product or direct sum) total complex Tot(C) by the columns of
C, letting IF,, Tot(C) be the total complex of the double subcomplex

. . . * * 0 0

1

CP9 ifp(n . . . * * 0 0
0 ifp>n . . . * * 0 0

. . . * * 0 0

of C. This gives rise to a spectral sequence {ëEL,),  starting with ëEz,  = C,,.

The maps do are just the vertical differentials dU  of C, so

ëEAq  = H,u(C,,).
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The maps d*:  HJ(C,*)  -+ Hi(CP-l,*)  are induced on homology from the

horizontal differentials dh  of C, so we may use the suggestive notation:

ëE;,  = HpîH,ì(C).

If C is a first quadrant double complex, the filtration is canonically bounded,
and we have the convergent spectral sequence discussed in section 5.1:

ëE;,  = HpîH,ì(C)  =+ H,,+g(Tot(C)).

If C is a fourth quadrant double complex (or more generally if C,, = 0
in the second quadrant), the filtration on Totî(C) is bounded below but is
not exhaustive. The filtration on the direct sum total complex Tot@(C) is
both bounded below and exhaustive, so by the Classical Convergence The-
orem 55.1 the spectral sequence ëE;, converges to H,(Tot@  C) and not to
H&Tot”  C).

If C is a second quadrant double complex (or more generally if C,, = 0
in the fourth quadrant), the filtration on the product total complex Totî(C)
is complete and exhaustive. By the Complete Convergence Theorem 5.5.10,
the spectral sequence ëE:,  weakly converges to H,(Tot” C), and we have the
Eilenberg-Moore filtration sequence (5.5.5)

0 + l@H,,+,(C/r&)  + H,(Tot” C) + 12 H,,(C/+J)  + 0.

We will encounter a spectral sequence of this type in Chapter 9, 9.6.17.

Definition 56.2 (Filtration by rows) If C is a double complex, we may also
filter Tot(C) by the rows of C, letting ëI  F,, Tot(C) be the total complex of

1 C ifqin 0 0 0 0 0 0
P4

0 ifq >12 * * ** * *

Since FpTot(C)/Fp_t Tot(C) is the row C,,, ìEjq  = C,, and IíEk4  =
H,h(C,,). (Beware the interchange of p and q in the notation!) The maps

d’ are induced from the vertical differentials dU of C, so we may use the
suggestive notation

ìE;,  = H;H;(C).
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Of course, this should not be surprising, since interchanging the roles of p
and q converts the filtration by rows into the filtration by columns, and inter-
changes the spectral sequences ëE  and ìE.

As before, if C is a first quadrant double complex, this filtration is canon-
ically bounded, and the spectral sequence converges to H,Tot(C). If C is a
second quadrant double complex (or more generally if C,, = 0 in the fourth

quadrant), the spectral sequence ë*Ei,  converges to H,Tot@(C).  If C is a
fourth quadrant double complex (or if C,, = 0 in the second quadrant), then

the spectral sequence ìEL,  weakly converges to H* Totî(C). 0

Application 5.6.3 (Balancing Tor) In Chapter 2, 2.7.1, we used a disguised
spectral sequence argument to prove that L,(A@)(B)  Z L,(@B)(A),  that is,
that Tor,(A, B) could be computed by taking either a projective resolution
P + A or a projective resolution Q -+ B. In our new vocabulary, there are
two spectral sequences converging to the homology of Tot(P 63 Q). Since
HJ( Pp @ Q) = Pp 18 H,(A), the first has

1~2  = Hj(P @ B) = Lp(@B)(A) if q = 0
P9

( 0 Iotherwise ’

This spectral sequence collapses to yield Hp( P @I Q) = Lp(@B)(A).  There-
fore the second spectral sequence converges to L,(@B)(A).  Since Hl(P @

QJ = H,(P) @ Qm

II~Z = ff:CA 8 Q> =  L,(A@)(B) ifq =  0
P9

1 0 1otherwise f

This spectral sequence collapses to yield H,(P @ Q) = Lp(A@)(B),  whence
the result.

Theorem 56.4 (Ktlnneth spectral sequence) Let P be a bounded below com-
plex of jlat R-modules and M an R-module. Then there is a boundedly con-
verging right half-plane spectral sequence

Ei, = Torf(H,(P),  M) + H,+,(P  @R M).

Proof Let Q + A4 be a projective resolution and consider the upper half-
plane double complex P @ Q. Since Pp is flat, Hi( P @J Q) = Pp @ Hq( Q),
so the first spectral sequence has

Hp(P @M) i f q  = 0
0 1otherwise ’



yields the Kiinneth formula. . . .

0 0 . . . . . . 0 0
0 0 H,(P) @M TorlV&(fí),  W 0 0
0 0 K-l(P) @ M Tort  (K-l(P),  M) 0 0
0 0 . . . . . 0 0
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This spectral sequence collapses to yield H,,( P @ Q) = H,(P C3 M). Since
Q, is flat, H4( P @ Qn) = H,(P) @J  Q,,, so the second spectral sequence has

the desired E2 term

ìE&  = Hp(H9(P) @ Q) = Tori(H,(P),  M). 0

Kiinneth Formula 56.5 In Chapter 3,3.6.1,  we could have given the follow-
ing spectral sequence argument to compute H,(P @ M), assuming that d(P)
(and hence Z) is flat. The flat dimension of H,(P) is at most 1, since

0 + d(P,+l)  + Z, + H,(P) + 0

is a flat resolution. In this case only the columns p = 0, 1 are nonzero, so all
the differentials vanish and E & = Ez. The 2-stage filtration of H,(P @ Q)

Exercise 5.6.1 Give a spectral sequence proof of the Universal Coefficient
Theorem 3.6.5 for cohomology.

Theorem 5.6.6 (Base-change for Tor) Let f: R + S be a ring map. Then
there is a first quadrant homology spectral sequence

Ei4 = Tor:(Tor:(A, S), B) =+ TorE+,,(A,  B)

for every A E mod-R and B E S-mod.

Proof Let P --+ A be an R-module projective resolution, and Q + B an S-
module projective resolution. As in 2.7.1, form the first quadrant double com-
plex P C3 Q and write H,(P 123 Q) for H,(Tot(P  ë8~  Q)). Since Pp@~ is an
exact functor, the pfh column of P ~3 Q is a resolution of Pp C3 B. There-
fore the first spectral sequence 5.6.1 collapses at ëE’  = Ht(P @ Q) to yield

H*( P @ Q) 2 H,( P @I B) = Torc(A,  B). Therefore the second spectral se-
quence 5.6.2 converges to Tort (A, B) and has

Ií$,,  = Hg(P  @R Q,d = &((f’ @R 8 8s Qp>

= Hq(P @R  Qp =  Tort(A, 8s Qp

and hence the prescribed E& Hp(ìEhy)  = Tori(Torf(A, S), B). 0
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Exercise 5.6.2 (Bourbaki) Given rings R and S, let L be a right R-module,
M an R-S bimodule, and N a left S-module, so that the tensor product L 8.R
M@s N makes sense.

1. Show that there are two spectral sequences, such that

ëE&  = Tori(L,  Tori(M,  N)) ìEi,  = Tori(Tort(L,  M), N)

converging to the same graded abelian group H*. Hint: Consider a dou-
ble complex P @ M @3 Q, where P -+ L and Q + N.

2. If M is a flat S-module, show that the spectral sequence ìE  converges
to Torf(L, M 8s N). If M is a flat R-module, show that the spectral
sequence ëE  converges to Tors(L  @R M, N).

Exercise 5.6.3 (Base-change for Ext) Let f: R + S be a ring map. Show that
there is a first quadrant cohomology spectral sequence

E;’ = Ext;(A,  Ext;(S, B)) =+ ExtP,+ë(A,  B)

for every S-module A and every R-module B.

Exercise 5.6.4 Use spectral sequences to prove the Acyclic Assembly Lem-
ma 2.7.3.

5.7 Hyperhomology

Definition 5.7.1 Let A be an abelian category that has enough projectives. A
(left) Curtun-Eilenberg  resolution P** of a chain complex A, in A is an upper
half-plane double complex ( Ppq = 0 if 9 < 0), consisting of projective objects

of A, together with a chain map (ìaugmentationî) P*o 5 A, such that for

every P

1. If A, = 0, the column PP* is zero.
2. The maps on boundaries and homology

BP(e):  B,,(P,  dh> + B,(A)

HP(~):  H,(P, dh) + HP(A)

are projective resolutions in A. Here B,(P, dh) denotes the horizon-
tal boundaries in the (p, q) spot, that is, the chain complex whose qth
term is dh(P,+l,,).  The chain complexes Z,(P, dh) and H,(P,  dh) =
Z,( P, dh)/Bp( P, &) are defined similarly.
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Exercise 57.1 In a Cartan-Eilenberg resolution show that the induced maps

cp: PP* + A,

Zp(e): Z,(P, dh) --f Z,(A)

are projective resolutions in A. Then show that the augmentation Tot@(P) +
A is a quasi-isomorphism in A, provided of course that Tot@(P) exists.

Lemma 5.7.2 Every chain complex A, has a Cartan-Eilenberg resolution
Pz+* -+ A.

Proof For each p select projective resolutions P,f*  of B,(A) and Pfi of

H,(A). By the Horseshoe Lemma 2.2.8 there is a projective resolution PF*
of Zp(A)  so that

is an exact sequence of chain complexes lying over

0 + B,(A)  + Z,(A) + H,(A) + 0

Applying the Horseshoe Lemma again, we find a projective resolution P$ of
A, fitting into an exact sequence

We now define P**  to be the double complex whose pth column is P:* ex-
cept that (using the Sign Trick 1.2.5) the vertical differential is multiplied by
(- I)P; the horizontal differential of P*, is the composite

The construction guarantees that the maps cP: Ppo -+ A, assemble to give a
chain map E, and that each BP(e) and HP(c) give projective resolutions (check
this!). 0

Exercise 5.7.2 If f: A -+ B is a chain map and P + A, Q -+ B are Cartan-
Eilenberg resolutions, show that there is a double complex map j: P -+ Q
over f. Hint: Modify the proof of 2.4.6 that L,f is a homological d-functor.

Definition 5.7.3 Let f, g: D + E be two maps of double complexes. A
chain homotopy from f to g consists of maps s&: D,, -+ E,,+l,, and siq:
D,, + E,,,+I so that

g - f =(dV +shdh)+(dusu +sUdU)
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sUdh  + dhsU = shdu + dîsh  = 0.
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This definition is set up so that (sh + sí:  Tot(D),, + Tot(E),+t}  forms an
ordinary chain homotopy between the maps Tot(f) and Tot(g) from Tot@(D)
to Tot@(E).

Exercise 57.3

1. If f, g: A + B are homotopic maps of chain complexes, and f, S: P -+
Q are maps of Cartan-Eilenberg resolutions lying over them, show that
7 is chain homotopic to g.

2. Show that any two Cartan-Eilenberg resolutions P, Q of A are chain ho-
motopy equivalent. Conclude that for any additive functor F the chain
complexes Tot@(F(  P)) and Tot@(  F( Q)) are chain homotopy equiva-
lent.

Definition 5.7.4 ([L,F)  Let F: A + f3 be a right exact functor, and assume
that A has enough projectives. If A is a chain complex in A and P -+ A is
a Cartan-Eilenberg resolution, define [Li F(A) to be Hi Tot@(  F (P)). Exercise
5.7.3 shows that ILi F(A) is independent of the choice of P.

If f: A + B is a chain map and Jë:  P + Q is a map of Cartan-Eilenberg
resolutions over f, define [Li F(f) to be the map Hi(Tot(f)) from ILi F(A) to
[Li F(B). The exercise above implies that [Li F is a functor from Ch(d) to f3, at
least when i? is cocomplete. The [Li F are called the left hyper-derivedfinctors
of F.

Warning: If B is not cocomplete, Tot@(F( P)) and !_i F(A) may not exist for
all chain complexes A. In this case we restrict to the category Ch+(A)  of all
chain complexes A which are bounded below in the sense that there is a po
such that A, = 0 for p < po. Since Pp4 = 0 if p < po or q < 0, Tot@(F(P))
exists in Ch(Z3)  and we may consider U_i F to be a functor from Ch+(d) to B.

Exercises 5.7.4

If A is an object of A, considered as a chain complex concentrated in
degree zero, show that lLi F(A) is the ordinary derived functor Li F(A).
Let Ch,u(d)  be the subcategory of complexes A with A, = 0 for p < 0.
Show that the functors U_iF  restricted to Ch,u(d)  are the left derived
functors of the right exact functor HoF.
(Dimension shifting) Show that [Li F(A[n])  = U-n+i  F(A) for all n. Here
A[n]  is the translate of A with A[n]i = A,+i.
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Lemma 5.7.5 If 0 + A -+ B + C + 0 is a short exact sequence of bound-
ed below complexes, there is a long exact sequence

.ë.ILi+\F(C)&  ILiF(A)+ U_iF(B)+  U_iF(C)J+....

Proof By dimension shifting, we may assume that A, B, and C belong to
Ch,u(d).  The sequence in question is just the long exact sequence for the
derived functors of the right exact functor HuF. 0

Proposition 5.7.6 There is always a convergent spectral sequence

ìE;,  = (L,F)(F&(A))  =+ kpfqF(A).

If A is bounded below, there is a convergent spectral sequence

Proof We have merely written out the two spectral sequences arising from the
upper half-plane double chain complex F(P). 0

Corollary 5.7.7

I. If A is exact, [Lt F(A) = 0 for all i.
2. Any quasi-isomorphism f: A + B induces isomorphisms

[L,F(A) 2 [L,F(B).

3. If each A, is F-acyclic (2.4.3),  that is, L, F(A,) = 0 for q # 0, and A
is bounded below, then

[LpF(A) = Hp(F(A)) for all p.

Application 57.8 (Hypertor) Let R be a ring and B a left R-module. The
hypertor groups TorR(A*, B) of a chain complex A, of right R-modules are
defined to be the hyper-derived functors (Li F(A*)  for F = @RB.  This extends
the usual Tor to chain complexes, and if A is a bounded below complex of
flat modules, then Torf(A*,  B) = Hi(A* @ B) for all i. The hypertor spectral
sequences coming from 5.7.6 are

ttE& = Torp(Hq(A),  B) =+ Tort+,(A,,  B)
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and (when A is bounded below)

ëE&  = Tor,(A,,  B), ëE&  = H,Tor,(A,,  B) =+ Tor:+,(A,,  B ) .
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B, is also a chain complex, we can define the hypertor
A  @R t o  b e

Torf(A,, B,) = Hi Totí(P  @R Q),

where P + A and Q + B are Cartan-Eilenberg resolutions. Since Tot(P @
Q) is unique up to chain homotopy equivalence, the hypertor is independent
of the choice of P and Q. If B is a module, considered as a chain complex,
this agrees with the above definition (exercise!); by symmetry the same is true
for A. By definition, hypertor is a balanced functor in the sense of 2.7.7. A
lengthy discussion of hypertor may be found in [EGA, 111.61.

Exercise 57.5 Show that there is a convergent spectral sequence

ZZFi4 = @ Tar; (H,t(&), Hgf(&)) + Torf+,(A,,  B,)
qí+qî=q

If A, and B, are bounded below, show that there is a spectral sequence

ëE&  = H,Tot@Tor,(A,,  B,) =+  Tor:+,(A,,  B,).

Exercise 5.7.6 Let A be the mapping cone complex 0 + A1 f\ A0 + 0
with only two nonzero rows. Show that there is a long exact sequence:

.ë.ili+lF(A)  + LiF(AI)  L LiF(Ao)  + ILiF(A)  + Li-lF(Al)....

Cohomology Variant 5.7.9 Let A be an abelian category that has enough in-
jectives. A (right) Cartan-Eilenberg resolution of a cochain complex A* in A
is an upper half-plane complex I** of injective objects of A, together with an
augmentation A* + I*’ such that the maps on coboundaries and cohomology
are injective resolutions of BP(A) and HP(A).  Every cochain complex has a
Cartan-Eilenberg resolution A + I. If F: A -+ I3 is a left exact functor, we
define RíF(A)  to be Hi Totî(F(Z)),  at least when Totî(F(Z))  exists in Z3. By
appealing to the functor FOP:  dîP  + t?ìP, we see that Ri F is a functor from
Ch’ (A) (the complexes A* with AJ’ = 0 for p c-c 0) to Z3, and even from
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Ch(d) to 23 when B is complete. The KíF  are called the right hyper-derived
jiinctors of F.

If A is in Ch(d), the two spectral sequences arising from the upper half-
plane double cochain complex F(Z) become

!E;’ = (RPF)(Hq(A)) =+ Rpfq F(A), weakly convergent; and

ëEp  = HP(Rq F(A)) =+ [IB p+q F(A), if A is bounded below.

Hence R*F vanishes on exact complexes and sends quasi-isomorphisms of
(bounded below) complexes to isomorphisms.

Application 57.10 (Hypercohomology) Let X be a topological space and
_F* a cochain complex of sheaves on X. The hypercohomology Wí(X,  _T*)  is
Rír(.F*),  where r is the global sections functor 2.5.4. This generalizes sheaf
cohomology to complexes of sheaves, and if 3* is a bounded below complex
of injective sheaves, then Wí(X,  F*) = #(T(P)).  The hypercohomology
spectral sequence is ìE!  = HJí(X,  W(F*)) =+ l!-UP+q(X, 3*).

5.8 Grothendieck Spectral Sequences

In his classic paper [Tohoku], Grothendieck introduced a spectral sequence
associated to the composition of two functors. Today it is one of the organi-
zational principles of Homological Algebra.

Cohomological Setup 5.8.1 Let A, 23, and C be abelian categories such that
both A and B have enough injectives. We are given left exact functors G: A -+
BandF:B+C.

Definition 5.8.2 Let F: I? -+ C be a left exact functor. An object B of B is
called F-acyclic if the derived functors of F vanish on B, that is, if RíF(B)  =
0 for i # 0. (Compare with 2.4.3.)

Grothendieck Spectral Sequence Theorem 5.8.3 Given the above cohomo-
logical setup, suppose that G sends injective objects of A to F-acyclic objects
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of Z3. Then there exists a ConvergentJirst  q u a d r a n t  c o h o m o l o g i c a l  s p e c t r a l  s e -
quence for each A in A:

tE[’ = (ZPF)(RqG)(A) =+ RP+4(FG)(A).

The edge maps in this spectral sequence are the natural maps

(RpF)(GA) + RP(FG)(A) a n d  R*(FG)(A) -+ F(R*G(A)).

The exact sequence of low degree terms is

0  + (RíF)(GA)  -+ Rí(FG)A  -+ F(RíG(A))  + (R*F)(GA)  + R*(FG)A.

Proof Choose an injective resolution A + I of A in A, and apply G to get a
cochain  complex G(Z) in Z3. Using a first quadrant Cartan-Eilenberg resolution
of G(Z), form the hyper-derived functors RnF(G(Z))  as in 5.7.9. There are
two spectral sequences converging to these hyper-derived functors. The first
spectral sequence is

tE;’ = ZZp((RqF)(GZ)) =+ (Rp+qF)(GZ).

By hypothesis, each G(ZP)  is F-acyclic, so (WF)(G(ZP))  = 0 for q # 0.
Therefore this spectral sequence collapses to yield

(RîF)(GZ)  g ZZP(FG(Z)) = RP(FG)(A).

The second spectral sequences is therefore

ttE;’ = (RpF)H4(G(Z)) =+ Rp(FG)(A).

Since W(G(Z))  = RPG(A),  it is Grothendieckís spectral sequence. 0

Corollary 5.8.4 (Homology spectral sequence) Let A, I?, and C be abelian
categories such that both A and f? have enough projectives. Suppose given
right exactfunctors G: A + t? and F: Z3 + C such that G sends projective ob-
jects of A to F-acyclic objects of I?. Then there is a convergentjrst  quadrant
homology spectral sequence for each A in A:

Eiq = W,F)W,G)(A) =+ ~,+,(FWA).

The exact sequence of low degree terms is

Lz(FG)A  + (LzF)(GA)  --f F(LlG(A))  -+ Ll(FG)A  + (LIF)(GA)  + 0.
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Proof Dualizing allows us to consider GOP: d*P + t3ìP  and Fop: t?ëP  + Cop,
and the corollary is just translation of Grothendieckís spectral sequence using
the dictionary L,F = RJíFOJí,  and so on. 0

Applications 58.5 The base-change spectral sequences for Tor and Ext of
section 5.7 are actually special instances of the Grothendieck spectral se-
quence: Given a ring map R + S and an S-module B, one considers the
composites

R-mod v S-mod 9 Ab

and

Ho~R(-,S) Homs(-,B)
R-mod B S-mod - Ab.

Leray Spectral Sequence 5.8.6 Let f: X + Y be a continuous map of topo-
logical spaces. The direct image sheaf functor f* (2.6.6) has the exact functor
f-’  as its left adjoint (exercise 2.6.2),  so f* is left exact and preserves injec-
tives by 2.3.10. If 3 is a sheaf of abelian groups on X, the global sections of
f,3 is the group (f,3)(Y)  = 3(f_tY) = 3(X). Thus we are in the situation

Sheaves(X) -% Sheaves(Y)

rL l(r  .

Ab

The Grothendieck spectral sequence in this case is called the Leray spectral
sequence: Since RPr is sheaf cohomology (2.5.4),  it is usually written as

Ep9 = HP(Y; R*f*3)  =+ HP+*(X.  3)2 3 .

This spectral sequence is a central tool to much of modem algebraic geometry.

We will see other applications of the Grothendieck spectral sequence in
6.8.2 and 7.5.2. Here is one we needed in section 5.5.9.

Recall from Chapter 3, section 5 that a tower . . . A 1 + A0 of abelian groups
is a functor I -+ Ab, where Z is the poset of whole numbers in reverse order.
A double tower is a functor A: I x Z -+ Ab; it may be helpful to think of the
groups Aij as forming a lattice in the first quadrant of the plane.
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Proposition 58.7 (liml of a double tower) For each double tower A: I x
I + Ab we have Fxy Aij = le. l@ Aij, a short exact sequence

I J

O+ l@:(l@jAij)  + Aij + limi(lFiAij)  + 0,t

Aij =l$I(l@jAij), and Aij =O forn>3.

Proof We may form the inverse limit as lim Aij = l@, lfi Aij, that is, as the
I J

composition of lim : (Abí)’  + Ab’ and lim : Abí --+ Ab. From 2.3.10 and
+i +i

2.6.9 we see that lim preserves injectives; it is right adjoint to the ìconstantt
towerî functor. Therefore we have a Grothendieck spectral sequence

Epq  =limPlim?Aij  =+ (R2 tl tJ
I+I  lim) Aij

Since both Ab and Ab’ satisfy (AB4*), l@P = lit$ = 0 for p, q # 0, 1.

Thus the spectral sequence degenerates as described. 0

5.9 Exact Couples

An alternative construction of spectral sequences can be given via ìexact cou-
plesî and is due to Massey [Massey]. It is often encountered in algebraic topol-
ogy but rarely in commutative algebra.

It is convenient to forget all subscripts for a while and to work in the cat-
egory of modules over some ring (or more generally in any abelian category
satisfying axiom AB5). An exact couple & is a pair (D, E) of modules, to-
gether with three morphisms i, j, k

which form an exact triangle in the sense that kernel = image at each vertex.

Definition 5.9.1 (Derived couple) The composition jk from E to itself satis-
fies (jk)(jk) = j(kj)k = 0, so we may form the homology module H(E) =
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ker(jk)/image(jk).  Construct the triangle

i’
i(D) + i CD)

&ëI  k'\ I(.?

H(E)

where ií is the restriction of i to i(D), while jí and kí are given by

jí(i(4)  = [j(d)l, k'([el) = k(e)

The map jí is well defined since i(d) = 0 implies that for some e E E d =
k(e) and j(d) = jk(e) is a boundary. Similarly, k(jk(e)) = 0 implies that the
map kí is well defined. We call E’  the derived couple of E. A diagram chase
(left to the reader) shows that Ií is also an exact couple.

If we iterate the process of taking exact couples r times, the result is called
the rth derived couple E’ of E.

D’  &+ D’

Er: k\ /j(')

E’

Here D’ = ií(D) is a submodule of D, and E’ = H(Eí-ë)  is a subquotient
of E. The maps i and k are induced from the i and k of E, while jcr) sends

[ií(d)1  to U(41.

Exercise 5.9.1 Show that H(E) = k-ë(iD)/j(ker(i))  and more generally,
that E’ = Zí/Bí,  with 2’ = k-ë(iíD)  and B’ = j(ker(ií)).

With this generic background established, we now introduce subscripts (for
D,, and E,,) in such a way that i has bidegree (1, -I), k has bidegree
(-l,O), and

bidegree(j) = (-a, a).

Thus i and j preserve total degree (p + q), while k drops the total degree by
1. Setting Db4 = i(D,_l,,+~) C D,, and letting Eh4  be the corresponding
subquotient of E,,, it is easy to see that in E’  the maps i and k still have bide-
grees (1, -1) and (-l,O), while jí now has bidegree (-1 - a, 1 + a). It is
convenient to reindex so that & = 8’  and Ií denotes the (r - a)rh derived cou-
ple of E, so that jcr) has bidegree (-u, r) and the Eí-differential  has bidegree
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(-r, r - 1).
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In summary, we have established the following result.

Proposition 59.2 An exact couple & in which i, k, and j have bidegrees
(1, - l), (- 1 , 0), and (-a, a) determines a homology spectral sequence { .!&}
starting with Ea. A morphism of exact couples induces a morphism of the
corresponding spectral sequences.

Example 5.9.3 (Exact couple of a filtration) Let C, be a filtered chain com-
plex of modules, and consider the bigraded homology modules

D& = H,(F,C),  Eb4  = Hn(FPC/FP-~C), n = p + q.

Then the short exact sequences 0 + Fp_l + Ft, + Ft,/ Fp-l -+ 0 may be
rolled up into an exact triangle of complexes (see Chapter 10 or 1.3.6)

whose homology forms an exact couple

i

@ff,+,(F,C) F @Hp+q(F&>

E’  : k\ kY.i
@HP + q(FPC/FP-tC)

Theorem 59.4 Let C, be a filtered chain complex. The spectral sequence
arising from the exact couple E’ (which starts at Eí)  is naturally isomorphic
to the spectral sequence constructed in section 5.4 (which starts at Eí).

Proof In both spectral sequences, the groups EL4 are subquotients of Ei =

F&,+,/F,-lC,+,; we shall show they are the same subquotients. Since the
differentials in both are induced from d: C + C, this will establish the result.

In the exact couple spectral sequence, we see from exercise 5.9.1 that the
numerator of E’ in E1 is k-ë(ií-ëDí)  and the denominator is j(ker  ií-ë).
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If c E FpCn represents [c] E Hn(FPC/FP_tC),  then d(c) E Fp_lC  and k([c])
is the class of d(c). Therefore the numerator in Ft,/Fp_l  for E’ is ZL = {c E
FpC : d(c) = a + d(b) for some a E Fp_J, b E FpC]/Fp_~C.  Similarly, the
kernel of ií-’  : H,, ( FpC)  + H,, ( Ft,+r_ 1 C) is represented by those cycles c E
FpC with c = d(b) for some b E Ft,+r_l C. That is, ker(ií-ë)  is the image of
Ar-1ptr_l  in Hn(F&).  Since j is induced on homology by nP, we see that the

denominator is BL = qt,d(A$,).

had EL Zb/Bi,  w e  0

Convergence 5.9.5  Let I be an exact couple in which i, j, and k have bide-
grees (- 1, l), (-a, a) and, (- 1, 0), respectively. The associated spectral
sequence is related to the direct limits H,, = lim Dp,n-p of the D,, along

the maps i: D,, + D,+l,,_l. Let Ft,H,, den02  the image of Dp+a,q-a in
H,, (p + q = n); the system . . . Ft.,_1  H,, C FpH,, C . . . forms an exhaustive
filtration of H,.

Proposition 59.6 There is a natural inclusion of Ft,H,,/Fp-l  H,, in EEn_p.
The spectral sequence EL4 weakly converges to He if and  only if:

Zo3 = n,kkí(iíD)  equals k-ë(O)  = j(D).

Proof Fix p, q, and n = p + q. The kernel Kp+a,q_a of Dp+a,q_a  -+ H,, is
the union of the ker(ií),  so j(K,+,,,_,)  = Uj(ker(ií))  = UBL, = BFq.  (This
is where axiom A B5 is used.) Applying the Snake Lemma to the diagram

0  - Kp-l+a  --f Dp+l - F,_lH,,  - 0

J li I

0 - Kp+a  + Dp+a  - Fp Hrz -0

yields the exact sequence

0 + BFq + j(D,+,,,-,) + FpHnlFp-IH,,  -+ 0 .

But j(Dp+a,q-a) = k-ë(O),  so it is contained in ZL4 = k-*(iíDp_,_l,q+,)
for all r. The result now follows. 0

We say that an exact couple is bounded below if for each n there is an inte-
ger f(n) such that D,,, = 0 whenever p < f(p + q). In this case, for each p

and q there is an r such that ir(Dp_r_l,q+r) = ií(O) = 0, i.e., ZL4 = k-ë(O).
As an immediate corollary, we obtain the following convergence result.
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Classical Convergence Theorem 5.9.7  Ifan exact couple is bounded below,
then the spectral sequence is bounded below and converges to He = lim D.-

The spectral sequence is bounded and converges to H* iffor each n there is a

p such that Dp3R-p  -% H,,.

Exercise 5.9.2 (Complete convergence) Let E be an exact couple that is
bounded above (D,,, = 0 whenever p > f(p + q)). Suppose that the spec-
tral sequence is regular (5.2.10). Show that the spectral sequence converges to
5, = lim Dp,n-p.C

Application 5.9.8 Here is an exact couple that does not arise from a filtered
chain complex. Let C, be an exact sequence of left R-modules and A4 a right
R-module. Let Z, c C, be the kernel of d: C, -+ C,; associated to the short
exact sequences 0 -+ Z, + C, -+ Z,_t + 0 are the long exact sequences

. ..Torq(M.  Z,) A Tor,(M,  C,) & Tor,(M,  Z,_l)  5 Tor,_t(M, ZP). .

which we can assemble into an exact couple E = E” with

D& = Tor,(M,  Z,) and ER = Torq(M, C,).

By inspection, the map d = jk: Tor,(M,  C,) + Torq(M, C,_t) is induced
via Tor, (M, -) by the differential d: C, + C,_I, so we may write

EA4 = Hp(Torq(M,  CJ).

More generally, if we replace Tor,(M,  -) by the derived functors L,F of any
right exact functor, the exact couple yields a spectral sequence with Ej4 =

L,F(C,)  and EL4 = HP(L4F(C)). The es are essentially the hyperhomol-
ogy sequences of section 5.7 related to the hyperhomology modules (L,F(C),
which are zero. Therefore this spectral sequence converges to zero whenever
C, is bounded below.

Bockstein Spectral Sequence 5.9.9 Fix a prime e and let H*  be a (graded)
abelian  group. Suppose that multiplication by e fits into a long exact sequence

. . . En+1 $. H,, -& H,, 5 E, & H,-l L . ë.  .
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If we roll this up into the exact couple

then we obtain a spectral sequence with E,” = E,, called the Bockstein spectral
sequence associated to H*. This spectral sequence was first studied by W.
Browder in [Br], who noted the following applications:

1. H* = H,(X; Z) and E, = H,(X; Z/e) for a topological space X
2. H, = n;. (X) and Er- = n, (X; $71) for a topologjcaal  space X

3. H* = H,(G; Z) and E, = H,(G; Z/e) for a group G
4. H* = H,(C) for a torsionfree chain complex C, and E, = H*(C/CC)

We note that the differential d = ja sends E,’ to El;_,, so that the bigrading
subscripts we formally require for a spectral sequence are completely artificial.
The next result completely describes the convergence of the Bockstein spectral
sequence. To state it, it is convenient to adapt the notation that for q E Z

qH*=(~~  H,:qx=O}.

Proposition 59.10  For every r 10, there is an exact sequence

O+
f&l j a

eHn + erff,
+ Ei + (f?ëH,-I> fl (eH,-1)  + 0.

In particular;  if T,, denotes the &primary torsion subgroup of H,, and Q,
denotes the infinitely e-divisible part of e H,,, then there is an exact sequence

Proof For r = 0 we are given an extension

0 -+ H,/eH,, -% E,O  -% eH,_I  -+ 0.

Now E’ is the subquotient of E” with numerator a-ë(erH)  and denominator
j (er  H) by the above exercise, so from the extension

0 + HIGH & a-ë(erH)  & (JZíH  n eH) + 0

the result is immediate. 0
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If we roll this up into the exact couple

then we obtain a spectral sequence with Ef = E*, called the Bockstein spectral
sequence associated to H*. This spectral sequence was first studied by W.
Browder in [Br], who noted the following applications:

1. H* = H,(X; Z) and E, = H,(X; Z/e)  for a topological space X
2. H* = n*(X) and E, = x,(X; Z/t!) for a topological space X
3. He = H,(G; Z) and E, = H,(G; Z/e) for a group G
4. H* = H,(C) for a torsionfree chain complex C, and E, = H,(C/eC)

We note that the differential d = j 8 sends EL to EL_,, so that the bigrading
subscripts we formally require for a spectral sequence are completely artificial.
The next result completely describes the convergence of the Bockstein spectral
sequence. To state it, it is convenient to adapt the notation that for q E Z

Proposition 5.9.10  For every r > 0, there is an exact sequence

O+
6,

eH, + erH,
-1-, E; & (t?ëH,_))  f-7 (eH,_l)  --f 0 .

In particular; if T,, denotes the e-primary torsion subgroup of H, and Q,,
denotes the infinitely e-divisible part of e H,,, then there is an exact sequence

Proof For r = 0 we are given an extension

0 + H,IeH,, -% Ei -f+ eH,_I + 0.

Now E’ is the subquotient of E” with numerator i!-ë(VH)  and denominator
j (er  H) by the above exercise, so from the extension

0 + H/CH -& Kí(fH)  & ([ëH  n eH) + 0

the result is immediate. 0
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Corollary 5.9.11  If each H,, is finitely generated and dim(H,,  @ Q) = d,,,
then the Bockstein spectral sequence converges to E,” = (~T/P)~” and is
bounded in the sense that Er = Ei for large r.

Actually, it turns out that the Bockstein spectral sequence can be used to
completely describe H*  when each H,, is finitely generated. For example, if X
is a simply connected H-space whose homology is finitely generated (such as
a Lie group), Browder used the Bockstein spectral sequence in [Br] to prove
that nz(X)  = 0.

For this, note that j induces a map H, + EL for each r. If X E EL has

a(x) = píy,  then d(x) = j(ë)a(x)  = j(y) in the notation of the proposition.
In particular, x is a cycle if and only if a(x) is divisible by pr+ë.  We can
summarize these observations as follows.

Corollary 5.9.12 In the Bockstein spectral sequence

1. Elements of E, that survive to E’ but not to Eí+l  (because they are
not cycles) correspond to elements of exponent p in H,_l, which are
divisible by pr but not by pr+ë.

2. An element y E H,, yields an element j (y) of E’ for all r; if j (y) # 0
in Eí-ë,  but j(y) = 0 in Eí,  then y generates a direct summand of H,,
isomorphic to Z/pí.

Exercise 5.9.3 Study the exact couple for H = IT/p3,  and show directly that
E2#ObutE3=0.



6

Group Homology and Cohomology

6.1 Definitions and First Properties

L e t  G  b e  a  g r o u p .  A  ( l e f t )  G-module is an abelian group A on which G acts
by additive maps on the left; if g E G and a E A, we write ga for the action of
g on a. Letting Homc(A,  B) denote the G-set maps from A to B, we obtain a
category G-mod of left G-modules. The category G-mod may be identified
with the category ZG-mod of left modules over the integral group ring iZG.
It may also be identified with the functor category Ab’ of functors from the
category ìGî (one object, G being its endomorphisms) to the category Ab of
abelian groups.

A trivial G-module is an abelian group A on which G acts ìtrivially,î that is,
ga = a for all g E G and a E A. Considering an abelian group as a trivial G-
module provides an exact functor from Ab to G-mod. Consider the following
two functors from G-mod to Ab:

1. The invariant subgroup AG  of a G-module A,

Aí={u~A:gu=u  forall gEG and  UEA).

2. The coinvariants AG  of a G-module A,

AG = A/submodule generated by {(gu - a) : g E G, a E A).

Exercise 6.1.1

1. Show that AC is the maximal trivial submodule of A, and conclude that
the invariant subgroup functor - G is right adjoint to the trivial module
functor. Conclude that -’  is a left exact functor.

160
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2. Show that AG  is the largest quotient module of A that is trivial, and
conclude that the coinvariants functor -G is left adjoint to the trivial
module functor. Conclude that -G is a right exact functor.

Lemma 6.1.1 Let A be any G-module, and let Z be the trivial G-module.
Then AG 2: Z &G A and AC E Homc(Z,  A).

Proof Considering Z as a iZ--ZG bimodule, the ìtrivial module functor”
from Z-mod to ZG-mod is the functor Homz(Z, -). We saw in 2.6.3 that
Z @I~C  - is its left adjoint; this functor must agree with its other left adjoint
(-)G.  For the second equation, we use adjointness: AC Z HomAb(z,  Aí)  Z
Homc(Z,  A). 0

Definition 6.1.2 Let A be a G-module. We write H,(G; A) for the left de-
rived functors L,(-G)(A) and call them the homology groups of G with co-
eficients  in A; by the lemma above, Z&(G;  A) Z Torfí(Z,  A). By defini-
tion, Ho(G; A) = AG. Similarly, we write H*(G; A) for the right derived
functors R*(-G)(A)  and call them the cohomology groups of G with coef-
ficients in A; by the lemma above, H*(G; A) E ExtiG(Z,  A). By definition,

Hî(G;  A) = AG.

Example 6.1.3 If G A 1 is the trivial group, AG = AG = A. Since the higher
derived functors of an exact functor vanish, H*  (1; A) = H* (1; A) = 0 for
* # 0.

Example 6.1.4 Let G be the infinite cyclic group T with generator t . We may
identify ZT with the Laurent polynomial ring Z[t, t-l]. Since the sequence

is exact,

H,(T; A) = Hn(T; A) = 0 for n # 0, 1, and

H1(T; A) 2 Hí(T;  A) = AT, Hí(T;  A) E Ho(T; A) = Ar.

In particular, H1 (T; Z) = H’ (T; Z) = Z. We will see in the next section that
all free groups display similar behavior, because pdc (z) = 1.

Exercise 6.1.2 (kG-modules) As a variation, we can replace Z by any com-
mutative ring k and consider the category kG-mod of k-modules on which
G acts k-linearly. The functors AG  and AG  from kG-mod to k-mod are left
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(resp. right) exact and may be used to form the derived functors Tork,’  and
Ext;,. Prove that if A is a kc-module, then we have isomorphisms of abelian
groups

H,(G; A) 2 Torkí(k,  A) and H*(G;  A) g Ext;,(k,

H,(G; A )  H*(G;  A )  a r e  A  kG-
H i n t :  P  -+ Z P  8~ -+ k .

Ho  and Ho.

Definition 6.1.5 The augmentation ideal of ZG is the kernel 3 of the ring

map ZG 5 Z which sends Cn,g to xng.  U  {g - 1 : g E G,

g # 1 )  i s  a  b a s i s  f o r  ZG J is a free Z-
{g -  1 :  g E g # 1).

Example 6.1.6 Since the trivial G-module Z is ZGIJ, Ho(G;  A) = AG is
isomorphic to Z @zG A = ZG/3 63~~  A Z A/JA for every G-module A. For
example, Ho(G;  Z) = Z/52  = Z, Ho(G;  ZG) = ZG/J Z Z, and Ho(G;  3) =
3/Y.

Example 6.1.7 (A = ZG) Because ZG is a projective object in ZG-mod,
H,(G; ZG) = 0 for * # 0 and Ho(G;  ZG) = Z. When G is a finite group,
Shapiroís Lemma (6.3.2 below) implies that H*(G;  ZG) = 0 for * # 0. This
fails when G is infinite; for example, we saw in 6.1.4 that Hí(T;  ZT) Z 72 for
the infinite cyclic group T.

The following discussion clarifies the situation for Hí(G;  ZG) : If G is
finite, then Hí(G;  ZG) Z Z, but Hí(G;  iZG) = 0 if G is infinite.

The Norm Element 6.1.8 Let G be a finite group. The norm element N of
the group ring ZG is the sum N = xIeG g. The norm is a central element of

ZG and belongs to (ZG)ë,  because for every h E G hN = c, hg = cg, gí =
N, and Nh = N similarly.

Lemma 6.1.9 The subgroup Hí(G;  ZG) = (ZG)’ of ZG is the 2-sided  ideal
Z . N of ZG (isomorphic to Z) generated by N.

Proof If a = xngg  is in (ZG) G, then a = ga for all g E G. Comparing
coefficients of g shows that all the ng are the same. Hence a = nN for some
n E iZ. 0
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1. Show that if G is an infinite group, then Hí(G;  ZG) = (ZG)G = 0.
2. When G is a finite group, show that the natural map Z . N = (ZG)G +

(ZG)c  2 Z sends the norm N to the order #G of G. In particular, it is an
injection.

3. Conclude that J is ker(ZG  5 ZG) = (a E ZG : Na = 0) when G is
finite.

Proposition 6.1.10 Let G be afinite group of order m, and N the norm. Then
e = N/m is a central idempotent element of QG and of ZG[i].  If A is a QG-
module, or any G-module on which multiplication by m is an isomorphism,

Ho(G; A) = Hí(G;  A) = eA and H,(G; A) = H*(G; A) = 0 for * # 0.

Proof N2=(xg).N=m.N,soe2=einR=ZG[i].NotethatRZ

eR x (1 - e)R as a ring, that eR = Z[i],  and that the projection e from
R-mod to (eR)-mod E Ab is an exact functor. Let A be an R-module; we
first show that eA = AG = Aí.  Clearly N . A C Aí,  and if a E Aí,  then
N. a = m . a, that is, a = e. a. Therefore eA = Aí.  By exercise 6.1.3 (3),

3[;] = ker(R & R) = (1 - e)R. Hence (1 - e)A = (1 - e)R @.R A equals

3[;] @R  A = JA; therefore AG = A/JA = A/(1 - e)A = eA.
Because eR is projective over R, Tot-f  (eR, A) = Exti(eR,  A) = 0 if n # 0.

Since R is hat over ZG, flat base change for Tor (3.2.29) yields

H,(G;  A) = TorzG(Z, A) = Torf(Z @ R, A) = Torf(eR, A) = 0 if n # 0.

For cohomology, we modify the argument used in 3.3.11 for localization of
Ext. If P + Z is a resolution of 72 by projective ZG-modules, then P[$] -+

Z[i] is a resolution of Z[d]  = eR by projective R-modules. Because A is

an R-module, adjointness yields Homc(  P, A) 2 HomR( P[ f 1, A). Thus for
n # 0 we have

Hî(G;  A) = H” Homc(P,  A) Z ff” HomK(Pll],  A) = Exti(eR,  A) = 0. 0
M

We now turn our attention to the first homology group Ht.

Exercise 6.1.4

1. Define 8: G -+ 3/J2 by 8(g)  = g - 1. Show that 0 is a group homomor-
phism and that the commutator subgroup [G, G] of G maps to zero.
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2. Define 0: J + G/[G, G] by a(g - 1) = 2, the (left) coset of g. Show
that (T (J*)  = 1, and deduce that 0 and D induce an isomorphism J/3* Z

G/[G, Gl.

Theorem 6.1.11 For any group G, Hl(G; Z) E 3/3* S G/[G, G].

Proof The sequence 0 + 3 + ZG --f z + 0 induces an exact sequence

Hl(G; ZG) -+ Hl(G; a) -+ JG -+ (ZG)c + 77 + 0 .

Since ZG is projective, Hl(G; ZG) = 0. The right-hand map is the isomor-
phism (ZG), &Z ZG/3 2 Z, so evidently Hl(G; iZ) is isomorphic to 3~ =
J/3*. By the previous exercise, this is isomorphic to G/[G, G]. 0

Theorem 6.1.12 If A is any trivial G-module, Ho(G;  A) 2 A, HI (G; A) z
G/[G, G] 8~ A, andfor  n 2 2 there are (noncanonical) isomorphisms:

H,,(G; A) Z H,(G; Z) 63~ A @ Tort(H,_t(G;  Z), A ) .

Proof If P -+ Z is a free right iZG-module  resolution, H,(G; A) is the ho-
mology of P @G A = (P @G Z) 63~ A. Now use the Universal Coefficient
Theorem. 0

Exercises 6.1.5 Let A be a trivial G-module.

1. Show that Hí(G;  A) is isomorphic to the group HomGroups(G,  A) 2
HomAb(G/[G,  G], A) of all group homomorphisms from G to A.

2. Conclude that H 1 (G; 27) = 0 for every finite group.
3. Show that in general there is a split exact sequence

0 + Ext;(H,&G; z), A) -+ Hî(G;  A) + HOfllAb(&(G;  i2), A) -+ 0.

Exercise 6.1.6 If G is finite, show that Hí(G;  C) = 0 and that H*(G;  Z) is
isomorphic to the group Hí(G,  &*) E HomGroups(G,  Q*) of all l-dimension-
al representations of G. Here G acts trivially on Z, Q, and on the group Q* of
complex units.

We now turn to the product G x H of two groups G and H. First note that
Z[G x H] 2 ZG @ ZH.  Indeed, the ring maps from ZG and ZH  to Z[G x H]
induce a ring map from ZG @ iZH to Z[G x H]. Both rings have the set
G x H as a Z-basis, so this map is an isomorphism. The Kiinneth formula
gives the homology of G x H:
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Proposition 6.1.13 (Products) For every G and H there is a split exact se-
quence:

Q+ CE3 H,(G; Z) @ H4(H; z) + H,(G x H;  Z)
P+q
=n

-03
Torf(H,(G;  Z), H,(H; Z)) -+ 0.

P+4
=n-I

Proof Let P + Z be a free ZG-resolution and Q + Z a free ZH-resolution,
and write P 8~ Q for the total tensor product chain complex (2.7.1),  which
is a complex of ZG 8 ZH-modules. By the Kiinneth formula for complexes
(3.6.3), the homology of P @z Q is zero except for Ho( P @z Q) = Z. Hence
P 8~ Q --+ Z is a free ZG 8 ZH-module resolution of Z, and H,(G x H; Z)
is the homology of

Moreover, H,(G; Z) = H,(P I&C Z) and H,(H; Z) = (Q @zff  Z). As each
P,, C&G Z is a free Z-module, the proposition follows from the Kiinneth for-
mula for complexes. 0

Exercise 6.1.7 (kG-modules)  Let k be a field, considered as a trivial mod-
ule. Modify the above proof to show that H,(G x H; k) 2 @ H,(G; k) C&
H,_,(H;  k) for all n.

Cohomology Cross Product 6.1.14 Keeping the notation of the preceding
proposition, there is a natural homomorphism of tensor product double com-
plexes:

~.(f @ fí)(x  @ Y> = f(x>f'(~),  x E Pp,  Y E Q9.

The cross product x: Hp(G; Z) @ Hq(H;  z) + HJí+q(G  x H; 2í)  is the
composite obtained by taking the cohomology of the total complexes.

HP(G;Z)@  H9(H;Z) -_, H p+q[Homc(P, z) C3 HOmH(Q,  Z)],

4 4-p

Hp+ì(G  x H; Z) z Hpf9[HomcxH(P  ë8  Q, z)]
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Exercise 6.1.8 Suppose that each Pp is a finitely generated ZG-module. (For
example, this can be done when G is finite; see section 6.5 below.) Show in
this case that /A is an isomorphism. Then deduce from the Kiinneth formula
3.6.3 that the cross product fits into a split short exact sequence:

O+ e3 HP(G; z) @ Hq(H;  z) & Hn(G x H; z)
P+¶=n

43 Torf(Hî(G;  Z), Hq(H;  Q) + 0.
P+4

=n+l

Exercises 6.1.9

1. Show that the cross product is independent of the choice of P and Q.
2. If H = 1, show that cross product with 1 E HO(l;  z) is the identity map.
3. Show that the cross product is associative in the sense that the two maps

HP(G;  Z) ~3 Hq(H;  z) @ Hí(Z;  Z) + HP+q+ë(G  x H x I; Z)

given by the formulas (X x y) x z and x x (y x z) agree.

Exercise 6.1.10 Let k be a commutative ring.

1. Modify the above construction to obtain cross products Hp(G; k) @k
Hq(H;  k) + Hp+q(G  x H; k). Then verify that this cross product is
independent of the choice of P and Q, that it is associative, and that the
cross product with lr Hî(  1; k) = k is the identity.

2. If k is a field, show that Hî(G  x H; k) 2 @ HP(G;  k) @,k HnpP(H;  k)
for all n .

We will return to the cross product in section 6.7, when we introduce the
restriction map H*(G x G) + H*(G) and show that the cross product makes
H*(G; l?) into a ring.

Hyperhomology 6.1.15 If A, is a chain complex of G-modules, the hyper-
derived functors lLi(-c)(A,)  of 5.7.4 are written as Wi(G; A,) and called
the hyperhomology groups of G. Similarly, if A* is a cochain complex of G-
modules, the hypercohomology groups Wî(G;  A*) are just the hyper-derived
functors Ri(-ë)(A*).  The generalities of Chapter 5, section 7 become the
following facts in this case. The hyperhomology spectral sequences are

ìE&  = H,(G;  H,(A,))  + ~JI~+~(G;  A,); a n d

ëE;,  = Hp(Hq(G;  A,))  =+ W,+,( G; A,) when A, is bounded below,
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and the hypercohomology spectral sequences are

ìE;’  = HP(G; Hq(A*)) =+ W P+q(G;  A*), weakly convergent; and

ëE;’  = Hî(Hq(G;  A*)) =+ W P+q(G;  A*) if A is bounded below.

In particular, suppose that A is bounded below. If each Ai is a flat ZG-module,
then Wi(G; A,) = Hi((A*)G);  if each Aí is a projective ZG-module, then
Wí(G;  A*) = Hí((A*)ë).

Exercise 6.1.11 Let T be the infinite cyclic group. Show that there are short
exact sequences

0 + Hq(A&  -+ Hq(Z-; A,) -+ Hq~t(&JT  + 0;

0 -+ Hq-ë(A*)T  -+ Wq(T; A*) + Hq(A*f + 0.

Exercise 6.1.12 Let k be a commutative ring and G a group such that all
the k-modules H,(G; k) are flat. (For example, this is true for G = T.)
Use the hypertor spectral sequence (5.7.8) to show that H,(G x H; k) 2
$ H,(G;  k) @3k H,_,(H;  k) for all n and H.

6.2 Cyclic and Free Groups

Cyclic and free groups are two classes of groups for which explicit calcula-
tions are easy to make. We first consider cyclic groups.

Calculation 6.2.1 (Cyclic groups) Let C, denote the cyclic group of order
m on generator o. The norm in ZC,,,  is the element N = 1 + 0 + a2 + . . . +
am-ë,  so 0 = CP - 1 = (a - 1)N  in ZC,. I claim that the trivial C,-module
Z has the periodic free resolution

Indeed, since Z. N = (ZG)’  and 3 = (a E ZG : Na = 0) by exercise 6.1.3,
there are exact sequences

OtZ.N&ZGtJtO  a n d  0+3~ZC,,,i--Z.NtO.

The periodic free resolution is obtained by splicing these sequences to-
gether. Applying @GA and HOIIIc(-,  A) and taking homology, we find the
following result:



168 Group Homology and Cohomology

Theorem 6.2.2 If A is a module for the cyclic group G = C,, then

1

A/(a  - l)A ifn=O

H,,(C,;  A )  = AGINA ifn=1,3,5,7 ,... ;
(aEA:Na=O)/(a-l)A  ifn=2,4,6,8,... 1

AG ifn=O

Hn(C,; A) = (a E A : Na = O)/(a - l)A if n = 1,3,5,7,. . .
AGINA ifn=2,4,6,8 ,... I

Exercise 6.2.1 Show for G = C, that when H’ (G; A) = 0 there is an exact
sequence

Example 6.2.3 Taking A = Z we find that

H,,(C,,,;Z)=  Z / m  ifn=1,3,5,7 ,... ;1 0 72 ifn=O if n = 2,4,6,8,  . . . I

I

z ifn=O
Hn(C,; Z) =  0 ifn=1,3,5,7 ,... .

z/m ifn=2,4,6,8 ,... I

Exercise 6.2.2 Calculate H,(C, x C,,;  Z) and H*(C, x Cn;  Z).

Definition 6.2.4 (Tate cohomology) Taking full advantage of this periodicity,
we set

ifnEZiseven
{aEA:NA=O}/(a-1)A  ifnEZisodd .

More generally, if G is a finite group and A is a G-module, we define the Tate
cohomology groups of G to be the groups

ifn? 1
ifn=O

[aEA:Na=O]/JA  ifn=-1  .
ifns-2 I
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Exercise 6.2.3 If G is a finite group and 0 + A + B -+ C + 0 is an exact
sequence of G-modules, show that there is a long exact sequence

iiiî-ë(G;  C) + $(G; A) + i?ë(G;  B) -+ i?ë(G;  C) + i?+ë(G;  A) ....

Application 6.2.5 (Dimension-shifting) Given a G-module A, choose a short
exact sequence 0 + K --+ P + A + 0 with P projective. Shapiroís Lemma
(6.3.2 below) implies that g*(G,  P) = 0 for all * E Z. Therefore gjî(G;  A) 2
gin+ë(G;  K). This shows that every Tate cohomology group gî(G;  A) deter-
mines the entire theory.

Proposition 6.2.6 Let G be the free group on the set X, and consider the
augmentation ideal 3 of ZG. Then 3 is a free ZG-module with basis the set
X-1=(x-I:xcX}.

Proof We have seen that 3 is a free abelian group with Z-basis [g - 1 : g E G,
g # 1). We claim that another Z-basis is {g(x - 1) : g E G, x E X}. Every g E
G may be written uniquely as a reduced word in the symbols [x, x-’  : x E X};
write G(x) (resp. G(x-ë))  for the subset of all g E G ending in the symbol x
(resp. in x-l) so that G - { 1) is the disjoint union (over all x E X) of the sets
G(x) and G(x-ë).  The formulas

(gx-l)=g(x-l)+(g-1)  ifgxEG(x)

(gx-’  - 1) = -(gx-ë)(x  - 1) + (g - 1) if gx-’  E G(x-ë)

and induction on word length allow us to uniquely rewrite the basis (g - 1 :
g # 1) in terms of the set (g(x - l)),  and vice versa. Therefore {g(x - 1) :
g E G, x E X) is a Z-basis of 3, and X - 1 = {x - 1 : x E X} is a ZG-basis. 0

Corollary 6.2.7 If G is a free group on X, then Z has the free resolution

Consequently, pdc(Z) = 1, that is, H,(G;  A) = Hî(G;  A) = 0 for n # 0, 1.
Moreover, Ho(G;  Z) 2 Hî(G;  Z) E Z, while

HI(G;Z)Z@H  a n d  Hí(G;Z)EnZ.
XEX XGX

Proof H,(G; A) is the homology of 0 -+ 3 @ZC A -+ A + 0, and H*(G; A)
is the cohomology of 0 + A + HomG(3,  A) --+ 0. For A = Z, the differen-
tials are zero. 0



170 Group Homology and Cohomology

Remark Conversely, Stallings [St] and Swan [SwCdl]  proved that if Hî(G,A)
vanishes for all n # 0, I and all G-modules A, then G is a free group.

Exercise 6.2.4 Let G be the free group on {s, t}, and let T E G be the free
group on (t). Let Z’ denote the abelian group Z, made into a G-module (and a
T-module) by the formulas s . a = t . a = -a.

1. Show that Ho(G, Zí)  = Ho(T,  Zí) = Z/2.
2. Show that Hl(T,  Zí)  = 0 but HI (G, Zí)  E Z.

Free Products 6.2.8 Let G*H denote the free product (or coproduct) of the
groups G and H. By [BAII, 2.91, every element of G*H except 1 has a unique
expression as a ìreducedî word, either of the form glhlg2h2g3 . . . or of the
form hlglh2g2h3..  . with all gi E G and all hi E H (and all gi, hi # 1).

Proposition 6.2.9 Let JG, JH,  and J&H denote the augmentation ideals of
ZG, ZH, and A = Z(G*H),  respectively. Then

JG*H  2 (3G @Z!C  A> @ (JH @ZH  A).

Proof As a left ZG-module, A = Z(G*H)  has a basis consisting of (11
and the set of all reduced words beginning with an element of H. Therefore
3~ &G A has a Z-basis Bt consisting of the basis {g - 1 ]g E G, g # I} of
3~ and the set of all terms

(g - l)(hmhz...)  = (ghlglh...)  - (hlglhz.*.).

Similarly, JH @H A has a Z-basis & consisting of (h - 1) and the set of
all terms

(h - l)(glhlgz...)  = (hglhla...)  - (glhlgz...).

By induction on the length of a reduced word w in G*H, we see that w - 1
can be written as a sum of terms in ,131 and f32. This proves that B = Bt U &
generates 3&H. In any nontrivial sum of elements oft?, the coefficients of the
longest words must be nonzero, so B is linearly independent. This proves that
B forms a Z-basis for J&H, and hence that 3&H has the decomposition we
described. 0

Corollary 6.2.10 For every left (G*H)-module  A, and n >_ 2:

H,(G*H; A) % H,(G; A) @ H,(H; A);

Hn(G*H;  A) Z Hn(G;  A) @ Hî(H;  A).
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Remark When n = 0, the conclusion fails even for A = z. We gave an exam-
ple above of a (T * T)-module Z’ for which the conclusion fails when n = 1.

Proof We give the proof of the homology assertion, the cohomology part
being entirely analogous. Write A for Z(G*H).  Because Tor,ì(A,  A) = 0 for
n > 1, we see that Tor:(Z, A) g Tort_,(3o*H,  A) for n 12. Hence in this_
range

H,(G*H;  A) = Tort@, A) S Tori_,(JG*H,  A)

Y Tor”n_1(3~ '8ZG A,A) @TOrf-l(JH  @'ZH  A,A).

Since A is free over iZG and ZH, base-change for Tor (3.2.9 or 5.6.6) implies
that

TOrt_t(3o &G A, A) Z TorzG1(3o,  A) 21 TorzG(Z, A) = H,(G;  A).

By symmetry, TO&(5H  @zH A, A) ì=  fL(ff; A). 0

Exercise 6.2.5 Show that if A is a trivial G*H-module,  then for n = 1 we
also have

Hl(G*H;  A) 2 Hl(G;  A) @ Hl(H;  A);

Hí(G*H;  A) = Hí(G;  A) @ Hí(H;  A).

6.3 Shapiroís Lemma

For actually performing calculations, Shapiroís Lemma is a fundamental tool.
Suppose that H is a subgroup of G and A is a left ZH-module.  We know
(2.6.2) that ZG @zH  A and HomH@G, A) are left ZG-modules. Here are
their names:

Definition 6.3.1 ZG @aH  A is called the induced G-module and is written
Ind$(A).  Similarly, HomH@G, A) is called the coinduced G-module and is

written Coindg  (A).

Shapiroís Lemma 6.3.2 Let H be a subgroup of G and A an H-module.
Then

H,(G;  Indg(A))  2 H,(H;  A); and H*(G; Coind$(A))  Z H*(H; A).



172 Group Homology and Cohomology

Proof Note that ZG is a free ZH-module (any set of coset representatives
will form a basis). Hence any projective right ZG-module resolution P -+ Z is
also a projective ZH-module resolution. Therefore the homology of the chain
complex

is both

Tor:ë(Z,  ZG @H A) E H,(G;  Indg(A))

and TorfH(Z,  A) 2 H,(H;  A). Similarly, if P + Z is a projective left ZG-
module resolution, then there is an adjunction isomorphism of cochain com-
plexes:

HOmc(P,  HOmH(zG,  A)) E HOmH(P,  A).

The cohomology of this complex is both

Ext;,(Z, HomH(ZG, A)) 2 H*(G;  Coindg(A))

and Extg,(Z, A) 2 H*(H; A). 0

Corollary 6.3.3 (Shapiroís Lemma for H = 1) Zf A is an abelian group, then

H&G; i7G 8~ A) = H*(G;  HOmA@G,  A)) =
A  if*=0
o

I
if * z o .

Lemma 6.3.4 Ifthe  index [G : H] isJinite,  Indg(A)  % Coindg(A).

Proof Let X be a set of left coset representatives for G/H, so that X forms a
basis for the right H-module iZG. Indg(A)  is the sum over X of copies x 8 A
of A, with g(x @ a) = y @ ha if gx = yh in G. Now X-l = (x-’  : x E X)
is a basis of ZG as a left H-module, so Coindg(A)  is the product over X of
copies n,A of A, where n,a represents the H-map from ZG to A sending
x-l to a E A and z-l to 0 for all z # x in X. Therefore if gx = yh, that is,
y-ëg  = hx-ë,  the map g(nxa) sends y-’ to

(n,a)(y-ëg)  = (n,a)(hx-ë)  = h . (n,a)(x-ë)  = ha

and z-l to 0 if z # y in X. That is, g(nxa) = n,(ha).  Since X % [G : H] is
finite, the map hid:(A)  + Coind$(A)  sending x @I a to n,a is an H-module
isomorphism. 0
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Corollary 6.3.5 If G is ajinite group, then H*(G;  ZG 8~ A) = 0 for * # 0
and all A.

Corollary 6.3.6 (Tate cohomology) Zf G is finite and P is a projective G-
module,

g*(G;  P ) = O  forall *.

Proof It is enough to prove the result for free G-modules, that is, for mod-
ules of the form P = ZG @z F, where F is free abelian. Shapiroís Lemma
gives vanishing for * # 0, -1. Since PG = (ZG)G  8 F = N . P, we ge t
zO(G; P) = 0. Finally, %ë(G;  P) = 0 follows from the fact that N = #G
on the free abelian group PG = P/3P  Z F. 0

Hilbertís Theorem 90 6.3.7 (Additive version) Let K c L be a finite Galois
extension of fields, with Galois group G. Then L is a G-module, LG S LG E
K. and

H*(G;  L) = H&G; L) = 0 for * # 0.

Proof The Normal Basis Theorem [BAI, p. 2831  asserts that there is an x E L
such that the set [g(x) : g E G) of its conjugates forms a basis of the K-vector
space L. Hence L 2’ ZG CXq K as a G-module. We now cite Shapiroís Lemma.

0

Example 6.3.8 (Cyclic Galois extensions) Suppose that G is cyclic of order
m, generated by o. The trace tr(x) of an element x E L is the element x +
fJx + . . . + 0 m-1~  of K. In this case, Hilbertís Theorem 90 states that there is
an exact sequence

O+K+La-!L&K+O.

Indeed, we saw in the last section that for * # 0 every group H,(G; L) and
H*(G; L) is either K/tr(L)  or ker(tr)/(a  - l)K.

As an application, suppose that char(K) = p and that [L : K] = p. Since
tr(1) = p 1 = 0, there is an x E L such that (a - 1)x = 1, that is, ox =
x + 1. Hence L = K(x) and xJ’ - x E K because

a(xP - x) = (x + 1)P  - (x + 1) = xp - x.
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Remark If G is not cyclic, we will see in the next section that the vanishing of
H’ (G; L) is equivalent to Noetherís Theorem [BAI, p. 2871  that if D: G + L
is a map satisfying D(gh) = D(g) + g . D(h), then there is an x E L such that
D(g) = g . x - x.

Application 6.3.9 (Transfer) Let H be a subgroup of finite index in G. Con-
sidering a G-module A as an H-module, we obtain a canonical map from A to
HomH(ZG,  A) = Coind$(A)  Z Indg(A)  and from Coindg(A)  E ZG @QH
A to A. Applying Shapiroís Lemma, we obtain transfer maps H,(G;  A) +
H,(H; A) and H*(H;  A) + H*(G; A). We will return to these maps in exer-
cise 6.7.7 when we discuss restriction.

6.4 Crossed Homomorphisms and HI

If A is a bimodule over any ring R, a derivation of R in A is an abelian group
homomorphism D: R + A satisfying the Leibnitz rule: D(rs) = rD(s) +
D(r)s. When R = ZG  and A is a left ZG-module,  made into a bimodule
by giving it a trivial right G-module structure, this definition simplifies as
follows:

Definition 6.4.1 A derivation (or crossed homomorphism) of G in a left G-
module A is a set map D: G + A satisfying D(gh) = gD(h) + D(g). The
family Der(G, A) of all derivations is an abelian group in an obvious way:

(D + Dí)(g) = D(g) + Dí(s).

Example 6.4.2 (Principal derivations) If a E A, define Da(g) = ga - a; D,
is a derivation because

&(gh) = (gha - ga> + (sa -a> = s&(h) + D,(g).

The D, are called the principal derivations of G in A. Since D, + Db =
Dca+t,),  the set PDer(G, A) of principal derivations forms a subgroup of
Der(G, A).

Exercise 6.4.1 Show that PDer(G, A) % A/Aí.

Example 6.4.3 If cp: 3 -+ A is a G-map, let D,: G --+ A be defined by
DV(g) = cp(g - 1). This is a derivation, since

D,(gh) = p(gh - 1) = cp(gh - g) + cp(s - 1) = gD,(h)  + D,(g).
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Lemma 6.4.4  The map cp H D, is a natural isomorphism of abelian groups

Homc(3,  A) 2 Der(G, A).

Proof The formula defines a natural homomorphism from HomG(3,  A) to
Der(G, A), so it suffices to show that this map is an isomorphism. Since (g -
1 : g # I] forms a basis for the abelian group 3, if D,(g) = 0 for all g, then
cp = 0. Therefore the map in question is an injection. If D is a derivation,
define cp(g - 1) = D(g) E A. Since (g - 1 : g # 1) forms a basis of 3, p
extends to an abelian group map ~0: 3 --+ A. Since

&g(h - 1)) = q(gh  - 1) - q(g - 1)

= D(gh)  - D(g) = gD(h)

= gCo(h - l),

cp is a G-map. As D, = D, the map in question is also a surjection. 0

Theorem 6.4.5 Hí(G;  A) 2 Der(G, A)/PDer(G,  A).

Proof The sequence 0 + 3 -+ ZG + Z + 0 induces an exact sequence

0  + Homc(.Z,  A )  -+  Homc(bG,  A )  + HOmc(?,  A )  + Exti,(Z,A)  -+ 0 .

AC of A --+  Der(G,  A )  + Hí(G;  A)

Now A + HomG(J,  A) sends a E A to the map p sending (g - 1) to (g - 1)a.
Under the identification of HomG(3,  A) with Der(G, A), (p corresponds to
the principal derivation D, = D,. Hence the image of A in Der(G, A) is
PDer(G, A), as claimed. 0

Corollary 6.4.6 If A is a trivial G-module,

Hí(G;  A) Y Der(G, A) EHomG,,n,(G,  A).

Proof PDer(G, A) 2 A/A’ = 0 and a derivation is a group homomorphism.
0

Hilhertís Theorem 90 6.4.7 (Multiplicative version) Let K c L be a finite
Galois extension of fields, with Galois group G. Let L* denote the group of
units in L. Then L* is a G-module, and Hí(G;  L*) = 0.
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Exercise 6.4.2  If D is a derivation of G in A, show that oD, defined by
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is an automorphism of A >a G stabilizing A and G, and that Der(G, A) is iso-
morphic to the subgroup of Aut(A x G) consisting of automorphisms stabiliz-
ing A and G. Show that PDer(G, A) corresponds to the inner automorphisms
of A M G obtained by conjugating by elements of A, with the principal deriva-
tion D, given by D,(g) = a-ëga.  Conclude that Hí(G;  A) is the group of
outer automorphisms stabilizing A and G.

Example 6.4.10 (Dihedral groups) Let C2 act on the cyclic group Z/m = C,,,
by a(a) = -a. The semidirect product C,,, x C2 is the dihedral group D,
of symmetries of the regular m-gon. Our calculations in section 6.2 show
that Hí(Cz;  C,) Z C,/2C,.  If m is even, D, has an outer (= not inner)
automorphism with ~(0, a) = (1, a). If m is odd, every automorphism of D,
is inner.

6.5 The Bar Resolution

There are two canonical resolutions B, and B,U  of the trivial G-module Z by
free left ZG-modules, called the normalized and unnormalized bar resolu-
tions, respectively. We shall now describe these resolutions.

(*I 0tZ~B&B1-kB2cd....

(**) 0  t Z z Bo” & B;l ,e B; & . . .

&I and B: are ZG. Letting the symbol [ ] denote 1 E ZG, the map E: Bo -+ Z
sends [ ] to 1. For n > 1, B,U  is the free ZG-module on the set of all symbols

kl@..~ @ g,J with gi E G, while B, is the free ZG-module on the (smaller)
set of all symbols [gt ] . . . lgn] with the gi E G - { 1). We shall frequently iden-
tify B,, with the quotient of B,U  by the submodule S, generated by the set of all
symbols [gt @ . . . 18 g,J with some gi equal to 1.

Definition 6.5.1 For n L 1, define the differential d: B,U -+ B,ì_,  to be d =

~~Eo(- l)ëdi,  where:

dO(kl  8 . . . @ &I> = 81182 @ . . . 63 ,&I;

4ug1  c3 . . . ~ëg,l)=[gi~...~ggigi+l~~.~~gn]  f o r i = l , . . . , n - 1 ;

Mg1 63 . . . 63 gnl) = [g1  8 . . . @J $5-11.
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The differential for B, is given by formulas similar for those on B,U, except
thatfori=l,...,n-1

di([gtl~.+J)=
[gll..~lgigi+ll...lgnl  whengigi+t  # 1

when gigi+ = 1.

To avoid the clumsy case when gigi+ = 1, we make the convention that
[gt ] . . . ]gn]  = 0 if any gi = 1. Warning: With this convention, the above for-
mula for di ([gl 1 . . .I) does not hold when gi or gi+t = 1; the formula for the
alternating sum d does hold because the di and di_1  terms cancel.

Examples 6.5.2

1. The image of the map d: B1 -+ BO is the augmentation ideal 3 because
d([g]) = g[ ] - [ ] = (g - l)[ 1. Therefore (*) and (**)  are exact at Bo.

2. d(klhl) = g[hl  - [ghl + kl.
3. dKflglh1)  = f[dhl  - Lfslhl  + [fIshI  - Lflgl.
4. If G = C2. then B, = ZG for all n on [a I . . la] and (*) is familiar from

6.2.1:

Exercises 6.5.1

1. Show that d o d = 0, so that B,U is a chain complex. Hint: If i 5 j - 1,
show that didj = dj_ldi.

2. Show that d(&)  lies in $_I, so that S, is a subcomplex of B,U.
3. Conclude that B, is a quotient chain complex of B,U.

Theorem 6.5.3 The sequences (*) and (w) are exact. Thus both B, and B,U
are resolutions of Z by free left ZG-modules.

Proof It is enough to prove that (*) and (**)  are split exact as chain com-
plexes of abelian groups. As the proofs are the same, we give the proof in the
B, case. Consider the abelian group maps s,, determined by

s_~: i2 -+ Bo, S-l(l)  = [I;

sn: &, -+ &+I, ~~(~o~~llí~~l~~l)=~~ol~ll~~ël~~l.

Visibly, ES-~  = 1 and dso + S_1~  is the identity map on Bo. If n > 1, the
first term of ds,(go[gl] . . . ]gn]) is gu[gt ] . . . ]gn], and the remaining terms are
exactly the terms of s,_ld(go[gl]  . . ]gn]) with a sign change. This yields
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Z2(G; A) is the set of all 2-cochains $I: G x G + A such that @( 1, g) =
$(g, 1) and

f  ~~(s~h)-1Cl(fg,h)+$(f,gh)-1Cr(f,g)=O  foreveryf,g,hEG.

Theorem 6.5.8 Let G be a finite group with m elements. Then for n # 0 and
every G-module A, both H,,(G;  A) and Hn(G; A) are annihilated by m, that
is, they are Z/m-modules.

Proof Let q denote the endomorphism of B*,  which is multiplication by (m -
IV) on Bu and multiplication by m on Bn, n # 0. We claim that q is null
homotopic. Applying A@ or Hom(-, A), will then yield a null homotopic
map, which must become zero upon taking homology, proving the theorem.

Define u,: B, -+ Bn+t by the formula

un(]g1  I . . . I&l) = (-v+l  Ckl I . . . Ignlgl.
tFG

Setting w = [gt ] . . . lgn] and t = (- l)n+l,  we compute for n # 0

dun(w)  = E CIgl[” lgl+ C(-I)ë[’  ”  Igigi+ll  ì.  181 - l [. ”  Ign-llgrzgl + l W]

un-ld(w)=-~  CIglt.” ISI + C(-l)ë[ìëlgigi+]l  ë..lg]  -C[ë.ëlg,-llg]].

As the sums over all g E G of [. . . lgng] and [. . . Ig] agree, we see that
(du + ud)(w) is c2 C w = mw. Now duo([]) = d(- C[g])  = (m - N)[],
where N = c g is the norm. Thus {u,} provides the chain contraction needed
to make r] null homotopic. 0

Corollary 6.5.9 Let G be a$nite  group of order m, and A a G-module. If A
is a vector space over Q, or a Z[ Al-module,  then Hn(G;  A) = Hî(G;  A) = 0
for n # 0. (We had already proven this result in 61.10 using a more abstract
approach.)

Corollary 6.5.10 If G is a finite group and A is a finitely generated G-
module, then H,,(G;  A) and Hî(G;  A) are finite abelian  groups for all n # 0.

Proof Each A @G B, and Homc(B,,  A) is a finitely generated abelian
group. Hence H,(G;  A) and Hî(G;  A) are finitely generated Z/m-modules
when n # 0. 0
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Shuffle Product 6.5.11  When G is an abelian group, the normalized bar
complex B, is actually a graded-commutative differential graded algebra (or
DG-algebra; see 4.5.2) under a product called the shufle product. If p > 0 and
q 2 0 are integers, a (p, q)-shufle  is a permutation (T of the set { 1, . . . , p + q]
of integers in such a way that a(1) < a(2) < ... < a(p) and a(~ + 1) <
... < a(~ + q). The name comes from the fact that the (p, q)-shuffles de-
scribe all possible ways of shuffling a deck of p + q cards, after first cutting
the deck between the p and (p + 1)” cards.

If G is any group, we define the shujële  product *: B, @Q B, + B,+, by

algIl  ” Igpl * Hg,+ll ”  l&+,1  = C(-l)ìab[g,~l,lg,-121  ”  Ig,~q,+,)l,
cr

where the summation is over all (p, q)-shuffles (T. The shuffle product is
clearly bilinear, and [ ] *[gl I . . . lg4]  = [gl( . . . lg4],  so B, is a graded ring with
unit [ 1, and the inclusion of ZG = Bo in B, is a ring map.

Examples 6.5.12  [g] * [h] = [glh]  - [his], and

Lfl * WI = [flslhl - klflhl  + klhlfl.

Exercise 6.52

1. Show that the shuffle product is associative. Conclude that B, and Z @zG
B, are associative rings with unit.

2. Recall (from 45.2)  that a graded ring R, is called graded-commutative if
x  *y=(-l)Pqy *xforallx~ R,andy~ Rq.ShowthatB,isgraded-
commutative if G is an abelian group.

Theorem 6.5.13 If G is an abelian group, then B, is a differential graded
algebra.

Proof We have already seen in exercise 6.5.2 that B, is an associative graded-
commutative algebra, so all that remains is to verify that the Leibnitz identity
45.2 holds, that is, that

d(x * y) = (dx) * y + (-l)px  * dy,

where x and y denote a[gll . . lgPl and b[g,+ll . Ig,+,], respectively.
Contained in the expansion of x*y,  we find the expansions for (dx)*y  and
(-l)Px*dy.  The remaining terms are paired for each i 5 p -C j, and each
(p, q)-shuffle 0 which puts i immediately just before j, as

(-l)ìab[...  lgigjl ...I and (-1)O+ëab[.  . . lgjgil . .].
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(The terms with j just before i arise from the composition of 0 with a trans-
position.) As G is abelian, these terms cancel. 0

Corollary 6.514 For every abelian group G and commutative ZG-algebra
R, H,(G; R) is a graded-commutative ring.

Proof B, @ZG R is a graded-commutative DG-algebra (check this!); we
saw in exercise 4.5.1  that the homology of such a DG-algebra is a graded-
commutative ring. 0

6.6 Factor Sets and H2

The origins of the theory of group cohomoiogy go back-at least in nascent
form-to the landmark 1904 paper [Schur].  For any field k, the projective
linear group PGL,(k)  is the quotient of the general linear group G L,(k)
by the diagonal copy of the units k* of k. If G is any group, a group map
p: G + PGL,(k)  is called a projective representation of G. The pullback

E = (((II, g) E GL,(k)  x G : a! = p(g)]

is a group, containing k* 2 k* x 1, and there is a diagram

l-k*- E + G --+I

II b’ b

1  - k* + GL,(k)  + PGL,(k)  - 1 .

Schurís observation was that the projective representation p of G may be
replaced by an ordinary representation p’  if we are willing to replace G by the
larger group E, and it raises the issue of when E is a semidirect product, so
that there is a representation G L, E -+ GL,(k)  lifting the projective repre-
sentation. (See exercise 6.6.5.)

Definition 6.6.1 A group extension (of G by A) is a short exact sequence

of groups in which A is an abelian group; it is convenient to write the group
law in A as addition, whence the term ì0”  on the left. The extension splits if
n:E+Ghasasectiona:G+  E.
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Given a group extension of G by A, the group G acts on A by conjugation
in E; to avoid notational confusion, we shall write ga for the conjugate gag-’
of a in E. This induced action makes A into a G-module.

Exercise 6.6.1 Show that an extension 0 -+ A -+ E + G + 1 splits if and
only if E is isomorphic to the semidirect product A x G (6.4.9).

Exercise 6.6.2 Let G = Z/2 and A = Z/3. Show that there are two exten-
sions of G by A, the (split) product Z/6 = A x G and the dihedral group D3.
These extensions correspond to the two possible G-module structures on A.

Exercise 6.6.3 (Semidirect product) Let A be a G-module and form the split
extension

O+A+A>aG+G+l.

Show that the induced action of G on A agrees with the G-module structure.

Extension Problem 6.6.2 Given a G-module A, we would like to determine
how many extensions of G by A exist in which the induced action of G on A
agrees with the given G-module structure, that is, in which ga = g a.

In order to avoid duplication and set-theoretic difficulties, we say that two
extensions 0 + A + Ei -+ G + 1 are equivalent if there is an isomorphism
cp : El 2 E2 so

O+A--+E1+G--+O

O-A-E2--+G---+0

commutes, and we ask for the set of equivalence classes of extensions. Here is
the main result of this section:

Classification Theorem 6.6.3 The equivalence classes of extensions are in
1-I correspondence with the cohomology group H2(G; A).

Here is the canonical approach to classifying extensions. Suppose given an

extension 0 + A -+ E 5 G -+ 1; choose a set map 0: G + E such that
a(l) is the identity element of E and na(g) = g for all g E G. Both a(gh)
and 0 (g)a  (h) are elements of E mapping to gh E G, so their difference lies in
A. We define

k, hl = ~(g)dWW-ë.
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Note that [g, h] is an element of A that depends on our choice of E and cr.

Definition 6.6.4 The set function [ 1: G x G -+ A defined above is called the
factor set determined by E and cr.

Lemma 6.6.5 If two extensions 0 + A + Ei + G + 1 with maps ai: G -+
Ei yield the same factor set, then the extensions are equivalent,

Proof The maps Di give a concrete set-theoretic identification El 2 A x G 2
E2; we claim that it is a group homomorphism. Transporting the group struc-
ture from El to A x G, we see that the products (a, 1) . (b, 1) = (a + b, l),
(a, 1) . (0, g) = (a, g), and (0, g) . (a, 1) = (ga, g) are fixed. Therefore the
group structure on A x G is completely determined by the products (1, g) .
(1, h), which by construction is ([g, h], gh). By symmetry, this is also the
group structure induced from E2,  whence the claim. 0

Corollary 6.6.6 Zf E were a semidirect product and CT were a group homo-
morphism, then the factor set would have [g, h] = 0 for all g, h E G. Hence if
an extension has [ ] = 0 as a factor set, the extension must be split.

Recall (6.5.7) that a (normalized) 2-cocycle is a function [ ] : G x G + A
such that

1 .  [g,l]=[l,g]=O  forallgEG.

2. f ]g, hl - [fg, hl + [f, ghl  - If, sl = 0 for all 5 g, h E G.

Theorem 6.6.7 Let A be a G-module. A set function [ ] : G x G + A is a
factor set @it is a normalized 2-cocycle, that is, an element of Z2(G,  A).

Remark Equations (1) and (2) are often given as the definition of factor set.

Proof If [ ] is a factor set, formulas (1) and (2) hold because a(l) = 1 and
multiplication in E is associative (check this!).

Conversely, suppose given a normalized 2-cocycle, that is, a function [ ]
satisfying (1) and (2). Let E be the set A x G with composition defined by

(a, g> . (b, h) = (a + (g . b) + k, hl, $1.

This product has (0,l)  as identity element, and is associative by (2). Since

(a, g) . C-g-’  . a - g-’  . [g, g-l], g-ë1  = (0, 11,
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E is a group. Evidently A x 1 is a subgroup isomorphic to A and E/A x 1
is G. Thus 0 + A + E + G + 1 is an extension, and the factor set arising
from G g 0 x G C, E is our original function [ 1. (Check this!) 0

Change of Based Section 6.6.8 Fix an extension 0 + A + E K\ G -+ 1.
Abasedsectionofnisamapa:G~Esuchthata(l)=landna(g)=g
for all g. Let C# be another based section of rr . Since aí(g) is in the same coset
of A as a(g), there is an element /3(g) E A so that aí(g) = @(g)a(g).  The
factor set corresponding to U’ is

]g, hlí=  B(g)o(g)B(0J(W4gWB(gW1

= B(g) + a(g)B(W(g)P  + o(g)0)4gW1  - B(gh)

= ]g3 hl+ B(g) - B(gh)  + g . B(h).

The difference [g, h]í - [g, h] is the coboundary dj?(g,  h) = /l(g) - B(gh) +
g . ,9(h). Therefore, although the 2-cocyle [ ] is not unique, its class in
H2(G;  A) = Z2(G,  A)/B2(G, A) is independent of the choice of based sec-
tion. Therefore the factor set of an extension yields a well-defined set map \Ir
from the set of equivalence classes of extensions to the set H2( G; A).

Proof of Classijcation  Theorem Analyzing the above construction, we see
that the formula aí(g) = p(g)a(g)  gives a l-l correspondence between the
set of all possible based sections cr’  and the set of all maps ,B: G + A with
/l(l). If two extensions have the same cohomology class, then an appropriate
choice of based sections will yield the same factor sets, and we have seen that
in this case the extensions are equivalent. Therefore \Ir is an injection. We have
also seen that every 2-cocycle [ ] is a factor set; therefore \I/ is onto. 0

Exercise 6.6.4 Let p: G -+ H be a group homomorphism and A an H-
module. Show that there is a natural map Z2p on 2-cocycles from Z2(H, A)
to Z2(G,  A) and that Z2p induces a map p*: H2(H; A) + H2(G; A). Now

let 0 --f A -+ E --% H --+ 1 be an extension and let Eí denote the pullback
E XH G = {(e, g) E E x G : n(e) = p(g)]. Show that p* takes the class of
the extension E to the class of the extension E í .

O-A-+Eí+G+ 1

II I 4-p

O-A+E+H-+ 1
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Exercise 6.6.5 (Schur)  For any field k and any n, let y denote the class
in Hí(PGL,(k);  k*) corresponding to the extension 1 + k* --+ GL,(k)  -+
PGL,(k) + 1. If p: G -+ PGL,(k)  is a projective representation, show that
p lifts to a linear representation G --+ G L,(k) if and only if p*(v)  = 0 in
H2(G; k*).

Exercise 6.6.6 If k is an algebraically closed field, and pLnt denotes the sub-
group of k* consisting of all mth  roots of unity in k, show that H*(G; F~) 2
H*(G; k*) for every finite group G of automorphisms of k order m. Hint: Con-

sider the ìKummerî sequence 0 + p,,, + k* % k* + 1.

Theorem 6.6.9 (Schur-Zassenhaus) Zf m and n are relatively prime, any ex-
tension 0 + A + E + G + 1 of a group G of order m by a group A of order
n is split,

Proof If A is abelian, the extensions are classified by the groups H*(G; A),
one group for every G-module structure on A. These are zero as A is a z[A]-
module (6.1.10).

In the general case, we induct on n. It suffices to prove that E contains
a subgroup of order m, as such a subgroup must be isomorphic to G under
E + G. Choose a prime p dividing n and let S be a p-Sylow subgroup of A,
hence of E. Let Z be the center of S; Z # 1 [BAI, p. 751.  A counting argument
shows that m divides the order of the normalizer N of Z in E. Hence there is
an extension 0 + (A fl N) + N + G + 1. If N # E, this extension splits
by induction, so there is a subgroup of N (hence of E) isomorphic to G. If
N = E, then Z o E and the extension 0 + A/Z -+ E/Z + G -+ 1 is split by
induction. Let Eí denote the set of all x E E mapping onto the subgroup G’
of E/Z isomorphic to G. Then Eí is a subgroup of E, and 0 + Z + Eí -+
Gí + 1 is an extension. As Z is abelian, there is a subgroup of Eí, hence of E,
isomorphic to Gí. 0

Application 6.6.10 (Crossed product algebras) Let L/K be a finite Galois
field extension with G = Gal(L/K).  Given a factor set [ ] of G in L*, we
can form a new associative K-algebra A on the left L-module L[G] using the
ìcrossedí product:

(x agg) x (c bhg)  = c]g, hIa& . bdkh), (a,, bh E L).
eG heG g,h

It is a straightforward matter to verify that the factor set condition is equivalent
to the associativity of the product x on A. A is called the crossed product



6.6 Factor Sets and H2 187

algebra of L and G over K with respect to [ 1. Note that L is a subring of
A and that dimK A = n2, where n = [L : K]. As we choose to not become
sidetracked, we refer the reader to [BAII, 8.41 for the following facts:

1. A is a simple ring with center K and A @K L ì=  M,(L). By Wedder-
bumís Theorem there is a division algebra A with center K such that
A g Md(A).

2. Every simple ring A with center K and A @K L Z M,(L) is isomorphic
to a crossed product algebra of L and G over K for some factor set [ 1.

3. Two factor sets yield isomorphic crossed product algebras if and only if
they differ by a coboundary.

4. The factor set [ ] = 1 yields the matrix ring M,(K), where n = [L : K].
5. If A and Aí correspond to factor sets [ ] and [Ií,  then A 8.K Aí &z

M,(Aî),  where Aî corresponds to the factor set [ ] + [ Ií.

Definition 6.6.11 The relative Brauer group Br(L/K) is the set of all sim-
ple algebras A with center K such that A @K L 2 M,(L), n = [L : K]. By
Wedderbumís Theorem it is also the set of division algebras A with center K
and A @K L % M,.(L), r2 = dimK A. By (l)-(3),  the crossed product algebra
construction induces an isomorphism

H2(GaZ(L/K);  L*) -% Br(L/K).

The induced group structure [A][Aí] = [Aî] on Br(L/K) is given by (4)
and (5).

Crossed Modules and H3 6.6.12 Here is an elementary interpretation of
the cohomology group H3(G; A). Consider a 4-term exact sequence with A
central in N

and choose a based section O: G + E of rr; as in the theory of factor sets,
the map [I: G x G + ker(n)  defined by [g, h] = a(g)a(h)a(gh)-’  satisfies
a nonabelian cocycle condition

LL slug,  hl = ìëfíkt  hl Lf, ghl,

where O(f)[g,  h] denotes the conjugate a(f)[g, h]a(f)-t.  Since ker(n)  =
(Y(N),  we can lift each [f, g] to an element [[f, g]] of N and ask if an analogue
of the cocycle condition holds-for some interpretation of ì(f)[[g,  h]]. This
leads to the notion of crossed module.



188 Group Homology and Cohomology

A crossed module is a group homomorphism cz: N + E together with an
action of E on N (written (e, n) H en) satisfying the following two condi-
tions:

1. For all m, n E N, (y(m)n = mnm-l.
2. For all e E E, n E N, a(ìn)  = ecx(n)e-’

For example, the canonical map N -+ Aut(N) is a crossed module for any
group N. Crossed modules also arise naturally in topology: given a Serre
fibration F -+ E + B, the map nt(F)  + xl(E) is a crossed module. (This
was the first application of crossed modules and was discovered in 1949 by
J. H. C. Whitehead.)

Given a crossed module N --% E, we set A = ker(a)  and G = coker(a);  G
is a group because a(N) is normal in E by (2). Note that A is in the center of
N and G acts on A, so that A is a G-module, and we have a sequence (*).

Returning to our original situation, but now assuming that N + E is a
crossed module, the failure of [[f, g]] to satisfy the cocycle condition is given
by the function c: G3 + A defined by the equation

c(f, g, h)K,f,  gll Us, hll  = ì%s>  hll K,ft ghll.

The reader may check that c is a 3-cocyle, whose class in H3(G; A) is inde-
pendent of the choices of g and [[f, g]]. As with Yoneda extensions (3.4.6),
we say that (*) is elementarily equivalent to the crossed module

O+A+Ní+Eí--+G+l

if there is a morphism of crossed modules between them, that is, a commuta-
tive diagram compatible with the actions of E and Eí on N and N’

O-A-N:E+G+l

O+A---+Ní-+Eí-G--+1.

Since our choices of a and [[f, g]] for (*> dictate choices for Ní + Eí, these
choices clearly determine the same 3-cocycle c. This proves half of the fol-
lowing theorem; the other half may be proven by modifying the proof of the
corresponding Yoneda Ext Theorem in [BX, section 7.51.

Crossed Module Classification Theorem 6.6.13 Two crossed modules with
kernel A and cokernel G determine the same class in H3(G; A) if and  only if
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they are equivalent (under the equivalence relation generated by elementary
equivalence). In fact, there is a l-l correspondence for each G and A:

equivalence classes of crossed modules

O+A-+N&E+G+l I
t, elements of H3(G; A).

6.7 Restriction, Corestriction, Inflation, and Transfer

If G is fixed, H,(G; A) and H*(G; A) are covariant functors of the G-module
A. We now consider them as functors of the group G.

Definition 6.7.1 If p: H + G is a group map, the forgetful functor p# from
G-mod to H-mod is exact. For every G-module A, there is a natural surjec-
tion (p#A)n  + AG  and a natural injection AC + (p#A)n.  These two maps
extend uniquely to the two morphisms p* = corg (called corestriction) and

p* = resg (ca e restriction) of S-functors:11 d

car;: H,(H;  p#A) + H,(G; A) and  resg:  H*(G; A) + H*(H; p#A)

from the category G-mod to Ab (2.1.4). This is an immediate consequence of
the theorem that H,(G; A) and H*(G; A) are universal &functors,  once we
notice that T,(A) = H,(H;  ,o#A) and T*(A) = H*(H; p#A)  are S-functors.

Subgroups 6.7.2 The terms restriction and corestriction are normally used
only when H is a subgroup of G. In this case ZG is actually a free ZH-
module, a basis being given by any set of coset representatives. Therefore
every projective G-module is also a projective H-module, and we may use
any projective G-module resolution P + Z to compute the homology and co-
homology of H. If A is a G-module, we may calculate corg  as the homology
H,(cr)  of the chain map a: P @n A + P @G A; similarly, we may calculate
resg as the cohomology H*(B)  of the map B: Homc(P,  A) -+ HomH(P,  A).

Exercise 6.7.1 Let H be the cyclic subgroup C, of the cyclic group C,,.
Show that the map corg:  H,(C,; Z) + H,(C,,; Z) is the natural inclusion

Z/m 9 Zlmn for * odd, while resg:  H*(C,,;  Z) + H*(C,; Z) is the natu-
ral projection Z/mn + Z/m for * even. (See 6.2.3.)

Inflation 6.7.3 Let H be a normal subgroup of G and A a G-module. The
composites

inf: H*(G/H; AH) %. H*(G; AH) -+ H*(G; A) and
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coinf: H,(G; A) + H,(G; AH) s H,(G/H;  AH)

are called the inflation and coinjution  maps, respectively. Note that on Ho we
have inf: (AH)G/H E AC and on HO we have coinf: AG % (AH)G/H.

Example 6.7.4 If A is trivial as an H-module, inflation = restriction and
coinflation = corestriction. Thus by the last exercise we see that (for * odd) the
map coinf: H,(C,; Z!) -+ H,(C,,; Z) is the natural inclusion Z/m of Z/mn,
while (for * even) inf: H*(Cmn;  27) + H*(C,; Z) is the natural projection
Zlmn -+ Z/m.

Exercise 6.7.2 Show that the following compositions are zero for i # 0:

H*(G/H;  AH) 5 H*(G; A) = H*(H; A);

H,(H;  A) S H,(G; A) c%f H,(G/H;  AH).

In general, these sequences are not exact, but rather they fit into a spectral
sequence, which is the topic of the next section. (See 6.8.3.)

Functoriality of H* and Corestriction 6.7.5 Let C be the category of pairs
(G, A), where G is a group and A is a G-module. A morphism in C from
(H, B) to (G, A) is a pair (p:  H + G, ~0:  B -+ p#A), where p is a group
homomorphism and p is an H-module map. Such a pair (p, ~0) induces a map
corg  o cp: H,(H;  B) + H,(G; A). It follows (and we leave the verification as
an exercise for the reader) that H* is a covariant functor from C to Ab.

We have already seen some examples of the naturality of H*. Corestriction
is H*  for (p, B = ,o#A)  and coinflation is H*  for (G + G/H, A -+ AH).

Functoriality of H* and Restriction 6.7.6 Let V be the category with the
same objects as C, except that a morphism in D from (H, B) to (G, A) is a
pair (p: H + G cp: p#A + B). (Note the reverse direction of q!) Such a pair
(p, cp) induces a map cp o resg:  H*(G; A) -+ H*(H; B). It follows (again as
an exercise) that H* is a contravariant functor from V to Ab.

We have already seen some examples of the naturality of H*. Restriction is
H* for (p, p#A = B) and inflation is H* for (G + G/H, AH -+ A). Conju-
gation provides another example:

Example 6.7.7 (Conjugation) Suppose that H is a subgroup of G, so that
each g E G induces an isomorphism p between H and its conjugate gHg-ë.
If A is a G-module, the abelian group map ,u~: A + A (a H ga) is actually
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an H-module map from A to ,o#A because FLg(ha)  = gha = (ghg-ë)ga  =
,o(h)pga  for all h E H and a E A. In the category C of 6.7.5, (p, p8) is
an isomorphism (H, A) E (gHggí,  A). Similarly, (p, k;ë)  is an isomor-

phism (H, A) Z (gHg_ë,  A) in D. Therefore we have maps H,(H; A) +
H,(gHg-ë;  A) and H*(gHg-ë;  A) --f H*(H;  A).

One way to compute these maps on the chain level is to choose a projec-
tive ZG-module  resolution P + Z. Since the Pi are also projective as ZH-
modules and as FZ[gHg-ël-modules,  we may compute our homology and
cohomology groups using P. The maps pR: Pi + Pi (p H gp) form an H-

module chain map from P to p#P over the identity map on z. Hence the map
H,(H; A) + H,(gHggí;  A) is induced from

P@nA+  PB8,,-~A, x@aagx@ga.

Similarly, the map H*(gHg-ë;  A) --+ H*(H;  A) is induced from

HOm,y(P,  A) + HOIIl,H,-l(P,  A), co H (p k-+ gcp(g&p)).

Theorem 6.7.8 Conjugation by an element g E G induces the identity auto-
morphism on H,(G; Z) and H*(G; Z).

Proof The maps P @3 Z + P @3 i2 and Homc(P, iz) -+ Homo(P, ??) are the
identity. 0

Corollary 6.7.9 Zf H is a normal subgroup of G, then the conjugation action
of G on Z induces an action of G/H on H,(G; Z) and H*(G; z).

Example 6.7.10 (Dihedral groups) The cyclic group C, is a normal sub-
group of the dihedral group D, (6.4.10),  and D,/C, 2 C2. To determine the
action of C2 on the homology of C,,,, note that there is an element g of D,
such that gag-í = a-l. Let p: C, + C, be conjugation by g. If P denotes
the (a - 1, IV) complexof 6.2.1, consider the following map from P to ,o#P  :

IL”
o+z+zc - zGZ--zG  E ZG&~G Z ZG...

II II
-oi mvl 21 21 c-d1

I-o-’ N lLom’ I-o-’
OtZtZG t- ZG t ZG - bG : HG - hG

An easy calculation (exercise!) shows that the map induced from conjugation
by g is multiplication by (-1)í on H2i-l(Cm;  Z) and H2í(C,;  z).
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67.1 Cup Product

As another application of the naturality of H*, we show that H*(G;  iz) is an
associative graded-commutative ring, a fact that is familiar to topologists.

In 6.1.14 we constructed across product map x from H*(G;  Z)@H*(H; Z)
to H*(G x H; Z). When G = H, composition with the restriction A* =
resEXG  along the diagonal map A: G + G x G gives a graded bilinear prod-
uct on H*(G; iz), called the cup  product. If x, y E H*(G;  Z), the cup product
x U y is just A*(x  x y).

Exercise 6.7.3 (Naturality of the cross and cup product) Show that the
cross product is natural in G and H in the sense that (p*x) x (a*~> =
(p x a)*(~ x y) in HP+q(G’ x Hí; Z) for every p: Gí -+ G and cr: Hí + H,
x E HP(G;  Z), and y E Hq( H; Z). Conclude that the cup product is natural in
G, that is, that @*XI)  U (p*x7_) = p*(xl U x2).

Theorem 6.7.11 (Cohomology ring) The cup product makes H*(G; iz) into
an associative, graded-commutative ring with unit. The ring structure is natu-
ral in the group G.

Proof Since the composites of A with the maps A x 1, 1 x A: G x G +
G x G x G are the same, and the cross product is associative (by exercise
6.1.9),

xu(yuz)=xUA*(yxz)=A*(xxA*(yxz))

= A*(1  x A)*@  x y x z) = A*(A x 1)*(x  x y x z)

= A*(A*(x x y) x z) = A*(x  x y) U z = (x U y) U z.

If 15:  G + 1 is the projection, the compositions (1 x n) A and (n x 1) A are
the identity on H*(G; Z), and the restriction rr* sends 1 E HO(l; z) to 1 E
HO(G; Z) z Z. Since we saw in exercise 6.1.9 that the cross product with
1 E Hí(G;  Z) is the identity map,

x U 1 = A*(x  x n*(l)) = A*(1  x X)*(X  x 1) =x x 1 =x,

and 1 U x = x similarly. Hence the cup product is associative with unit 1.
To see that the cup product is graded-commutative, it suffices to show that

the cross product (with G = H) is graded-commutative, that is, that y x x =
(-l)ëjx  x y for x E Hí(G;  Z) and y E Hj(G;  72). This is a consequence of
the following lemma, since if t is the involution t(g, h) = (h, g) on G x G,
we have y U x = A*(y x X) = A*t*(x  x y). 0
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Lemma 6.7.12  Let t: G x H + H x G be the isomorphism t(g, h) = (h, g)
and write t* for the associated restriction map H*(H x G, Z) -+ H*(G x
H,Z).  Then for  xeHP(G;  Z) and yeHq(H; z), we have  t*(y x x) =
(-l)P4(x  x y).

Proof Let P + Z be a free ZG-resolution and Q --+ Z a free iZH-resolution.
Because of the sign trick 1.2.5 used in taking total complexes, the maps a @I
b H (-1)Pqb  @ a from Pp @ Q, to Qq @ Pp assemble to give a chain map
rí:  Tot( P @ Q) + Tot( Q @ P) over t. (Check this!) This gives the required
factor of (- l)Pq, because t* is obtained by applying Hom(-, Z) and taking
cohomology. 0

Exercise 6.7.4 Let /3 E H2(C,;  Z) % Z/m be a generator. Show that the ring
H*(C,; Z) is the polynomial ring i&3], modulo the obvious relation that
mjT=O.

Exercise 6.7.5 This exercise uses exercise 6.1.10.

1. Show that there is a cup product on H*(G;  k) for any commutative ring
k, making H* into an associative, graded-commutative k-algebra, natural
in G.

2. Suppose that k = Z/m  and G = Cm, with m odd. Show that the graded
algebra H*(C,; Z/m) is isomorphic to the ring Z/m[o,  B]/(a2  = /?a =
0), with crc H1  and Br H2.

Coalgebra Structure 6.7.13 Dual to the notion of a k-algebra is the notion
of a coalgebra over a commutative ring k. We call a k-module H a coalge-
bra if there are module homomorphisms A: H + H @k H (the coproduct)
and E: H + k (the counit) such that both composites (E @I l)A and (1 @ &)A
(mapping H -+ H @ H + H) are the identity on H. We say that the coal-
gebra is coassociative if in addition (A @ 1)A = (1 $3 A) A as maps H +
H @I H + H @J H @I H. For example, H = kG is a cocommutative coalge-
bra; the coproduct is the diagonal map from kG to k(G x G) 2’ kG @ kG and
satisfies A(g) = g @I g, while the counit is the usual augmentation s(g) = 1.
More examples are given below in (9.10.8).

Lemma 6.7.14 Suppose that k is afield, or more generally that H,(G; k) is
flat as a k-module. Then H,(G; k) is a cocommutative coalgebra.

Proof Recall from exercises 6.1.7 and 6.1.12 that H,(G x G; k) is isomor-
phic to H* (G; k) 8.k H,(G; k), so the diagonal map A: G + G x G induces
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a map A,: H,(G; k) -+ H,(G; k) @k H,(G; k). The projection 6: G + 1 in-
duces amap al, from H,(G; k) to H,(l;  k) = k. Since (E x 1)A = (1 x &)A as
mapsG-+GxG+Gand(Axl)A=(lxA)AasmapsG+GxG-+
G x G x G, we have the required identities (E* @ l)A* = (1 @ &*)A*  and
(A,@l)A,=(l@A,)A,. 0

Definition 6.7.15 (Hopf algebras) A bialgebra is an algebra H, together with
algebra homomorphisms A and E making H into a cocommutative coalgebra.
We call H a Hopfalgebra if in addition there is a k-module homomorphism
s: H + H (called the antipode) such that both maps x (s @ l)A and x(1 69

s)A (from H -+ H @ H + H QD H -+ H) equal the the projection H -%
kC_, H.

For example, the involution s(g) = g-’  makes kG into a Hopf algebra,
because (s @ l)A(g) = g-’ @g and (1 @ s)A(g)  = g @g-r. We will see
another example in exercise 7.3.7.

Exercise 6.7.6 Suppose that G is an abelian group, so that the product
p: G x G -+ G is a group homomorphism and that k is a field. Show that
H,(G; k) and H*(G; k) are both Hopf algebras.

Transfer Maps 6.7.16 Let H be a normal subgroup of finite index in G, and
let A be a G-module. The sum C ga over the right cosets { Hg) of H yields
a well-defined map from A to AH. This map sends (ga - a) to zero, so it
induces a well-defined map tr: AG -+ AH. Since H,(G; A) is a universal S-
functor, tr extends to a unique map of &functors,  called the transfer map:

tr : H*(G;  A) + H*(H; A).

Similarly, the sum c ga over the left cosets {gH) of H yields a well-
defined map from AH to A. The image is G-invariant, so it induces a well-
defined map tr: AH + AG. This induces a map of b-functors, also called the
transfer map:

tr : H*(H;  A) + H*(G; A).

Lemma 6.7.17 The composite corg  o tr is multiplication by the index [G :
H] on H*(G; A). Similarly, the composite tr o resg  is multiplication by [G :
H] on H*(G; A).

Proof In AG and Aí,  the sums over the cosets are just c ga = (c g) . a =
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[G : H] . a. The corresponding maps between the S-functors are determined by
their behavior on AG  and AH, so they must also be multiplication by [G : H].

0

Exercise 6.7.7 Show that the transfer map defined here agrees with the trans-
fer map defined in 6.3.9 using Shapiroís Lemma. Hint: By universality, it suf-
fices to check what happens on Ho  and Ho.

Exercise 6.7.8 Use the transfer maps to give another proof of 6.5.8, that
when G is a finite group of order m = [G : l] multiplication by m is the zero
map on H,(G;  A) and Hî(G;  A) for n # 0.

6.8 The Spectral Sequence

The inflation and restriction maps fit into a filtration of H*(G; A) first studied
in 1946 by Lyndon. The spectral sequence codifying this relationship was

found in 1953 by Hochschild and Serre. We shall derive it as a special case
of the Grothendieck spectral sequence 5.8.3, using the following lemma.

Lemma 6.8.1 If H is a normal subgroup of G, and A is a G-module, then
both AH and AH are G/H-modules. Moreover, the forgetful functor p# from
G/H-mod to G-mod has -H as left adjoint and -H as right adjoint.

Proof A G/H-module is the same thing as a G-module on which H acts triv-
ially. Therefore AH  and AH are G/H-modules by construction. The universal
properties of AH + A and A + AH translate into the natural isomorphisms

Homo(A,  &?) Z HOIIlG/H(AH,  B) and

HOIIl&%,  A) 2 HOIIlG/ff(B,  AH),

which provide the required adjunctions. 0

LyndonMochschild-Serre  Spectral Sequence 6.8.2 For every normal sub-
group H of a group G, there are two convergent first quadrant spectral se-
quences:

Etq = H,(GIH;  H,(H; A)) =+ H,+,(G; A);

E;’ = HP(G/H; Hq(H;  A)) =+ Hp+q(G; A).
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The edge maps H*(G;  A) + H,(G/H;  AH) and H*(H;  A)G/H  + f&(G; A)

in the first spectral sequence are induced from the coinjation  and corestric-
tion maps. The edge maps H*(G/H;  AH) + H*(G; A) and H*(G; A) +
H*(H;  A) GIH  in the second spectral sequence are induced from the injation
and restriction maps.

Proof We claim that the functors -G and -’  factor through G/H-mod as
follows:

G - m o d  2 G/H-mod G - m o d  2 G/H-mod

GL I( -G/H -G\ &GIH

Ab Ab

To see this, let A be a G-module; we saw in the last lemma that AH and
AH are G/H-modules. The abelian group (AH)G/H is obtained from A by
first modding  out by the relations ha - a with h E H, and then modding
out by the relations ga - a for S E G/H. If S is the image of g E G then
ga - a = ga - a, so we see that (AH)GIH is A/3A = AG.

S i m i l a r l y  (AH)GIH  bis o tained from A by first restricting to the subgroup
of all a E A with ha = a, and then further restricting to the subgroup of all
a with jja = a for S E G/H. If g is the image of g E G, ga = ga. T h u s
(AH)G/H  = AC.

Finally, we proved in Lemma 6.8.1 that -H is left adjoint to an exact func-
tar, and that -H is right adjoint to an exact functor. We saw in 2.3.10 that this
implies that -H preserves projectives and that -H preserves injectives, so that
the Grothendieck spectral sequence exists. The description of the edge maps is
just a translation of the description given in 5.8.3. 0

Low Degree Terms 6.8.3 The exact sequences of low degree terms in the
Lyndon-Hochschild-Serre spectral sequence are

H2(G; A) %f Hz(GIH;  AH ) & Hl(H;  A)G,IH  z Hl(G;  A) ìsf  Hj(G/H;  AH ) + 0;

0  + Hí(G/H;  AH) % Hí(G;  A) 5 Hí(H;  A)GíH  5 H2(G/H;  AH) % H2(G;  A )

Example 6.8.4 If H is in the center of G, G/H acts trivially on H,(H;  A)
and H*(H;  A), so we may compute the E2 terms from H,(H;  Z) and Uni-
versal Coefficient theorems. For example, let G be the cyclic group Cz,,,  and
H = C, form odd. Then H,(C2; H,(C,;  Z)) vanishes unless p = 0 or q = 0.
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The groups Z/2 lie along the x-axis, and the groups Z/m  lie along the y-axis.
The spectral sequence collapses at E2 to yield the formula for H,(Czm; Z) that
we derived in 62.3.

0
G = C,,

Z/m 0

0 0 0

Z/m 0 0 0

Z Z/2 0 Z/2 0

0
G=DZm

Z/m 0

0 0 0

0 0 0 0

Z z/2 0 z/2 0

Example 6.8.5 (Dihedral groups) Let G be the dihedral group Dz,,, = C, N
C2 and set H = C,. If m is odd, then once again H,(C2;  Hq(Cm))  vanishes
unless p = 0 or q = 0. As before, the groups Z/2 lie along the x-axis, but
along the y-axis we now have Hg(Cm)c2.  From our calculation 6.7.10 of the
action of C2 on H,(C,) we see that H,(C,)c, is zero unless q = 0, when it is
Z, or q = 3 (mod 4), when it is Z/m. Summarizing, we have computed that

z i f n = O

H,,(D2m; Z) = z/2 if n = 1 (mod4)
Z!/2m  if n = 3 ( m o d 4 )  ’
0 otherwise I

Example 6.8.6 (Gysin sequence) A central element t of infinite order in G
generates an infinite cyclic subgroup T. As in 5.3.7 the spectral sequence
collapses to the long exact ìGysinî sequence for every trivial G-module k :

. . H,(G; k) coin\f  H,(G/T;  k) -s, H,_z(G/T;  k) -+ H,_l(G;  k) ’ ë.

Exercise 6.8.1 The injinite dihedral group D, is the semidirect product T A
C2, where c E C2 acts as multiplication by -1 on the infinite cyclic group
T (ata-’  = t-l).  Show that CJ acts as multiplication by -1 on Hl(T; Z), and
deduce that

Z ifn=O
2/2@Z/2  ifn=1,3,5,7 ,...
0 if n = 2,4,6,  8, . .
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Hint: By naturality, H*(C2)  is a summand of H,(b).

Presentations 6.8.7 A presentation of a group by generators and relations
amounts to the same thing as a short exact sequence of groups 1 -+ R -+ F +
G -+ 1, where F is the free group on the generators of G and R is the normal
subgroup of F generated by the relations of G. Note that R is also a free
group, being a subgroup of the free group F. The spectral sequence of this
extension has E2P4 = 0 for 9 # 0, 1 and H,,(F; Z) = 0 for n # 0, 1. Therefore
the differentials H,+z(G;  Z) --f H,(G;  HI(R))  must be isomorphisms for n >
1, and we have the low degree sequence

0 -+ H2(G;  Z) -+
L 1&,

F G
+--+ -+ 0.

G [F, Fl [G, Gl

The action of G on R/[R/R]  is given by g . r = f rf -l, where f E F lifts g E
G and r E R. The following calculation shows that (R/[R/R])G = R/[F, R]:

(g - 1) . r = frf-’ - r E frf-ër-l  = [f, r]

By inspection of the low degree sequence, we see that we have proven the
following result, which was first established in [Hopfl.

Hopfís Theorem 6.8.8 Zf G = F/R with F free, then Hz(G; i2) S w.

6.9 Universal Central Extensions

A central extension of G is an extension 0 -+ A + X 5 G + 1 such that
A is in the center of X. (If I-C and A are clear from the context, we will just
say that X is a central extension of G.) A homomorphism over G from X

to another central extension 0 + B -+ Y & G + 1 of G is a map f: X +
Y such that n = tf. X is called a universal central extension of G if for

every central extension 0 + B -+ Y -h G + 1 of G there exists a unique
homomorphism f from X to Y over G.

O-A-+X:G-1

J -131  II

O-+B+Y>G\l

Clearly, a universal central extension is unique up to isomorphism over G,
provided that it exists. We will show that a necessary and sufficient condition
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Hint: By naturality, H*(C2) is a summand of H,(D,).

Presentations 6.8.7 A presentation of a group by generators and relations
amounts to the same thing as a short exact sequence of groups 1 + R + F -+
G + 1, where F is the free group on the generators of G and R is the normal
subgroup of F generated by the relations of G. Note that R is also a free
group, being a subgroup of the free group F. The spectral sequence of this
extension has E2P4 = 0 for 4 # 0, 1 and H,(F; Z) = 0 for II # 0, 1. Therefore
the differentials H,,+z(G;  Z) -+ H,, (G; HI(R))  must be isomorphisms for n >
1, and we have the low degree sequence

O--F  H2(G;  Z) -+ +R
L 1 F G

-+-+
[F, Fl

+ 0.
G [G, Gl

The action of G on R/[R/R]  is given by g . r = f r-f -l, where f E F lifts g E
G and r E R. The following calculation shows that (R/[R/R])G = R/[F, R]:

(g - 1). r = frf-’ - r = frf-ër-’  = [f, r].

By inspection of the low degree sequence, we see that we have proven the
following result, which was first established in [Hopfl.

Hopfís Theorem 6.8.8 If G = F/R with F free, then H2(G;  Z) 2 w.

6.9 Universal Central Extensions

A central extension of G is an extension 0 -+ A + X 5 G + 1 such that
A is in the center of X. (If n and A are clear from the context, we will just
say that X is a central extension of G.) A homomorphism over G from X

to another central extension 0 + B -+ Y -& G + 1 of G is a map f: X +
Y such that n = tf. X is called a universal central extension of G if for

every central extension 0 -+ B + Y 4 G -+ 1 of G there exists a unique
homomorphism f from X to Y over G.

O+A-+X:G+l

1 43 II

O-B-Yt-G-1

Clearly, a universal central extension is unique up to isomorphism over G,
provided that it exists. We will show that a necessary and sufficient condition
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for a universal central extension to exist is that G is perfect; recall that a group
G is peflect  if it equals its commutator subgroup [G, G].

Example 6.9.1 The smallest perfect group is As. The universal central ex-
tension of A5 describes A5 as the quotient PSL2([F5)  of the binary icosahedral
group X = SL2(F5)  by the center of order 2, A = &(,f) [Suz, 2.91.

C-b -3
0 + n / 2  - SLz(F5)  + PSLz(F5)  + 1 .

Lemma 6.9.2 If G has a universal central extension X, then both G and X
are per$ect.

Proof If X is perfect, then so is G. If X is not perfect, then B = X/[X, X] is
a nonzero abelian group, 0 -+ B -+ B x G + G + 1 is a central extension,
and there are two homomorphisms X + B x G over G : (0, n) and (pr, n).

0

Exercises 6.9.1

1. If 0 + A + X + G + 1 is any central extension in which G and X
are perfect groups, show that HI (X; Z) = 0 and that there is an exact
sequence

H2(X;  Z) = H2(G; Z) -+ A -+ 0.

2. Show that if G is perfect then central,extensions  0 + A + X + G --+ 1
are classified by Hom(Hz(G;  Z), A). (Use exercise 6.1.5.)

Remark The above exercises suggest that H2(G; Z) has something to do with
universal central extensions. Indeed, we shall see that the universal central
extension 0 + A + X + G -+ 1 has A Z Hz(G; Z). The group H2(G; Z) is
called the Schur multiplier of G in honor of Schur, who first investigated the
notion of a universal central extension of a finite group G in [Schur].

As indicated in section 6.6, Schur was concerned with central exten-
sions with A = C*, and these are classified by the group H2(G; Q*) =
Hom(Hz(G; Z), C*). Since G is finite, H2(G; Q*)  is the Pontrjagin dual
(3.2.3) of the finite group H2(G; Z). Hence the groups H2(G; Q*)  and
&(G;  Z) are noncanonically isomorphic.

Coustruction  of a Universal Central Extension 6.9.3 Choose a free group
F mapping onto G and let R c F denote the kernel. Then [R, F] is a normal
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subgroup of F, and the short exact sequence 1 + R + F -+ G -+ 1 induces
a central extension

0 -+ R/[R, F] + F/[R, F] + G + 1.

Now suppose that G is perfect. Since [F, F] maps onto G, there is a surjection
from [F, F]/[R, F] to G; its kernel is the subgroup (R n [F, F])/[R, F],
which Hopfís Theorem 6.8.8 states is the Schur multiplier H2(G;  Z). We shall
prove that

0 + (R n [F,  FI)I[R,  Fl + [F, FIAR, Fl + G -+ 1

is a universal central extension of G.

Lemma 6.9.4 [F, F]/[R, F] is a pegect  group.

Proof Since [F, F] and F both map onto G, any x E F may be written as
x = xír with xí E [F, F] and r E R. Writing y E F as yís with yí E [F, F] and
s E R, we find that in F/[R, F]

[x, y] = (xír)(yís)(xír)-ë(yís)-’  = [xí, yí].

Thus every generator [x, y] of [F, F]/[R, F] is a commutator of elements x’
and yíof [F, F]/[R, F]. 0

Theorem 6.9.5 A group G has a universal central extension if and  only if G
is peeect.  In this case, the universal central extension is

tF, FlO-+ Hz(G;Z)+ - AG+l.
[R, Fl

Here 1 + R + F -+ G -+ 1 is any presentation of G.

Proof If G has a universal central extension, then G must be perfect by 6.9.2.
Now suppose that G is perfect; we have just seen that (*) is a central extension
and that [F, F]/[R, F] is perfect. In order to show that (*) is universal, let

0 + B + Y --& G + 1 be another central extension. Since F is a free group,
the map F + G lifts to a map h: F + Y. Since th(R)  = 1, h(R) is in the
central subgroup B of Y. This implies that h ([ R, F]) = 1. Therefore h induces
a map

rl: IF, FIIIR, Fl- F/[R, Fl L Y
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such that tq = n, that is, such that q is a homomorphism over G. The follow-
ing lemma shows that n is unique and finishes the proof that (*) is universal.

0

Lemma6.9.6IfO+A--+X~G+1andO+B+Y+G-+1are
central extensions, and X is per$ect, there is at most one homomorphism f
from X to Y over G.

Proof If fl and f2 are two such homomorphisms, define a set map cp: X + B
by the formula fl(x) = f2(x)p(x).  Since B is central,

fl(XXí)  = f2(~)co(X)f2(~ë)cp(~ë)  = f2(XXí)cp(X)V(Xí).

Hence ~(xxí)  = cp(x)cp(xí),  that is, 40 is a group homomorphism. Since B is an
abelian group, p must factor through X/[X, X] = 1. Hence q(x) = 1 for all x,
that is, f = fí. 0

Exercise 6.9.2 (Composition) If 0 +B-+YPíX+landO+A+

X 5 G + 1 are central extensions, show that the ìcompositionî 0 +

ker(np)  -+ Y 2 G -+ 1 is a central extension of G. If X is a universal cen-
tral extension of G, conclude that every central extension 0 + B -+ Y +
X + 1 splits.

Recognition Criterion 6.9.7 A central extension 0 -+ A + X 5 G -+ 1
is universal if and only if X is perfect and every central extension of X splits
as a direct product of X with an abelian group.

Proof The ëonly ifí direction follows from the preceding exercise. Now sup-
pose that X is perfect and that every central extension of X splits. Given

a central extension 0 + B + Y & G + 1 of G, we can construct a ho-
momorphism from X to Y over G as follows. Let P be the pullback group
((x,  y) E X x Y : n(x) = r(y)}. Then in the diagram

the top row is a central extension of X, so it is split by a map o: X -+ P.
The composite f: X + P + Y is the homomorphism over G we wanted to
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construct. Since X is perfect, f is unique (6.9.6); this proves that X is a
universal central extension of G. 0

Corollary 6.9.8 Zf 0 -+ A -+ X + G + 1 is a universal central extension,
then

HI(X; i?) = H2(X; z) = 0.

Corollary 6.9.9 If G is a perfect group and H2(G;  Z) = 0, then every central
extension of G is a direct product of G with an abelian  group.

O-+A+AxG+G-+l

Proof Evidently 0 + 0 + G = G + 1 is the universal central extension of
G. 0

Example 6.9.10 (Alternating groups) It is well known that the alternating
groups A, are perfect if n > 5. From [Suz, 3.21 we see that

1

z/6 ifn=6,7
Hz(A,;Z)g  Z/2 ifn=4,5ornz8

0 ifn=1,2,3 I

We have already mentioned (6.9.1) the universal central extension of As.
In general, the regular representation A, -+ SO,_1  gives rise to a central
extension

by restricting the central extension

0 + z/2 + Spin,_,(R) -+ SO,_1 -+ 1.

If II # 6,7, A, must be the universal central extension of A,.

Example 6.9.11 It is known [Suz,  1.91  that if F is a field, then the spe-
cial linear group SL,(F) is perfect, with the exception of SL2(lF2)  &’ 06 and
SL2(F3),  which is U group of order 24. The center of SL,(F) is the group
ZL~(F) of nth roots of unity in F (times the identity matrix Z), and the quo-
tient of SL,(F)  by p,,(F) is the projective special linear group PSL,(F).
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When F = 5, is a finite field, we know that Hz(SL,(lF,);  Z) = 0 [Suz, 2.91. It
follows, again with two exceptions, that

0 + &(lFq) L SL,([F,) + PSL,([F,) + I

is the universal central extension of the finite group PSL,([F,).

Example 6.9.12 The elementary matrix eh in GL,(R)  is the matrix that co-
incides with the identity matrix except for the single nonzero entry h in the
(i, j) spot. The subgroup E,,(R) of GL,(R) generated by the elementary ma-

trices is a perfect group when n 13 because [ek, e$]  = e$ for i # k. We now
describe the universal central extension of E,(R).

Definition 6.9.13 Let R be any ring. For n > 3 the Steinberg group St,,(R) is
the group that is presented as having generators x$ (h E R, 1 5 i, j 5 n) and
relations

1. x?.x!f = x?.+p”
ëJ  ëJ lJ ’

2. [xihj,x$]=x~~fori#k;and

3. [x,?j, x&l = 1 for j # k and i # e.

There is a homomorphism St,(R) + E,(R) sending x$ to e& because these
relations are also satisfied by the elementary matrices. It is known [Milnor]
[Swan, p. 2081  that St,(R) is actually the universal central extension of E,(R)
for II 2 5. The kernel of St,,(R) --s-  E,(R) is denoted K2(n, R) and may be
identified with the Schur multiplier. The direct limit X2(R) of the groups
Kz(n, R) is an important part of algebraic K-theory. See [Milnor] for more
details and computations.

6.10 Covering Spaces in Topology

Let G be a group that acts on a topological space X. We shall assume that
each translation X -+ X arising from multiplication by an element g E G is
a continuous map and that the action is proper in the sense that every point
of X is contained in a small open subset U such that every translate gU is
disjoint from U. Under these hypotheses, the quotient topology on the orbit
space X/G is such that the projection p: X -+ X/G makes X into a covering
space of X/G. Indeed, every small open set U is mapped homeomorphically
onto its image in X/G.
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Example 6.10.1 Let Y be a connected, locally simply connected space, so
that its universal covering space Y + Y exists. The group G = rrt (Y) acts
properly on X = Y, and Y/G = Y.

Lemma 6.10.2 If G acts  properly on X, the singular complex S,(X) of X is
a chain complex offree ZG-modules, and &(X)G is the singular complex of
X / G .

Proof Let I3,, denote the set of continuous maps o: A,, + X. G acts on &,
with ga being the composition of u with translation by g E G. Since S,,(X)
is the free iZ-module with basis B, S,(X) is a G-module. Since translation
by g sends the faces of 0 to the faces of ga, the boundary map d: S,(X)  -+
&l(X) is a G-map, so S,(X)  is a G-module complex.

Let BA denote the set of continuous maps 0í:  A,, + X/G. The unique path
lifting property of a covering space implies that any uí:  A,, + X/G may be
lifted to a map 0: A,, + X and that every other lift is ga for some g E G.
As the ga are distinct, this proves that 23 % G x B’ as a G-set. Choosing one
lift for each (T’  gives a map B’ + B, hence a basis for S,(X)  as a free ZG-
module. This proves that the natural map from S,(X)  to &(X/G)  induces an
isomorphism &(X)G  2 &(X/G). 0

Corollary 6.10.3 If G acts properly on X, H,(X, Z) and H*(X, i?) are G-
modules.

Definition 6.10.4 (Classifying space) A CW complex with fundamental
group G and contractible universal covering space is called a classifying space
for G, or a model for BG; by abuse of notation, we will call such a space
BG, and write EG for its universal covering space. From the Serre fibration
G + EG + BG we see that

ni(BG)  =
G  ifi=l
0 Iotherwise ’

It is well known that any two classifying spaces for G are homotopy equiva-
lent. One way to find a model for BG is to find a contractible C W complex X
on which G acts properly (and cellularly) and take BG = X/G.

Theorem 6.10.5 H,(BG;  Z) 2 H,(G; z) and H*(BG; z) z H*(G;  z).

Proof Since H,(EG)  2’ H,(point)  is 0 for * # 0 and Z for * = 0, the chain
complex S,( EG) is a free ZG-module resolution of Z. Hence H,(G; z) =
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H,(.S,(EG)  @G Z) = H,(S,(EG)G)  = H,(S,(BG)) = KCBG; 29. Simi-

larly, H*(G;  Z) is the cohomology of

Homc(S,(EG),  z) = HOmAb(&(EG)c,  z) = Hcmd&(~G), ZI),

the chain complex whose cohomology is H* (B G; Z). 0

Remark The relationship between the homology (resp. cohomology) of G and
BG was worked out during World War II by Hopf and Freudenthal (resp. by
Eilenberg and MacLane). MacLane asserts in [MacH]  that this interplay ìwas
the starting point of homological algebra.î Here are some useful models of
classifying spaces.

Example 6.10.6 The circle S’  and the complex units C* are two models for

BZ; the extensions 0 + 27 --+ E% + S’  + 1 and 0 -+ Z % Q 2 C* -+ 1
expressing 08 (resp. C) as the universal cover of S’  (resp. Q*) are well known.

Example 6.10.7 The infinite sphere S C O is contractible, and G = C2 acts
properly in such a way that Y/G = LwPco.  Hence we may take U&PO0  as our
model for BC2.

Example 6.10.8 Let S be a Riemann surface of genus g # 0. The funda-
mental group G = nt(S> has generators al, . . . , ag, bl, . . , b, and the single
defining relation [al, bl][az, bz] . [ag,  bg] = 1. One knows that the univer-
sal cover X of S is the hyperbolic plane, which is contractible. Thus S is the
classifying space B G.

Example 6.10.9 Any connected Lie group L has a maximal compact sub-
group K, and the homogeneous space X = L/K is diffeomorphic to [Wd,
where d = dim(L) - dim(K). If r is a discrete torsionfree subgroup of L,
then r n K = (l), so I acts properly on X. Consequently, the double coset
space r\X = T\L/K is a model for the classifying space BT.

For example, the special linear group SL,(  rW> has SO,( 08) as maximal
compact, so X = SO,(rW)  \ SL,,(rW) Z OBd  where d = v - 1. SL,(Z)  is a
discrete but not torsionfree subgroup of SL,(  08).  For N 1 3, the principal con-
gruence subgroup r(N) of level N is the subgroup of all matrices in SL,(Z)
congruent to the identity matrix modulo N. One knows that r(N)  is torsion-
free, so X/ I(N) is a model for Br(N).
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Theorem 6.10.10 Let G act properly on a space X with no(X) = 0. Then for
every abelian group A there are spectral sequences

ëEiq  = H,(G; HqW, A)) =+ Hp+q(XIG,  A);

ìE;’  = Hp(G; Hq(X, A)) =+ HP+q(X/G,  A).

Proof Let us write W,(G;  -) for the hyperhomology functors k,(-c)  de-
fined in 6.1.1.5 (or 5.7.4). Since C = S,(X) @z  A is a chain complex of G-
modules, there are two spectral sequences converging to the group hyperho-
mology W,(G;  C). Shapiroís Lemma 6.3.2 tells us that Hq(&(X)  @Q A) is
0 for q # 0 and &(X/G)  ~8s  A for q = 0 (6.10.2). Hence the first spectral
sequence collapses to yield

W,(G; C> = H&%(X/G)  63 A) = H,(X/G,  A).

The second spectral sequence has the desired E2 term

ìEt,  = H,(G; H,C)  = H,(G; H&X,  A)) .

Similarly, if we write W*(G; -) for the group hypercohomology R*(-G)  and
D for HomAb(S(X),  A), there are two spectral sequences (6.1.15) converging
to W*(G;  0). Since

D, = Hom(ZG  @ &(X/G),  A) = Hom(ZG, Hom(S,(X/G),  A)),

Shapiroís Lemma tells us that the first spectral sequence collapses to yield
W*(G;  D) 2~ H*(X/G,  A), and the second spectral sequence has the desired
E2 term

ìE;q  = HJí(G;  Hq(D))  = HP(G;  Hq(A)). 0

Remark There is a map from Xl G to BG such that X --+ X/G + BG has
the homotopy type of a Serre fibration. The spectral sequences (6.10.10) may
then be viewed as special cases of the Serre spectral sequence 5.3.2.

6.11 Galois Cohomology and Profinite Groups

The notion of profinite group encodes many of the important properties of the
Galois group Gal(L/K) of a Galoisjield  extension (i.e., an algebraic extension
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that is separable and normal but not necessarily finite). The largest Galois
extension of any field K is the separable closure K, of K; K, is the subfield
of the algebraic closure K consisting of all elements separable over K, and
KS = K if char(K) = 0.

K, is also the union ULi of the partially ordered set {Li : i E I] of all finite
Galois field extensions of K. If K c Li c Lj, the Fundamental Theorem of
finite Galois theory [BAI, 4.51 states that there is a natural surjection from
Gal(Lj/K)  to Gal(Li/K)  with kernel Gal(Li/Li).  In other words, there is
a contravariant functor Gal(-/K) from the filtered poset I to the category of
finite groups.

Krullís Theorem 6.11.1 The Galois group Gal( KS/ K) of all field automor-
phisms of i? jixing K is isomorphic to the inverse limit 1E Gal(Li/ K) ofjnite

groups.

Proof Since the Li are splitting fields over K, any automorphism u of K,
over K restricts to an automorphism ai of Li. The resulting restriction maps
Gal(K,/K) + Gal(Li/K)  are compatible and yield a group homomorphism
$ from Gal(K,/K)  to the set l@ Gal(Li/K)  of all compatible families (ai) E

lIGal(Li/K).  If o # 1, then U(X)  #X for some x E KS = ULi; if x E Li,
then oi (x) = a(n) # x. Therefore @(a) # 1, that is, 4 is injective. Conversely,
if we are given (ai) in limGal(Li/K),  define a! E Gal(K,/K)  as follows. If

C
x E K,, choose Li containing x and set a(x) = ai( compatibility of the oiís
implies that o(x)  is independent of the choice of i Since any x, y E K, lie in
some Li, a! is a field automorphism of KS,  that is, an element of Gal(K,/K).
By construction, I = (ai). Hence 4 is surjective and so an isomorphism.

Example 6.11.2 If [F, is a finite field, its separable and algebraic closures co-
incide. The poset of finite extensions IF, n of [F, is the poset of natural numbers,

partially ordered by divisibility, and Gal([F,/[F,)  is l@(Z/nZ)  = ?? E n,s,.

For every prime p, let K be the union of all the [F4n with (p, n) = 1; then

Gal([F,/K) is zP.

There is a topology on Gal(K,/K)  = lim Gal(Li/K)  that makes it into a

compact Hausdorff  group: the profinite to&logy. To define it, recall that the
discrete topology on a set X is the topology in which every subset of X is both
open and closed. If we are given an inverse system {Xi) of topological spaces,
we give the inverse limit lim Xi the topology it inherits as a subspace of the-
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product IIXi. If the Xi are all finite discrete sets, the resulting topology or
X = lim Xi is called the projinite topology on X. Since each Gal(Li/K)  is :

finite%crete  set, this defines the profinite topology on Gal(K,/K).  To shocl
that this is a compact Hausdorff group, we introduce the concepts of profinite
set and profinite group.

Profinite Sets 6.11.3 A projinite set is a set X that is the inverse limit lim Xi

of some system (Xi)  of finite sets, made into a topological space usin;the
profinite topology described above. The choice of the inverse system is not
part of the data; we will see below that the profinite structure is independent of
this choice.

The Cantor set is an interesting example of a profinite set; the subspace
{O,l,i ,...,; )... ]ofR is another. Profinite groups like zp and Gal(K,/K)
form another important class of profinite sets.

Some elementary topological remarks are in order. Any discrete space is
Hausdoti, as a subspace of IlXi, lim Xi is Hausdorff. A discrete space is

t
compact iff it is finite. A topological space X is called totally disconnected
if every point of X is a connected component, and discrete spaces are totally
disconnected.

Exercise 6.11.1 Suppose that (Xi)  is an inverse system of compact Hausdorff
spaces. Show that lim Xi is also compact Hausdox-ff.  Then show that if each of

C
the Xi is totally disconnected, lim Xi is also totally disconnected. This proves

one direction of the following theorem; the converse is proven in [Magid].

Theorem 6.11.4 Projinite  spaces are the same thing as totally disconnected,
compact Hausdorfs topological spaces. In particular; the projinite structure of
X S lim Xi depends only upon the topology and not upon the choice of inverse

SyStr?IZZXi  ) .

Exercise 6.11.2 Let X be a profinite set.

1. Show that there is a canonical choice of the inverse system (Xi)  making
X profinite, namely the system of its finite topological quotient spaces.

2. Show that every closed subspace of X is profinite.
3. If X is infinite, show that X has an open subspace U that is not profinite.

Definition 6.11.5 A projinite group is a group G that is an inverse limit of fi-
nite groups, made into a topological space using the profinite topology. Clearly
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product IlXi. If the Xi are all finite discrete sets, the resulting topology on
X = lim Xi is called the projnite topology on X. Since each Gal(Li/K)  is a

finitekcrete  set, this defines the profinite topology on Gal(K,/K).  To show
that this is a compact Hausdorff group, we introduce the concepts of profinite
set and profinite group.

Profinite Sets 6.11.3 A projinite set is a set X that is the inverse limit lim Xit
of some system (Xi)  of finite sets, made into a topological space using the
profinite topology described above. The choice of the inverse system is not
part of the data; we will see below that the profinite structure is independent of
this choice.

The Cantor set is an interesting example of a profinite set; the subspace
(0, 1, 4,. . . ) ;, . . } of R is another. Profinite groups like zp and Gal(K,/K)
form another important class of profinite sets.

Some elementary topological remarks are in order. Any discrete space is
Hausdoti, as a subspace  of IlXi,  lim Xi is Hausdorff. A discrete space ist
compact iff it is finite. A topological space X is called totally disconnected
if every point of X is a connected component, and discrete spaces are totally
disconnected.

Exercise 6.11.1 Suppose that {Xi} is an inverse system of compact Hausdorff
spaces. Show that lim Xi is also compact Hausdorff. Then show that if each of

t
the Xi is totally disconnected, lim Xi is also totally disconnected. This proves

one direction of the following tLorem; the converse is proven in [Magid].

Theorem 6.11.4 Projinite  spaces are the same thing as totally disconnected,
compact Hausdor#  topological spaces. In particulac  the projinite structure of
X Z lim Xi depends only upon the topology and not upon the choice of inverse

Sy stem7  Xi } .
Exercise 6.11.2 Let X be a profinite set.

1. Show that there is a canonical choice of the inverse system (Xi) making
X profinite, namely the system of its finite topological quotient spaces.

2. Show that every closed subspace of X is profinite.
3. If X is infinite, show that X has an open subspace U that is not profinite.

Definition 6.11.5 A profinite  group is a group G that is an inverse limit of fi-
nite groups, made into a topological space using the profinite topology. Clearly
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G is a profinite set that is also a compact Hausdorff topological group. In fact,
the converse is true: Every totally disconnected compact Hausdorff group is a
profinite group. A proof of this fact may be found in [Shatz], which we recom-
mend as a good general reference for profinite groups and their cohomology.

Examples 6.11.6 (Profinite groups)

1.
2.

3.
4.

Any finite group is trivially profinite.
The p-adic integers zp = l@ Z/píZ  are profinite by birthright.

Krullís Theorem 6.11.1 states that Gal(K,/K)  is a profinite group.
(Profinite completion) Let G be any (discrete) group. The projinite com-
pletion g of G is the inverse limit of the system of all finite quotient
groups G/H of G. For example, the profinite completion of G = Z is
?? = l@(Z/nZ),  but the profinite completion of G = Q/Z is 0. The ker-

nel of the natural map G + 6 is the intersection of all subgroups of
finite index in G.

Exercise 6.11.3 Show that the category of profinite abelian groups is dual to
the category of torsion abelian groups. Hint: Show that A is a torsion abelian
group iff its Pontrjagin dual Horn(A)  Q/Z) is a profinite group.

Exercise 6.11.4 Let G be a profinite group, and let H be a subgroup of G.

1. If H is closed in G, show that H is also a profinite group.
2. If H is closed and normal, show that G/H is a profinite group.
3. If H is open in G, show that the index [G : H] is finite, that H is closed

in G, and therefore that H is profinite.

It is useful to have a canonical way of writing a profinite group G as the
inverse limit of finite groups, and this is provided by the next result.

Lemma 6.11.7 If G is a projinite group, let U be the poset of all open normal
subgroups U of G. Then U forms a fundamental system of neighborhoods of
1, each G/ U is a finite group, and G % l@ G/U.

Proof If G = l@ Gi, then the Ui = ker(G + Gi) are open normal subgroups

of G and the natural map G -+ lim Gi factors through lim G/Ui. Since lim is

left exact, this yields G g lim G>i and shows that (Ux(hence  ZJ forzs a

fundamental system of neigkorhoods  of 1. Hence every open subgroup U of
G contains some Vi, and this suffices to show that G g l@(G/U : U E U}.

(Check this!) 0
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(The notation .?i indicates an omitted term.) For example, if p = 2, then

V,(g) with this differential is called the Chevalley-Eilenberg complex. It is
sometimes also called the standard complex.

Exercise 7.7.1 Verify that d2 = 0, so that V, is indeed a chain complex of
Ug-modules. Hint: Writing d(@) = f&l + 8i2,  show that -811  is the i = 1 part
of 021 and that 1922 = 0. Then show that -012 is the i > 1 part of 021.

Theorem 7.7.2 V,(g) & k is a projective resolution of the g-module k.

Proof (Koszul) It suffices to show that H,(V,(g)) = 0 for n # 0.
Choose an ordered basis {e,) of g as a k-module. By the Poincare-Birkhoff-

Witt Theorem (7.3.7) V,(g) is a free k-module with a basis consisting of terms

(*) eI @ (e,, A . . . A can), rot < . . < CZ,  and I = (Bt, . . . , pm)  increasing.

We filter V,(g) by k-submodules, letting FPVn  be the submodule generated by
terms (*) with m + n 5 p. Since [eiej]  is a linear combination of the e, in 8,
this is actually a filtration by chain subcomplexes

0 c FoV, L FI V, c . . . G V,(g) = UFpV*.

This filtration is bounded below and exhaustive (see 5.4.2),  so by 5.5.1 there is
a convergent spectral sequence

EFq = FpVp+q/Fp-lVp+q  ==+ ffp+qWdg)).

This spectral sequence is concentrated in the octant p > 0, q 5 0, p + q > 0.
The first column is FoV,, which is zero except in the (0,O)  spot, where Et0 is
FoVo  = k.

We claim that each column EF* is exact for p # 0. This will prove that the

spectral sequence collapses at Eí, with Ei4 = 0 for (p, q) # (0, 0), yielding
the desired computation: H,, (V,) = 0 for n # 0.

Let A, be the free k-submodule of Ug on basis

IeI:I=(Bl,...,Bq) is an increasing sequence).

men A, % F4 Vo/Fq-,  VO  and E& = A_, @k ~Ip+~g.  Moreover, the formula
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for the differential in V, shows that the differential do: I$& + EE q_l is given

by

dî(a  @e,,  A. . . A e,,) = 01 = k(-l)i+lae,i  @ ecy, A . . . A .2&  A . . . A e,,.
i=l

We saw in exercise 7.3.6 that A = Ao @ A1 @ . . . is a polynomial ring on the
indeterminates e, : A Y k[el, e2, . . .I. Comparing formulas for d, we see that
the direct sum @ Ei* of the chain complexes E,,o is identical to the Koszul
complex

A C& A*g = A*(@Ae,)  = K(x)

of 4.5.1 corresponding to the sequence x = (et, e2, . . .). Since x is a regular
sequence, we know from lot. cit. that

fm, A) = HdA  c3 A*d = (j H,-~@*,  = 6 E;,~_~
p=o p=o

is zero for n # 0 and A/xA = k for n = 0. Since EAo = k, it follows that

EL4 = 0 for (p, q) # (0, 0), as claimed. 0

Corollary 7.7.3 (Chevalley-Eilenberg) If M is a right g-module, then the
homology modules H,(g, M) are the homology of the chain complex

M @ug V,(g) = M 8~~ ug  @k A*8 = M @k ë*il.

If M is a left g-module, then the cohomology modules Hî(g,  M) are the coho-
mology  of the cochain  complex

Homs(V(g),  M) = Homs(Ug  @k  A*g, M) 2 Homk(A*g,  M).

In this complex, an n-cochain f : Aîg  + M is just an alternating k-multilinear
function f(xl, . . . , x,) of n variables in g, taking values in M. The cobound-
ary Sf of such an n-cochain is the (n + 1)-cochain

Sf (x1, . . .1 &+I) = C(-l)ë+ëxif(xt,  . . . ) ii,. . .)

+ C(-l)ë+jf([Xi.Xj],  X1, ” ë,  iti, ì.  3 ij, ë.  .).
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Application 7.7.4 (Cohomological dimension) If g is n-dimensional as a
vector space over a field k, then Hí(g,  M) = Hi(g, M) = 0 for all i > n. In-
deed, Aíg  = 0 in this range. The following exercise shows that Hî(g,  M) # 0
for some g-module M, so that g has cohomological dimension n = dimk(g).

Exercise 7.7.2 If k is a field and g is n-dimensional as a vector space, show
that Vg has global dimension n (4.1.2). To do this, we proceed in several steps.
First note that pdue(k)  5 n because V,(g) is a projective resolution of k.

1. Let Aîg  2 k be given the g-module structure

[y, X1 A . . . A Xn] = 2 X1  A ’  ’  ’  A [YXi] A ’  ’ A Xn.
i=l

Show that Hn(g,  Aîg)  21 k. This proves that pdus(Aîg)  = n and hence
that gl. dim(Vg)  > n.

2. Use the natural isomorphism Extt,(M, N) g HLi,(g,  Homk(M,  N))
(exercise 7.3.5) and the Global Dimension theorem 4.1.2 to show that
gl. dim(Vg)  5 n, and hence that gl. dim(Vg)  = n.

Exercise 7.7.3 Use the Chevalley-Eilenberg complex to show that

H3(5I2, k) g H3(512,  k) g k.

Exercise 7.7.4 (1 -cocycles and module extensions) Let M be a left g-module.

If 0 + M + N -% k -+ 0 is a short exact sequence of g-modules, and n E N
is such that n(n) = 1, define f: g + M by f(x) = xn. Show that f is a l-
cocycle in the Chevalley-Eilenberg complex Homk(A*g, M) and that its class
[f] E Hí(g,  M) is independent of the choice of n. Then show that Hí(g,  M)
is in l-l correspondence with the equivalence classes of g-module extensions
of k by M. (Compare to exercise 7.4.5.)

Exercise 7.7.5 (2-cocycles and algebra extensions) Let M be a left g-module,
with g free as a k-module.

1. If 0 -+ M -+ e 1, g + 0 is an extension of Lie algebras, and rr : g -+
e is a k-module splitting of n, show that the Lie algebra structure on
e z M x g may be described by an alternating k-bilinear function f: g x
g -+ M defined by

[a(x), O(Y)1 = O(LXYl) + f (xv  Y>, x, y E g.



242

2,.

Show that f is a 2-cocycle for the Chevalley-Eilenberg cochain complex
Homk(A*g, M). Also, show that if o’  is any other splitting of n, then
the resulting 2cocycle  f’ is cohomologous to f. This shows that such
an extension determines a well-defined element [f] E H&(g, M).

Using part (l),  show directly that H&(g, M) is in l-1 correspondence
with equivalence classes of Lie algebra extensions of g by M. This is
the same correspondence as we gave in section 7.6 by a more abstract
approach.

Exercise 7.7.6 If M is a right g-module and g E g, show that the formula

Lie Algebra Homology and Cohomology

(m @ xi A . . A xp)g = [mg] @x1 A . . . A xp

makes M @ V,(g) into a chain complex of right g-modules. Then show that
the induced g-module structure on H,(g; M) is trivial.

7.8 Semisimple Lie Algebras

We now restrict our attention to finite-dimensional Lie algebras over a field k
of characteristic 0. We will give cohomological proofs of several main theo-
rems involving solvable and semisimple Lie algebras. First, however, we need
to summarize the main notions of the classical theory of semisimple Lie alge-
bras.

Definitions 7.8.1 An ideal of g is called solvable if it is solvable as a Lie
algebra (see 7.1.7). It is not hard to show that the family of all solvable ideals
of g forms a lattice, because the sum and intersection of solvable ideals is a
solvable ideal [JLA, 1.71. If g is finite-dimensional, there is a largest solvable
ideal of g, called the solvable radical rad g of g. Every ideal h of g contained
in rad g is a solvable ideal.

A Lie algebra g is called simple if it has no ideals except itself and 0, and
if [g, g] # 0 (i.e., g = [g, g]). For example, sL,(k)  is a simple Lie algebra for
n > 2 (as char(k) # 2).

A Lie algebra g is called semisimple if rad g = 0, that is, if g has no nonzero
solvable ideals. In fact, g is semisimple iff g has no nonzero abelian ideals; to
see this, note that the last nonzero term (rad g)(ì-I)  in the derived series for
rad g is an abelian ideal of g. Clearly simple Lie algebras are semisimple.

Lemma 7.8.2 If g is a jnite-dimensional  Lie algebra, then g/(rad  g) is a
semisimple Lie algebra.
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Proof If not, g/ rad g contains a nonzero abelian ideal a = h/ radg. But
[a, a] = 0, so h = [h, h] must lie inside rad g. Hence h’ is solvable, and there-
fore so is h. This contradicts the maximality of rad g. 0

Definition 7.8.3 (Killing form) If g is a Lie subalgebra of gl, we can use ma-
trix multiplication to define the symmetric bilinear form /3(x, y) = trace(xy)
on g. This symmetric form is ìg-invariantî in the sense that for x, y, z E g

we have B([xyl,  z) = B(x,  [yzlh or equivalently B([xyl, z) +/3(x,  [zyl)  = 0.
(Exercise!)

Now suppose that g is an n-dimensional Lie algebra over k. Left multiplica-
tion by elements of g gives a Lie algebra homomorphism

ad: g + Lie(Endk(g))  = gl,,

called the adjoint  representation of g. The symmetric bilinear form on g ob-
tained by pulling back /l is called the Killing  form  of g, that is, the Killing
form is K(X, y) = trace(ad(x)ad(y)).  The importance of the Killing form is
summed up in the following result, which we cite from [JLA, 111.41:

Cartanís  Criterion for Semisimplicity 7.8.4 Let g be a finite-dimensional
Lie algebra over ajeld of characteristic 0.

1. g is semisimple if and  only if the Killing form is a nondegenerate sym-
metric bilinear form on the vector space g.

2. Ifg C gI, and g is semisimple, then the bilinearform /?(x,y) = trace(xy)
is also nondegenerate on g.

Structure Theorem of Semisimple Lie Algebras 7.8.5 Let g be a jinite-
dimensional Lie algebra over afield of characteristic 0. Then g is semisimple
iffg=gl x g2 x  ... x gr is the jinite product of simple Lie algebras gi. In
particulal;  every ideal of a semisimple Lie algebra is semisimple.

Proof If the gi are simple, every ideal of g = gt x . . . x gr is a product of giís
and cannot be abelian, so g is semisimple.

For the converse, it suffices to show that every minimal ideal a of a semisim-
ple Lie algebra g is a direct factor: g = a x 6. Define b to be the orthogonal
complement of a with respect to the Killing form. To see that b is an ideal of
g, we use the g-invariance of K: for a E a, b E 6, and x E g,

K(a, [x, b]) = K([ax], b) = 0

because [ax] E a. Hence [xb] E b and b is an ideal of g.
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To conclude, it suffices to show that a n b = 0, since this implies g = a x 6.
Now a n b is an ideal of g; since a is minimal either a fl b = a or a n b = 0.
If an b = a, then K([alaz],  n) = K(al, [azx]) = 0 for every al, a2 E a and
x E g. Since K is nondegenerate, this implies that [ala21 = 0. Thus a is abelian,
contradicting the semisimplicity of g. Hence a n b = 0, and we are done. 0

Corollary 7.8.6 Ifg isBnite-dimensional  and semisimple (and char(k) = 0),
then g = [g, g]. Consequently,

Hl(g, k) = Hí(g,  k) = 0.

Proof If g = [g, g], then gab = 0. On the other hand, we saw in 7.4.1 and 7.4.8
that Hl(g, k) S gab  and Hí(g,  k) E Homk(gab,  k). 0

Corollary 7.8.7 Zf g C gl, is semisimple, then g C sI,, = [gin,  g&l.

Exercise 7.8.1 Suppose that k is an algebraically closed field of characteristic
0 and that g is a finite-dimensional simple Lie algebra over k.

1. Use Schurís Lemma to see that Horns@,  g) 2 k.
2. Show that g g Homk(g, k) as g-modules.
3. If f: g 123 g + k is any g-invariant symmetric bilinear form, show that f

is a multiple of the Killing form K, that is, f = (YK for some a E k.
4. If V is any k-vector space and f: g 18 g + V is any g-invariant symmet-

ric bilinear map, show that there is a IJ E V such that f (x, y) = K(X, y)v.

Exercise 7.8.2 (Counterexample to structure theorem in char. p # 0) Let k
be a field of characteristic p # 0, and consider the Lie algebra gK,,  n 2 3.
Show that the only ideals of gI, are 51, = [gl,, gl,] and the center k.1. If pjn,
show that the center is contained inside 51,. This shows that pgI, = g1,lk.l
has only one ideal, namely psi, = sl,/k.l,  and that psi, is simple. Conclude
that pgl,,  is semisimple but not a direct product of simple ideals and show that
Hl(pgL,, k)î Hí(pgI,,  k) E k.

The Casimir Operator 7.8.8 Let g be semisimple and let M be an m-
dimensional g-module. If lj is the image of the structure map

p: g + Lie(Endk(M))  g g&(k),

then g 2’ h x ker(p),  h c: gI,, and the bilinear form /3 on h is nondegenerate
by Cartanís  criterion 7.8.4. Choose a basis {et, . . . , e,) of h; by linear algebra
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there is a dual basis (eí,  . . . , er) of h such that p(ei,  ej) = 6ij. The element

CM = c eiei E Ug is called the Casimir operator for M; it is independent of
the choice of basis for h. The following facts are easy to prove and are left as
exercises:

1. IfxEBand[ei,x]=Ccijej,then[x,ej]=Ccijeí.
2. CM is in the center of Ug and CM E 3. Hint: Use (1).
3. The image of CM in the matrix ring Endk(M)  is r/m times the identity

matrix. In particular, if M is nontrivial as a g-module, then r # 0 and CM
acts on M as an automorphism. Hint: By (2) it is a scalar matrix, so it
suffices to show that the trace is r = dim(h).

Exercise 7.8.3 Let g = st, with basis x = (z A), y = (y t), h = (h-0). If M is

the canonical 2-dimensional g-module, show that CM = 2xy - h + h*/2, while

its image in End(M) is the matrix

Theorem 7.8.9 Let g be a semisimple Lie algebra over a$eld of characteris-
tic 0. If M is a simple g-module, M # k, then

HLi,(g,  M) = Hp(g, M) = 0 for all i.

Proof Let C be the center of Ug. We saw in 3.2.11 and 3.3.6 that H,(g, M) =

Toryg(k,  M) and H*(g, M) = Ext;,(k,  M) are naturally C-modules; more-
over, multiplication by c E C is induced by c: k -+ k as well as c: M + M.
Since the Casimir element CM acts by 0 on k (as CM E 3) and by the invertible
scalar r/m on M, we must have 0 = r/m on H,(g, M) and H*(g, M). This
can only happen if these C-modules are zero. 0

Corollary 7.8.10 (Whiteheadís first lemma) Let g be a semisimple Lie alge-
bra over a Jield of characteristic 0. If M is any$nite-dimensional  g-module,
then HLie(g,  M) = 0. That is, every derivation from g into M is an inner
derivation.

Proof We proceed by induction on dim(M). If M is simple, then either M = k
and Hí(g,  k) = g/[g, g] = 0 or else M # k and H*(g,  M) = 0 by the theo-
rem. Otherwise, M contains a proper submodule L. By induction, H1  (g, L) =
Hí(g,  M/L) = 0, so we are done via the cohomology exact sequence

. ..Hí(g.L)+  Hí(g,M)+  Hí(g,M/L+. 0
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Weylís Theorem 7.8.11 Let g be a semisimple Lie algebra over a field of
characteristic 0. Then every finite-dimensional g-module M is completely re-
ducible, that is, is a direct sum of simple g-modules.

Proof Suppose that M is not a direct sum of simple modules. Since dim(M)
is finite, M contains a submodule Mt minimal with respect to this property.
Clearly Mt is not simple, so it contains a proper 8-submodule  Mu. By induc-
tion, both Mu and M2 = Ml/Mu are direct sums of simple g-modules yet Mt
is not, so the extension Ml of M2 by MO must be represented (3.4.3) by a
nonzero element of

Extb,(M2,  MO) g HLi,(%y  Horn&%,  MO))

(see exercise 7.3.5),  and this contradicts Whiteheadís first lemma. 0

Corollary 7.8.12 (Whiteheadís second lemma) Let g be a semisimple Lie al-
gebra over afield of characteristic 0. If M is anyjinite-dimensional g-module,
then Htie(%, M) = 0.

Proof Since H* commutes with direct sums, and M is a direct sum of simple
g-modules, we may assume that M is simple. If M # k we already know the
result by 7.8.9, so it suffices to show that H2(%, k) = 0, that is, that every Lie
algebra extension

splits. We claim that e can be made into a %-module in such a way that n is a
g-map. To see this, let X be any lift of x E % to e and define x o y to be [X, y]
for y E e. This is independent of the choice of X because k is in the center of
e. The g-module axioms are readily defined (exercise!), and by construction
n(x o y) = [x, n(y)]. This establishes the claim.

By Weylís Theorem e and % split as %-modules, and there is a g-module
homomorphism o: g + e splitting r such that e z k x % as a %-module. If we
choose X = a(x), then it is clear that u is a Lie algebra homomorphism and
that e G k x % as a Lie algebra. This proves that H2(%,  k) = 0, as desired. 0

Remark H3(s12, k) E k (exercise 7.7.3) so there can be no ìthird Whitehead
lemma.”

Leviís Theorem 7.8.13 Ifg is a$nite-dimensional  Lie algebra over afield of
characteristic zero, then there is a semisimple Lie subalgebra C of % (called a



7.8 Semisimple Lie Algebras

Levi factor of g) such that g is isomorphic to the semidirect product
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g % (rad g) x L.

Proof We know that g/(rad  g) is semisimple, so it suffices to show that the
following Lie algebra extension splits.

0 -+ rad g + g + g/rad  g + 0

If rad g is abelian then these extensions are classified by H2(g/(rad  g), rad g),
which vanishes by Whiteheadís second lemma, so every extension splits.

If rad g is not abelian, we proceed by induction on the derived length of
rad g. Let t denote the ideal [rad g, rad g] of g. Since rad(g/r)  = (rad g)/r is
abelian,  the extension

0 + (rad g)/r -+ g/r -+ g/(rad  g) -+ 0

splits. Hence there is an ideal h of g containing t such that g/r g (rad g)/r x
h/r and h/r G’  g/(rad  g). Now

rad(h) = rad(g) f? h = r,

and r has a smaller derived length than rad g. By induction there is a Lie
subalgebra C of h such that h % r >a L and C ” g/r % g/rad  g. But then L
is our desired Levi factor of g. 0

Remark Levi factors are not unique, but they are clearly all isomorphic to
g/(rad  g) and hence to each other. Malcev proved (in 1942) that the Levi
factors are all conjugate by nice automorphisms of g.

Historical Remark 7.8.14 (see [Bour]) Sophus Lie developed the theory of
Lie groups and their Lie algebras from 1874 to 1893. Semisimple Lie alge-
bras over C are in l-l correspondence with compact, simply connected Lie
groups. In the period 1888-1894 much of the structure of Lie algebras over
Q was developed, including W. Killingís discovery of the solvable radical and
semisimple Lie algebras, and the introduction of the ìKilling formî in E. Car-
tanís thesis. The existence of Levi factors was announced by Cartan but only
proven (publicly) by E. E. Levi in 1905. Weylís Theorem (1925) was origi-
nally proven using integration on compact Lie groups. An algebraic proof of
Weylís theorem was found in 1935 by Casimir and van der Waerden. This and
J. H. C. Whiteheadís two lemmas (19361937) provided the first clues that
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enabled Chevalley and Eilenberg (1948 [ChE])  to construct the cohomology
H*(g, M). The cohomological proofs in this section are close parallels of the
treatment by Chevalley and Eilenberg.

Exercise 7.8.4 If g is a finite-dimensional Lie algebra over a field of charac-
teristic 0, show that g is semisimple iff H1  (g, M) = 0 for all finite-dimensional
g-modules M.

Exercise 7.8.5 (Reductive Lie algebras) A Lie algebra g is called reductive if
g is a completely reducible g-module (via the adjoint representation). That is,
g is reductive if g is a direct sum of simple g-modules. Now assume that g is
finite-dimensional over a field of characteristic 0, so that g Y (rad g) M ,C for
some semisimple Lie algebra C by Leviís theorem. Show that the following
are equivalent:

1. g is reductive

2. le, gl= c
3. rad(g) is abelian and equals the center of g
4. g g a x ,C where a is abelian and L is semisimple

Then show that gl, is a reductive Lie algebra, and in fact that gl, g k x al,.

7.9 Universal Central Extensions

A central extension e of a Lie algebra g is an extension O+ M -+ e & g + 0 of
Lie algebras such that M is in the center of e (i.e., it is just an extension of Lie
algebras of g by a trivial g-module M in the sense of 7.6.1). A homomorphism

over g from e to another central extension 0 --+ Mí -+ eí % g + 0 is a map
f: e + eí such that n = níf. e is called a universal central extension of g if
for every central extension eí of g there is a unique homomorphism f: e -+ e’
over g. Clearly, a universal central extension of g is unique up to isomorphism
over g, provided it exists. As with groups (6.9.2),  if g has a universal central
extension, then g must be perfect, that is, g = [g, g].

Construction of a Universal Central Extension 7.9.1 We may copy the
construction 6.9.3 for groups. Choose a free Lie algebra f mapping onto g and
let t c f denote the kernel, so that g 2 f/r. This yields a central extension
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If g is perfect, [f, f] maps onto g, and we claim that

0 + (r n If, fl>/[L fl + [f, fl/[r,  fl + g + 0

is a universal central extension of g. Note that Hz(g, k) = (r n [f, f])/[r, f] by
exercise 7.5.2.

Theorem 7.9.2 A Lie algebra g has a universal central extension iff g is
perfect. In this case, the universal central extension is

(*> 0 + H2b3,  k) -+ [f, fl/b, fl + g + 0.

Proof We have seen that (*) is a central extension. Set e = [f, f]/[r, f]. Since
[f, f] maps onto g, any x, y E f may be written as x = xí + r, y = yí + s with
xí, yí E [f, f] and r, s E r. Thus in f/[r, f]

1x, yl = Ixí,  $1 + lxí,  sl + [r, ~ë1  + [r, ~1 = Ixí,  ~ë1.

This shows that e is also a perfect Lie algebra. If 0 -+ M -+ eí -% g + 0
is another central extension, lift f + g to a map 4: f + eí. Since n4(r)  = 0,
#(r) C_ M. This implies that ~$([r,  f]) = 1. As in 6.9.5,$  induces amap  f: e +
eí over g. If ft is another such map, the difference 6 = ft - f: e + M is zero
because e = [e,  e] and

fl(bY1)  = u-(x>  + S(x), f(Y) + a(Y)1  = [f(x), f(Y)1 = fax, Yl).

Hence fr = f, that is, f is unique. 0

By copying the proofs of 6.9.6 and 6.9.7, we also have the following two
results.

Lemma 7.9.3 Zf 0 + M + e + g + 0 and 0 + Mí -+ eí --+ g + 0 are
central extensions, and e is perfect, there is at most one homomorphism from e
to eí over g.

Recognition Criterion 7.9.4 Call a Lie algebra g simply connected if every
central extension 0 + M + e + g -+ 0 splits in a unique way as a product
Lie algebra e = g x M. A central extension 0 + M + e + g -+ 0 is universal
iff e is per$ect and simply connected. Moreover, Hl(e,  k) = H2(e, k) = 0. In
particular ifg is per$ect and H2(e, k) = 0, then g is simply connected.
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Corollary 7.9.5 Let g be ajinite-dimensional semisimple Lie algebra over a
field of characteristic 0. Then H2(e, k) = 0 and g is simply connected.

Proof M = H2(e, k) is a finite-dimensional g-module because it is a sub-
quotient of A2g in the Chevalley-Eilenberg complex. By Whiteheadís second
lemma 7.8.12, H2(g, M) = 0, so the universal central extension is e = M x g.
By universality, we must have M = 0. 0

Exercise 7.9.1 Show that simply connected Lie algebras are perfect.

Exercise 7.9.2 If 0 + Mi -_, ei + gi + 0 are universal central extensions,
show that 0 -+ Ml x M2 --+ el x e2 + gI x g2 + 0 is also a universal central
extension.

In the rest of this section, we shall use the above ideas in the construction of
Affine Lie algebras 6 corresponding to simple Lie algebras.

Let g be a fixed finite-dimensional simple Lie algebra over a field k of char-
acteristic 0. Write g[t, t-l] for the Lie algebra g @k  k[t, t-ë1  over k[t, t-l].
Elements of g[t, t-l] are Laurent polynomials Exit’  with xi E g and i E Z.
Since the Chevalley-Eilenberg complex V,(g[t, t-l])  is V,(g) @k k[t, t-l],  we
have

fL(g[t,  t-t k[t,  t-ëI>  = H,(g,  k) @,k  k[t, t-l].

In particular, HI = H2 = 0 (7.8.6, 7.8.12) so g[t, t-l]  is perfect and simply
connected as a Lie algebra over the ground ring k[t, t-l].

Now we wish to consider g[t, t-ë1  as an infinite-dimensional Lie algebra
over k. Since g[t, t-ë1  is perfect, we still have Hl(g[t, t-l],  k) = 0, but we
will no longer have Hz(g[t,  t-l],  k) = 0. We now construct an example of a
nontrivial central extension of g[t, t-l]  over k.

Affine Lie Algebras 7.9.6 If K: g @ g + k is the Killing form (7.8.3),  set

/3(CXití,  C Yjt') = C i K(Xi,  yi).

Since /3 is alternating bilinear, it is a 2-cochain (7.7.3). Because k is a triv-
ial g[t, t-ë]-module,  B is a 2-cocycle: if x = Exití,  y = C yjtj, and z =
c z_ktk,  then the g-invariance of the Killing form gives
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4%x>  Y? Z) = -BNXYl,  Z) + B(bzl,  Y) - B([YZl, n)

Z!ftk)  + B(LXtZkltifk,  Yjfí) - /9([YjZkltj+k,  Xifí)

Zk) + 0 + k)K([XiZkl,  Yj) - (j + k)K(IYjZkl, Xi)

=;+g -
1 (1 + I) (1 + k) - 0 + k)h(&, [Yj, Zkl)

= 0.

The class [j3]  E H2(g[t, t-l], k) corresponds to a central extension of Lie al-
gebras over k:

O+k+j+g[t,t-ë1í0.

The Lie algebra 6 is called the Afine Lie algebra corresponding to g. It is a
special type of Kac-Moody Lie algebra. We are going to prove that i is the
universal central extension of g[t, t-ë1  following the proof in [Will.

Lemma 7.9.7 6 is perfect.

Proof Let p: g[t, t-l] -+ i be the vector space splitting corresponding to the
2-cocycle  B. If x, y E g then [p(xtí),  ,o(yt-ë)]  = p([xy]) + i K(X, y) for i =
0, 1 so k C [i, jj]. Since [i, 61 maps onto the perfect g[t, t-l],  we must have

i = rj, a. 0

Now fix an arbitrary central extension 0 -+ A4 + e 5 g[t, t-l] + 0. If
U: g[t, t-ë1  + e is a vector space splitting of rr, recall (exercise 7.7.5) that the
corresponding 2-cocycle fU:  A2(g[t,  t-l]) + M is defined by

[a(x), O(Y)1 = O([XYl)  + fa(x, Y>,

and that conversely every 2-cocycle f determines a (T such that f = fO. Let S
denote the set of all splittings (T of n such that

fo(xxiti, y) = 0 for all xi, y E g and i E Z.

Lemma 7.9.8 S is nonempty for every central extension of g[t , t-l].

Proof Given any splitting o, write &(x,  y) for f,(xtí,  y). Each $(--,  y)
is an element of Homk(g, M), so we may think of fi as a I-cochain,  that
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is, a map from g to Homk(g, M). In fact, fi is a cocycle (exercise!). But
Horn& M) is finite-dimensional, so by Whiteheadís first lemma (73.10)
there exists (pi E Homk(g, M) such that fi(x, y) = ~ë([xy]).  Assembling the
cp’ into a k-linear map 9: g[t, t-l] + M by the rule q(C xití)  = C pí(xi),  we
see that the 2-cocycle 6~: A*g[t, t-l] + M satisfies

(6P)(C*itít  Y> = - CCpí([XiYl)  = - C .fj(Xit Y> = -f(Cxi+3 Y>.

Hence the splitting t corresponding to the 2-cocycle f + 6~ is an element
of s. 0

Exercise 7.9.3 Show that S contains exactly one element.

Lemma 7.9.9 If k = C and c E S, then there exist cij E M such that

where K is the Killing form on g.

Proof Because o E S, we have

0  = Gf(Xití,  Yjtj,  Z )  = fc([XiZ]tí,  yjtj) - fo([Xití,  [Z,  yj]tj).

Therefore each fLj(X,  y) = f,(Xtí,  ytj) is a g-invariant bilinear form on g:

f;J([xz19  Y) = fjj(XY  [ZYI).

On the other hand the Killing form is a nondegenerate g-invariant bilinear
form on g. Since k = C, any g-invariant symmetric bilinear form must there-

fore be a multiple of K (exercise 7.8.1).  Thus f:j = KCij for some cij E M.
0

Corollary 7.9.10 Zf k = Q and CT E S, then there is a c E M such that for
x = Exití,  y = c yjtj in g[t, t-ë1  we have

fo(X,  Y>  = B(X, Y>C = c iK(Xi,  y-i)C.

Proof Setting c = q-1, it suffices to prove that ci,-i = ic and that cij = 0
if i # -j. As (T E S, ciu = 0 for all i; since fc is skew-symmetric, we have
Cij = -Cji. Since K is g-invariant and symmetric,

0 = 6fa(Xtit  Ytj,  Ztk) = --K(X, [YZ])(ci+j,k  + ci+k,j  + Cj+k,i)
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which yields 0 = Ci+j,k + Cifk,  j + Cj+k,i.  Taking i + j = 1 and k = -1, so
that j + k = -i, we get

Ci,__i  = -C_i,i  = C + Ci_I,]-i

By induction on Ii 1 > 0, this yields ci,_i = ic for all i E Z. Taking i + j + k =
s a n d k = l , w e g e t

c,-I,1  =Ci,j+l  - Ci+l,j.

Summingfromi=Otos-1ifs~O(orfromi=sto-lifs~O)yields
~c,-l,l = 0, SO cr,l = 0 unless t = -1. This yields ci,j+t = ci+t,j  unless
i + j = -1. Fixing s # 0, induction on Ii1 shows that ci,s_i = 0 for all i E Z.

0

Theorem 7.9.11 (H. Garland) Let 0 be a$nite-dimensional  simple Lie alge-
bra over k = C. Then the corresponding A&e Lie algebra 6 (7.9.6) is the
universal central extension of fj[t, t-l].

Proof Let 0 + M + e 5 g[t, t-l] -+ 0 be a central extension. Choose a
splitting (T in S (7.9.Q  and let cij E M be the elements constructed in lemma
7.9.9. Recall that there is a vector space splitting 1: g[t, t-ë1  + i correspond-
ing to the 2-cocycle j3, which yields a vector space decomposition 6 &’ k x
e[t, t-l]. Define F: k -+ M by F(a) = czcl,_l and extend this to a vector
space map from j to e by setting F(l(x)) = a(x) for x E g[t, t-l]. Since

F([l(n),  l(y)11  = F(dx,  ~1) + F(Bh, Y>)

=a([x, yl) + c iK(Xi, Y-ikl,-1

= a([x,  Yl) + .fo(x, Y>

= [F(l(x)),  F(~(y))l,

and k is in the center of 6, F is a Lie algebra homomorphism 6 + e over
g[t, t-l]. Since j is perfect, there is at most one such map, so F is unique.

0

Remark 7.9.12 If g is semisimple over Q, then g = gt x . . . x gr for simple
Lie algebras gi. Consequently the universal central extension of g[t, t-l] is the
product

O+kí+il  x . . . x jjr -+ g[t, t-11 + 0.

If k is a subfield of Q and g is simple over k, g @I  Q is semisimple over Q.
If g 8 C is simple then since &(g, k) I& Cc = H2(54  @k Q, Q) = Cc it follows
that i is still the universal central extension of g[t, t-l]. However, this fails if
g@ë=g,  x ... x gr because then H2(g,  k) = kí.
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Simplicial Methods in Homological Algebra

By now, the reader has seen several examples of chain complexes in which
the boundary maps C,, -+ C,_ 1 are alternating sums do - dt + . . . f d,, . The
primordial example is the singular chain complex of a topological space X;
elements of C,(X) are formal sums of maps f from the n-simplex A,, into X,
and di(f) is the composition off with the inclusion A,_, c A,, of the irh face
of the simplex (1.1.4). Other examples of this phenomenon include Koszul
complexes (4.5.1),  the bar resolution of a group (6.5.1),  and the Chevalley-
Eilenberg complex of a Lie algebra (7.7.1). Complexes of this form arise from
simplicial modules, which are the subject of this chapter.

8.1 Simplicial Objects

Let A be the category whose objects are the finite ordered sets [n] = (0 < 1 <
. . . -c n} for integers n > 0, and whose morphisms are nondecreasing mono-
tone functions. If A is any category, a simplicial object A in A is a con-
travariant functor from A to A, that is, A: Aor’  + A. For simplicity, we write
A, for A([n]). Similarly, a cosimplicial object C in A is a covariant functor
C: A -+ A, and we write An for A([n]). A morphism of simplicial objects is
a natural transformation, and the category Sd of all simplicial objects in A is
just the functor category AA?

Example 8.1.1 (Constant simplicial objects) Let A be a fixed object of A.
The constant functor A + A sending every object to A is called the constant
simplicial object in A at A. We have A,, = A for all n, and aí*  = identity
morphism for every u in A.

254
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We want to give a more combinational description of simplicial (and cosim-
plicial) objects, and for this we need to study the simplicial category A di-
rectly. The reader interested in more details about simplicial sets may want to
read [May].

It is easy to see that for each n there are n + 1 maps [0] + [n] but only one

map [n] + [O]. There are (ntí)  maps [l] --+ [n] and more generally (ìTsí)

maps [i] -+ [n] in A. In order to make sense out of this chaos, it is useful
to introduce the face maps ei and degeneracy maps vi. For each n and i =
0, . . , II the map ai : [n - I] + [n] is the unique injective map in A whose
image misses i and the map ~]i : [n + 11 + [n] is the unique surjective map in
A with two elements mapping to i. Combinationally, this means that

s,(j)  = ’
i.

ifj<i

Ij + l  ifj>i ’ Vi(j)  = j
l

ifj(i

Ij - l  ifj>i .

Exercise 8.1.1 Verify the following identities in A:

EjEi = &i&j_1 ifi< j

rljl7i  = rliOj+l ifis j

Einj-1 ifi cj
qj&i = identity if i = j or i = j + 1

Ei-lVj ifi > j + 1.

Lemma 8.1.2 Every morphism CX: [n] -+ [m] in A has a unique epi-manic
factorization CY = EV, where the manic E is uniquely a composition of face
maps

6 = &il  ’  . Ei, w i t h  Osi,s...iil irn

and the epi q is uniquely a composition of degeneracy maps

rl = 'Ijj ’  ’  ’ 'Ijt w i t h  01 jl <...< j,<n.

Proof Let i, < . . . < il be the elements of [m] not in the image of (Y and
jt < ... < j, be the elements of [n] such that a(j) = a( j + 1). Then if p =
n - t = m - s , t h e m a p c r f a c t o r s a s

[nl J-F+ [PI  & [ml.

The rest of the proof is straightforward. (Check this!) 0



Proposition 8.1.3 To give a simpicial object  A in A, it is necesxafy  and
suficient to give a sequence of objects Ao, A 1, . . together with face operators
ai: A, -+ A,_1 and degeneracy operators oi: A, -+ A,+1 (i = 0, 1,. . . , n),
which satisfy the following ìsimplicial”  identities

aiaj  = aj_lai if i < j

OiOj  =fSj+lCTi ifii j

Dj-I& ifi<j
aioj =

1

identify if i = j or i = j + 1
Djai_1 ifi > j + 1.

Under this correspondence 8; = A(ei) and ai = A(ni).

Proof If A is simplicial, we obtain the above data by setting A, = A([n])
and considering only faces and degeneracies. Conversely, given the data and
a map in A written in the standard form o = &ii  . . . vj, of the lemma, we set
A(o) = oj, .’ . &,. Since the simplicial identities control composition in A,
this makes A into a contravariant functor, that is, a simplicial object. 0

If we dualize the above discussion, we get cosimplicial objects. Recall that
a cosimplicial object is a covariant functor A: A + A.

Corollary 8.1.4 To give a cosimplicial object A in d, it is necessary and suf-
ficient  to give a sequence of objects Aí,  Aí,  . . . together with coface operators
aí:  Aî-’  + Aî and codegeneracy operators gi: An+’ + Aî (i = 0, . . . , n)
which satisfy the ìcosimplicial”  identities

ai$ = #ai-i if i <  j

ojoi = ,i,j+l ifii j

aiaj-1 ifi <j
oiai = identity if i = j or i = j + I

ai-bj if i > j + 1.

Example 8.1.5 (Simplices) The geometric n-simplex Aî is the subspace
of Wf’

Aî = ((to, . . . ,t~):O~tt~l,Cti=l].

If we identify the elements of [n] with the vertices uu = (1 , 0, . . . , 0), . . . ,
un = (0, . . . , 0, 1) of Aî, then a map (Y: [n] + [p] in A sends the vertices of
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Proposition 8.1.3 To give a simplicial object A in JI, it is necessary and
suficient to give a sequence of objects Ao, Al, . . together with face operators
&: A,, + A,_1 and degeneracy operators ai: A,, -+ An+1  (i = 0, 1, . . . , n),
which satisfy the following ìsimplicialî identities

&aj  = aj_lai if i < j

ffiffj = Oj+lffi ifis j

Oj_l& ifi< j
aiaj =

1

identify if i = j or i = j + 1
c7jai_1 ifi > j + 1.

Under this correspondence ai = A(ei) and oi = A(ni).

Proof If A is simplicial, we obtain the above data by setting A, = A([n])
and considering only faces and degeneracies. Conversely, given the data and
a map in A written in the standard form cx = Eil . . . qj, of the lemma, we set
A(a) = oj, . . &,. Since the simplicial identities control composition in A,
this makes A into a contravariant functor, that is, a simplicial object. 0

If we dualize the above discussion, we get cosimplicial objects. Recall that
a cosimplicial object is a covariant functor A: A + A.

Corollary 8.1.4 To give a cosimplicial object A in A, it is necessary and suf-
jicient to give a sequence of objects Aí,  Aí,  . . . together with coface operators
aí:  Aî-’  -+ An and codegeneracy operators cri: An+’ + Aî (i = 0, . . , n)
which satisfy the ìcosimplicialî identities

ajai = aiaj-i if i < j

,j,i = ,i,j+l ifii j

aiaj-I ifi< j
aj$ = identity if i = j or i = j + 1

ai-bj if i > j + 1.

Example 8.1.5 (Simplices) The geometric n-simplex Aî is the subspace
of FP+t

Aî = ((to, . . . ,tn):O(ti~l,Cti=l}.

If we identify the elements of [n] with the vertices vu = (1 , 0, . . . , 0), . . . ,
un = (0, . . (0, 1) of Aî, then a map cr: [n] + [p] in A sends the vertices of
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Aî to the vertices of AP by the rule a(vi)  = Vu(i). Extending linearly gives a
map a,: Aî + AP and makes the sequence Aí,  Aí, ’ . . , Aî,  . . . into a cosim-
plicial topological space. Geometrically, the face map si induces the inclusion
of Aî-’  into Aî as the irh face (the face opposite the vertex Vi), and the degen-
eracy map vi induces the projection An+’  -+ Aî onto the ith face that identi-
fies Vi and ui+l.  This geometric interpretation provided the historical origins
of the terms face and degeneracy operators.

Geometric Realization 8.1.6 If X is a simplicial set, its geometric realiza-
tion 1x1  is a topological space constructed as follows. For each n > 0, topol-
ogize the product X, x Aî as the disjoint union of copies of the n-simplex
Aî indexed by the elements x of X,. On the disjoint union u X, x Aî,

define the equivalence relation - by declaring that (x, s) E X, x Am and
(y, t) E X, x Aî are equivalent if there is a map U: [m] -+ [n] in A such that
a*(y) = x and a,(s) = t. That is,

(a*(Y), s) - (Y, a*@>>.
The identification space u(X,, x Aî)/  - is the geometric realization IX]. It is
easy to see that in forming 1x1 we can ignore every n-simplex of the form

oi(y) x Aî, so we say that the elements oi(y)  are degenerate. An element
x E X, is called non-degenerate if it is not of the form ai for some i < n
and y E X,-t ; the nondegenerate elements of X, index the n-cells of (Xl,
which implies that IX 1 is a ìCW complex.î A more detailed discussion of the
geometric realization may be found in [May].

Example 8.1.7 (Classifying space) Let G be a group and consider the simpli-
cial set BG defined by BGn = (11, BGl = G, . . , BG, = Gî,  . . . . The face
and degeneracy maps are defined by insertion, deletion, and multiplication:

~i(gl, ”  ’ ~gn)=(gl7îëtgi7  1tgi+ltîë,gn)

I

G2.~ . . .t &I) ifi=O

4(&Tl,ë..,gn)=  (gl,...,gigi+l,...,gn)  ifO<i<n

(Sl,.  . .? a-1) ifi =n.

The geometric realization 1 BGI of the simplicial set BG is called the clas-
sifying space of G. The name comes from the theory of fiber bundles; if
X is a finite cell complex then the set [X, I BGl] of homotopy classes of
maps X + I BG 1 gives a complete classification of fiber bundles over X with
structure group G. We will see in 8.2.3 and 8.3.3 that I BG I is an Eilenberg-
MacLane space whose homology is the same as the group homology H,(G)
of Chapter 6. Thus we recover definition 6.10.4 as well as 6.10.5.
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Example 8.1.8 (Simplicial complexes) A (combinational) simplicial com-
plex is a collection K of nonempty  finite subsets of some vertex set V such
that if 0 # r c o c V and u E K then r E K. If the vertex set is ordered, we
call K an ordered simplicial complex. To every such ordered simplicial com-
plex we associate a simplicial set SS(K)  as follows. Let S&(K) consist of
all ordered (n + l)-tuples  (vu,  . . . , u,) of vertices, possibly including repeti-
tion, such that the underlying set (uu, . . . , u,} is in K. If a!:  [n] -+ [p] is a map
in A, define a,: SS,(K)  + S&(K)  by a,(uo,  . . , up) = (u,(o),  . . . , vu(,)).
Note that vu 5 . . . 5 u, and that

The following exercises explain how combinatorial simplicial complexes
correspond to triangulated polyhedra. Clearly a triangulated polyhedron P
gives rise to a combinatorial simplicial simplex K whose elements correspond
to the faces of P, the vertices of P forming the vertex set V of K (see 1.1.3).

Exercise 8.1.2 Show that if K is an ordered combinatorial simplicial com-
plex, then SS(K)  determines K, because there is a bijection between K and
the subset of SS( K) consisting of non-degenerate elements.

Exercise 8.1.3 Let K be the collection of all nonempty  subsets of a vertex
set V having 12 + 1 elements. (K is the combinational simplicial complex
arising from the polyhedron Aî.) Show that the geometric realization ISS(K)I
is homeomorphic to the geometric n-simplex An.

Exercise 8.1.4 (Geometric simplicial complexes) If K is a combinatorial
simplicial complex (8.1.8),  let I K I denote the geometric realization ISS(K) 1 of
the simplicial set SS(K)  associated to some ordering of K. Show that [RI is
a triangulated polyhedron with one face e, for each o E K. (If (T has IZ + 1
elements, then e, is homeomorphic to an n-simplex.) Therefore K is the
combinational simplicial complex arising from I K 1. The polyhedron 1 K 1 is
sometimes called the geometric simplicial complex associated to K.

Definition 8.1.9 (Semisimplicial objects) Let A, denote the subcategory of
A whose morphisms are the injections F: [i] 9 [n]. A semi-simplicial object
K in a category A is a contravariant functor from A, to A.

For example, an ordered combinational simplicial complex K yields a semi-
simplicial set with K, = (r E K: t has 12 + 1 elements]. Every simplicial set
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becomes a semi-simplicial set by forgetting the degeneracies, but the degen-
eracies provide a richer combinatorial structure.

The forgetful functor from simplicial objects to semi-simplicial objects
has a left adjoint L when A has finite coproducts; (LK), is the coproduct
Upi,,  u, Kp[n], where for each p I n the index n runs over all the surjec-
tions [n] + [p] in A and Kp[n] denotes a copy of K,. The maps defining the
simplicial structure on LK are given in the following tedious exercise 81.5;
LK is called the left Kan extension of K along As c A in [MacCW,  X.31.
When A is abelian we will give an alternate description of LK in exercise
8.4.3.

Exercise 8.1.5 (Left Kan extension) If CY:  [m] + [n] is any morphism in A,
define L K (a): L K, + L K, by defining its restrictions to Kp[q] for each sur-
jection  n as follows. Find the epi-manic factorization EV’  of VU with ní:  [m] +
[q] and 6: [q] + [n]; the restriction of LK((r)  to Kp[q] is defined to be the
map K(E) from K, to the factor Kg[qí]  of the coproduct (L K)m. Show that
these maps make L K into a simplicial object of A.

Exercise 8.1.6 Show that a semi-simplicial object K is the same thing as
a sequence of objects Ko, Kl, . . . together with face operators ai: K, +
K,_l (i = 0, . . . , n)suchthatifi < jthenaiaj=aj_r&.

Ko $- Kl $k K2 E K3.. . .
a2

Historical Remark 8.1.10 Simplicial sets first arose in Eilenberg and Zil-
berís 1950 study [EZ] under the name ìcomplete semi-simplicial setsî (c.s.s.).
For them, semi-simplicial sets (defined as above) were more natural, and the
adjective ìcompleteî reflected the addition of degeneracies. By 1954, this ad-
jective was often dropped, and ìsemi-simplicial setî was a common term for a
U.S. By the late 1960s even the prefix ìsemiî was deleted, influenced by the
book [May], and ìsimplicial setî is now universally used for C.S.S. In view of
modem usage, we have decided to retain the original use of ìsemi-simplicial”
in definition 8.1.9.

8.2 Operations on Simplicial Objects

Definition 8.2.1 Let A be a simplicial (or semi-simplicial) object in an
abelian category d. The associated, or unnormalized, chain complex C =
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C(A) has C, = A,,, and its boundary morphism d: C,, -+ Cn_l is the alternat-
ing sum of the face operators &: C, -+ Cn_r :

d = 80 - & + . . . + (-l)ì&.

The (semi-) simplicial identities for &aj imply that d* = 0. (Check this!)

Example 8.2.2 (Koszul complexes) Let x = (xl, . . , x,) be a sequence of
central elements in a ring R. Then the sequence Rm, A2Rm, . . , Aî+’  Rm,
of exterior products of Rîí  forms a semi-simplicial R-module with

The Koszul complex K(x) of 4.5.1 is obtained by augmenting the chain com-
plex associated to the semi-simplicial module (Aî+’  Rm}. If R is a k-algebra,
this defines an action of the abelian Lie algebra g = km on R, and K(x) coin-
cides with the Chevalley-Eilenberg complex 7.7.1 used to compute H,(g, R).

An extremely useful observation is that if we apply a functor F: A -+ B to
a simplicial object A in A, we obtain a simplicial object in 23. Similar remarks
apply to semisimplicial and cosimplicial objects.

Example 8.2.3 (Simplicial homology) If R is a ring, the free module R[X]
on a set X is a functor Sets + R-mod. Whenever X = (X,) is a (semi-)
simplicial set, R[X] = {R[X,])  is a (semi-) simplicial R-module. The chain
complex associated to R[X] is the chain complex used to form the simplicial
homology of the cellular complex 1x1 with coefficients in R. (See 1 .1.3.)

Motivated by this example, we define the simplicial homology H,(X; R) of
any simplicial set X to be the homology of the chain complex associated to the
simplicial module R[X]. Thus H,(X; R) = H,(lXl;  R).

For example, consider the classifying space I BGI of a group G (8.1.7). The
chain complex associated to R[BG]  is the canonical chain complex used in
6.5.4 to compute the group homology H,(G; R) of G with coefficients in the
trivial G-module R. This yields the formula

H,(G; R) E H,(BG;  R) = H,(lBGI;  R)

Example 8.2.4 (Singular chain complex) Let X be a topological space. Ap-
plying the contravariant functor HomT,,,(-,  X) to the cosimplicial space (Aî)

gives a simplicial set S(X) with S,(X) = HOmTop(An, X), called the singu-
lar simplicial set of X. The singular chain complex of X used to compute the
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singular homology of X with coefficients in R (1.1.4) is exactly the chain com-
plex associated to the simplicial R-module R[S(X)].

Remark There is a natural continuous map ] S( X) ] + X, which is a homotopy
equivalence if (and only if) X has the homotopy type of a CW complex. It
is induced from the maps S,(X)  x Aî + X sending (f, t) to f(t). In fact,
S is the right adjoint to geometric realization: for every simplicial set K,
HomT,,,(]K], X) % Homss,b(K, S(X)). These assertions are proven in [May,
section 161.

Example 8.2.5 For each n > 0 a simplicial set A[n] is given by the functor
HomA(  -, [n]). These are universal in the following sense. For each simplicial
set A, the Yoneda Embedding 1.6.10 gives a l-l correspondence between
elements a E A,, and simplicial morphisms f: A[n] + A; f determines the
element af = f(idI,l) and conversely fa is defined on h E HomA([m],  [n]) by
&(h) = h*(a) E A,.

Exercise 8.2.1 Show that A[n] is the simplicial set SS(Aî)  associated (8.1.8)
to the combinatorial simplicial complex underlying the geometric n-simplex
An.

Cartesian Products 8.2.6 The Cartesian product A x B of two simplicial
objects A and B is defined as (A x B), = A, x B, with face and degeneracy
operators defined diagonally:

&(a, b) = (&a, &b) and Ui(a, b) = (oia, oib).

If B is a simplicial set and A is a simplicial object in a category A having
products, then we can also make sense out of A x B by defining A,, x B, to
be the product of B, copies of A,. This construction is most interesting when
each B,, is finite, in which case A need only have finite products.

Exercise 8.2.2 If K and L are combinorial simplicial complexes (8.1.8),
there is a combinational simplicial complex P with 1 PI = 1 K I x 1~5.1  as poly-
hedra, defined by SS(P) = SS(K) x SS(L);  see [May, 14.31 or [EZ]. Verify
this assertion by finding combinational simplicial complexes underlying the
square Aí x A’  and the prism A2 x A’  whose associated simplicial sets are
A[l] x A[l]  and A[21 x A[l].

Fibrant Simplicial Sets 8.2.7 From the standpoint of homotopy theory, it
is technically useful to restrict oneís attention to those simplicial sets X that
satisfy the following Kan condition:
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ForeverynandkwithO~k(n+l,ifxo,...,x~_~,x~+l,...,X~+~E
X, are such that &xi = i3j_txi for all i -C j(i and j not equal to k), then
there exists a y E X,,+t  such that ai = xi for all i # k.

We call such simplicial setsJibrant;  they are sometimes called Kan com-
plexes after D. Kan, who first isolated this condition in 1955 and observed that
the singular simplicial set S(X) of a topological space X (8.2.4) is always fi-
brant. The class of fibrant simplicial sets includes all simplicial groups and all
simplicial abelian groups by the following calculation.

Lemma 8.2.8 IfG is a simplicial group (a simplicial object in the category of
groups), then the underlying simplicial set isfibrant. A fortiori every simplicial
abelian group, and every simplicial R-module, isfibrant  when considered as a
simplicial set.

Proof Suppose given xi E G, (i # k) such that &xj = aj_txi for i < j. W e
use induction on r to find g, E Gn+t such that &(g,)  = xi for all i 5 r, i # k.
We begin the induction by setting g-1 = 1 E Gn+t and suppose inductively
that g = gr_r is given. If r = k, we set g, = g. If r # k, we consider u =
x;ë(&g).  If i < r and i # k, then at(u) = 1 and hence &(a+)  = 1. Hence
g, = g(oku)-’ satisfies the inductive hypothesis. The element y = g, there-
fore has &(y) = xi for all i # k, so the Kan condition is satisfied. 0

Exercise 8.2.3 Show that A[n] is fibrant.  Now let An+’  be the combina-
tional simplicial complex obtained from An+’  be removing the top (n + l)-
dimensional cell, and show that the simplicial set SS(An+ë)  is not fibrant.

Exercise 8.2.4 Show that BG is fibrant for every group G but that BG is a
simplicial group if and only if G is abelian.

Fibrations 8.2.9 A map n: E -+ B of simplicial sets is called a (Kan)$bra-
tion if

for every n, b E Bn+l  and k 5 n + 1, if x0, . . . , q-1, x~+I, . . . , x,+1 E
E, are such that &b = n(xi) and &xj = aj_lxi for all i < j (i, j # k),
then there exists a y E En+1  such that n(y) = b and &(y) for all i # k.

This notion generalizes that of a fibrant simplicial set X, which is after all just
a simplicial set such that X + * is a fibration. The following two exercises
give some important examples of fibrations.

Exercise 8.2.5 Show that every surjection E + B of simplicial groups is a
fibration.
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Exercise 8.2.6 (Principal G-fibrations) We say that a group G acts on a sim-
plicial set X (or X is a simplicial G-set) if G acts on each X,, and the action
commutes with the face and degeneracy operators. The orbit spaces X,/G fit
together to form a simplicial set X/G; if G acts freely on X(gx # x for every
g # 1 and every x) we say that X + X/G is a principal G-jibration. Show
that every principal G-fibration is a fibration.

Front-to-Back Duality 8.2.10 Simplicial constructions (e.g., homotopy in
8.3.11) always have a ìfront-to-backî dual formulation. Consider the invo-
1utionîon  A, which fixes every object [n]; it is defined on the morphisms
in A by

ai=&_i:[n-l]+[n]  a n d  oi=oa-i:[n+l]+[n].

We may think of it as reversing the ordering of [n] = (0 < 1 < . . . -c n) to
get the ordering (n < . . . < 1 < 0). That is, if o: [m] + [n] then aî(i)  = n -
a(m - i). If A is a simplicial object in A, then itsfront-to-back dual Aî is the
composition of A with this involution.

8.3 Simplicial Homotopy Groups

Given a fibrant simplicial set X (8.2.7) and a basepoint * E X0, we define
n,(X) as follows. By abuse of notation, we write * for the element a$(*)  of
X, and set Z, = {x E X, : ai = * for all i = 0, . . . , n). We say that two
elements x and xí of Z, are homotopic, and write x - xí, if there is a y E Xn+t
(called a homotopy from x to xí) such that

Lemma/Definition 8.3.1 If X is afibrant  simplicial set, then - is an equiva-
lence relation, and we set n,(X) = Z,/ -.

Proof The relation is reflexive since y = (0,x)  is a homotopy from x to itself.
To see that - is symmetric and transitive, suppose given homotopies yí and
yî from x to xí and from x to xî. The Kan condition 8.2.7 applied to the
elements *, . . , *:, yí,  yî of Xn+l with k = n + 2 yields an element z E Xn+2
with E&z  = yí,  &+iz = yî and aiz = * for i -C n. The element y = &+27,  is a
homotopy from xí to xî. (Check this!) Therefore xí - xî. 0
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Remark If X is a fibrant simplicial set, rrn(X)  agrees with the topological
homotopy group n,(lX]); see [May, 16.11. Since n,(]X])  g rr,(lS(X)(),  one
usually defines n,(X)  as fsnS(X>  when X is not fibrant.  Thus nt (X) is a
group, and rr,, (X) is an abelian group for IZ > 2.

Example 8.3.2 q(X) = X0/ -, where for each y E X1 we declare i&(y) k

at(Y).

Example 8.3.3 (Classifying space) Consider the classifying space BG of a
group G. By inspection Z, = { 1) for IZ # 1 and Zt = G. From this we deduce
that

rr,(]BG])  = n,(BG) =
G  ifn=l
1  ifn#l.

Definition 8.3.4 If G is a group, then an Eilenberg-Ma&me  space of type
K(G, n) is a fibrant simplicial set K such that rr, K = G and ni K = 0 for
i # n. Note that G must be abelian if it 2 2. The previous example shows
that BG is an Eilenberg-MacLane  space of type K (G, 1). In the next section
(exercise 8.4.4),  we will construct Eilenberg-MacLane  spaces of type K(G, n)
for n 2 2 as an application of the Dold-Kan correspondence 8.4.1. The term
ìspace,î rather than ìsimplicial set,î is used for historical reasons as well as to
avoid a nine-syllable name.

Exercise 8.3.1 If G is a simplicial group (or simplicial module), considered
as a fibrant simplicial set, show that any two choices of basepoint lead to
naturally isomorphic n,(G). Hint: Go acts on G.

If G is a simplicial group (or simplicial module), considered (by 8.2.8)
as a fibrant simplicial set with basepoint * = 1, it is helpful to consider the
subgroups I

Nn(G) = {x E G, : six = 1 for all i # n}.

Then Z, = ker(&:  N,, --+ N+t) and the image of the homomorphism &+I: ’
Nn+l + N,,  is B, = (x :x - 1). Hence n, (G) is the homology group Z,/ B,
of the (not necessarily abelian) chain complex N*

1  t No & N1 & N2 t . . .



8.3 Simplicial Homotopy Groups 265

Exercise 8.3.2 Show that B, is a normal subgroup of Z,, so that n,(G) is a
group for all 12 ? 0. Then show that r,(G) is abelian for IZ 2 1. Hint: Consider

(L~x>(GY>  and (w>b-IV>  forx,  Y E G,.

Exercise 8.3.3 If G + Gî is a surjection of simplicial groups with kernel Gí,

show that there is a short exact sequence of (not necessarily abelian) chain
complexes 1 + NG’ + NG + NG” + 1. By modifying the discussion in
Chapter 1, section 3 show that there is a natural connecting homomorphism
a: n,,G” + n,,_tG’ fitting into a long exact sequence

...n,+lGî&  n,Gí+  n,G+ n,GîL  nnelGí....

Remark 8.3.5 More generally, suppose that n: E + B is a fibration with E
and B fibrant. Suppose given basepoints *E E Eo and *B = n(*~)  E Bo; the
fibers F,, = r-1 (a~(*)) form a fibrant simplicial subset F of E. Given b E B,
with L+(b)  = * for all i, the fibration condition yields e E E, with n(e) = b
and &(e)  = * for all i < n. The equivalence class of a,(e)  in rr,_t  (F) i s
independent of the choices of e and induces a map a,: n,(B) + n,_l (F)
fitting into a long ìexactî sequence of homotopy ìgroupsî:

..x,+~(B)  -% n,(F) + n,(E) 5 n,(B) -&x,-l(F)....

For more details, see [May].

This remark and exercise 8.3.3 show that the homotopy groups n, form a
(nonabelian) homological d-functor. This observation forms the basis for the
subject of nonabelian homological algebra. We shall not pursue this subject
much, referring the reader to [DP] and [Swan 11. Instead we use it as a model
to generalize the definition of homology to any abelian category A, even if the
objects of A have no underlying set structure.

Definition 8.3.6 (Homotopy groups) Suppose that A is a simplicial object in
an abelian category A. The normalized, or Moore, chain complex N(A) is the
chain complex with

n-1

N,(A) = n ker(&: A, -+ A,_l)
i = O

and differential d = (-l)ìa,.  By construction, N(A) is a chain subcomplex of
the unnormalized complex C(A) and we define
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n,(A) = ffn(N(A)).

If A is the category of abelian groups or R-modules, this recovers the defi-
nition 8.3.1 of n,(A) obtained by regarding A as a fibrant simplicial set and
taking homotopy.

Exercise 8.3.4 Show that N(A) is naturally isomorphic to its front-to-back
dual Nî(A) = N(Aî),  which has N:(A) = {x E A, : &x = 0 for all i # 0} and
differential 30. (See 8.2.10.)

Now let D(A) denote the ìdegenerateî chain subcomplex of C(A) gener-
ated by the images of the degeneracies gi, so that D,(A) = c oi (C,_ 1 A).

Lemma 8.3.7 C(A) = N(A) @ D(A). Hence N(A) 2 C(A)/D(A).

Proof We will use an element-theoretic proof, which is valid by the Freyd-
Mitchell Embedding Theorem 1.6.1. An element of D,(A) is a sum y =
xaj(xj) with xi E C,_l(A). If y E N,(A) and i is the smallest integer such
that ai # 0, then i3i(y) = xi, which is a contradiction. Hence D, fl N,, = 0.
To see that D, + N,, = C,,, we pick y E C, and use downward induction on
the smallest integer j such that aj (y) # 0. The element y is congruent modulo
D, to yí = y - ajaj(y),  and for i < j the simplicial identities yield

ai = ai - aj-laj-l&(y)  = 0.

Since aj(yí)  = 0 as well, y’ is congruent modulo D, to an element of N,, by
induction, and hence D, + N, = C,. ë6

Theorem 8.3.8 In any abelian category A, the homotopy n,(A) of a simpli-
cial object A is naturally isomorphic to the homology H,(C) of the unnormal-
iced chain complex C = C(A):

n,(A) = H,(N(A)) ì=  H,(C(A)).

Proof It suffices to prove that D(A) is acyclic. Filter D(A) by setting FoDn  =
0, Ft,D,, = D, if n ( p and F,D, = ao(Cn_l)  +. . + a,(C,_t) otherwise.
The simplicial identities show that each FpD is a subcomplex. (Check this!)
Since this filtration is canonically bounded, we have a convergent first quad-
rant spectral sequence

ELY = Hp+y(FpDIFp-lD)  =+ H,+,(D).
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Therefore it suffices to show that each complex FpD/Fp_l D is acyclic.
Note that (FpD/F,_l  D),, is a quotient of a,,(C,_t)  and is zero for n < p.
In element-theoretic language, if x E C,_l(A), the simplicial identities yield
in FpD/Fp_l  D:

da&) = 2 (-1)57/&,(x>,
i=p+l

n+l

dC7,2(X)  - CTp-ldOp(.X)  = C (-1)ë0pai_tC7p(x)  - 2 (-l)ëoiai_t(X)
i=p+2 i=p+2

=  (-l)P+ëa,(x).

Hence (sn = (-l)p+’ ap) forms a chain contraction of the identity map of
F,,D/Fp-1  D, which is therefore null homotopic and hence acyclic (1.4.5).

0

Application 8.3.9  (Hurewicz homomorphism) Let X be a fibrant simplicial
set, and Z[X] the simplicial abelian group that in degree n is the free abelian
group with basis the set X, (8.2.3). The simplicial set map h: X + Z[X] send-
ing X to the basis elements of Z[X] is called the Hurewicz homomorphism,
since on homotopy groups it is the map

n,(X) + n,(Z[X])  2 H,C(Z[X])  = H,(X; z)

corresponding via 8.2.4 and 8.3.1 to the topological Hurewicz homomorphism
n,(lX])  + H,(lXl;  Z). (To see this, represent an element q of n,(]Xl>  by a
map f: An + 1x1 and consider f as an element of S,(lXl).  The class of h(f)
in H,Z[S(lXl)]  = Hn(lXI>;  Z) is the topological Hurewicz element h(q).)

Proposition 8.3.10 Let A be a simplicial abelian group. Then the Hurewicz
map h,: n,(A) + H,(A;  i2) = H,(IAI;  722)  is a split monomorphism.

Proof There is a natural surjection from the free abelian group Z[G] onto
G for every abelian group G, defined on the basis elements as the identity.
Thus there is a natural surjection of simplicial abelian groups j: Z[A]  -+ A.
The composite simplicial set map jh: A + Z[A]  + A is the identity, so on
homotopy groups j,h,:n,(A)  + n,(Z[A])  -+ n,(A) is the identity homo-
morphism. 0
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Remark The above proposition is the key result used to prove that every
simplicial abelian group has the homotopy type of a product of Eilenberg-
MacLane  spaces of type K(n,A,  n); see [May, 24.51.

8.3.1 Simplicial Homotopies

8.3.11 Let A and B be simplicial objects in a category A. Two simplicial
maps f, g: A + B are said to be (simplicially) homotopic if there are mor-
phisms hi: A, + &+I  in A (i = 0, . . . , n) such that aoh0  = f and &+lh,  =
g, while

hj_lGíi  ifi < j
aihi-1 i f i = j # O
hj&1 if i > j + 1

oihj =
hj+lq if i ( j
hjoi-1 Iifi>j ’

We call {hj} a simplicial homotopy from f to g and write f E g.
If A is an abelian category, or the category of sets, the next theorem gives

a cleaner definition of simplicial homotopy using the Cartesian product A x
A[l]  of 8.2.6 and the two maps ~0, ~1:  A = A x AIO] --+ A x A[l] induced
by the maps so, ~1:  [0] -+ [l] in A.

Theorem 8.3.12 Suppose that A is either an abelian  category or the category
of sets. Let A, B be simplicial objects and f, g: A + B two simplicial maps.
There is a one-to-one correspondence between simplicial homotopies from f
to g and simplicial maps h: A x A [ l] + B such that the following diagram
commutes.

60
A  - A x  A[l]  : A

.f\ Lh I(R

B

Proof We give the proof when A is an abelian category. The set A[ 11, con-
sistsofthemapscri:[n]+[l] (i=-l,..., n), where ai is characterized by

a~~ë(O>={O,l,~~~, i - 1). Thus (A x A[ l]), is the direct sum of n + 2 copies

of A,, indexed by the (pi.  A map h@): (A x A[l]),  -+ B, is therefore equiva-

lent to a family of maps hy): A, + B, (i = -1, . . . , n). Given a simplicial
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homotopy (hi} we define h(ni = g, h?) = f and hy) = &+lhi  for 0 5 i < n.

It is easily verified that &h@) = h(ì-ë)&  and cqh(ì)  = hcn+ë)oi,  SO that the
h(ì)  form a simplicial map h such that he0 = f and he1 = g. (Exercise!) Con-

versely, given h the maps hi = hi(n+l)oi:  A, + Bn+l define a simplicial ho-
motopy from f to g. 0

Exercise 8.3.5 (Swan) Show that the above theorem fails when A is the cat-
egory of groups, but that the theorem will hold if A x A[l]  is replaced by
the simplicial group A * A[ 11, which in degree II is the free product of II + 2
copies of A,, indexed by the set A[ 11,.

Exercise 8.3.6 In this exercise we show that simplicial homotopy is an addi-
tive equivalence relation when A is any abelian category. Let f, fí,  g, gí be
simplicial maps A + B, and show that:

1. f 2:f.
2. if f ” g and f’ ” gí,  then (f + fí) ” (g + gí).
3. iffzg,then(-f)z(-g),(f-g)=Oandgzf.
4. if f 2 g and g 2 h, then f 2 h.

Lemma 8.3.13 Let A be an abelian  category and f, g: A + B two sim-
plicially homotopic maps. Then f*, g*: N(A) + N(B) are chain homotopic
maps between the corresponding normalized chain complexes.

Proof By exercise 8.3.6 above we may assume that f = 0 (replace g by
g - f). Define s, = C(-l)ëhj  as a map from A, to B,+l,  where {hj] is
a simplicial homotopy from 0 to g. The restriction of s,, to Z,(A) lands in
Z,(B), and we have

&,lS, -q-la, = (-1)ìg.

(Check this!) Therefore ((- l)ns,) is a chain homotopy from 0, to g*. 0

Path Spaces 8.3.14 There is a functor P: A -+ A with P[n] = [n + l] such
that the natural map 80:  [n] + [n + l] = P[n] is a natural transformation
ida =+ P. It is obtained by formally adding an initial element 0í to each [n]
and then identifying (0í < 0 < . . . < n) with [n + 11. Thus P(ei) = ei+l and
P(ni) = ni+t. If A is a simplicial object in A, the path space PA is the sim-
plicial object obtained by composing A with P. Thus (PA), = A,+I,  the irh
face operator on PA is the &+I of A, and the irh degeneracy operator on PA
is the ai+t of A. Moreover, the maps 80:  A,+1 --f A, form a simplicial map
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PA + A. The path space will play a key role in the proof of the Dold-Kan
correspondence.

Exercise 8.3.7 (PA 2 Ao)  Let A be a simplicial object, and write A0 for the
n+lconstant simplicial object at Au. The natural maps o. : Au ---f An+1 form a

simplicial map 1: A0 -+ PA, and the maps An+1  + Ao  induced by the canoni-
cal inclusion of [0] = (0) in [n + l] = (0 < 1 < . . . < n + 1) form a simplicial
map p: PA -+ A0  such that ~1 is the identity on Ao. Use au to construct a
homotopy from lp to the identity on PA. This shows that PA is homotopy
equivalent to the constant object Ao.

Exercise 8.3.8 If G is a group one usually writes EG for the simplicial set
P(BG). By the previous exercise 8.3.7, EG 2 {l]. Show that the surjection
au: EG + BG is a principal G-fibration (exercise 8.2.6). Then use the long
exact homotopy sequence of a fibration (exercise 8.3.3) to recalculate rr,(BG).

Exercise 8.3.9 (J. Moore) Let A be a simplicial object in an abelian category
A. Let AA denote the simplicial object of A which is the kernel of au: PA +
A; AA is a kind of brutal ìloop spaceî of A. To see this, let Ao[  l] denote
the chain complex that is A0 concentrated in degree - 1, and let cone(NA)  be
the mapping cone of the identity map of NA (15.1). Show that N,(AA)  %
Nn+ 1 (A) for all 12 r 0 and that there are exact sequences:

0 + Au[l] + NA[I]  + N(AA) -+ 0,

O+ Au[l] + cone(NA)[l]  + N(PA) + 0.

That is, N(AA) is the brutal truncation a,nNA[l]  of NA[l] and N(PA)  is
the brutal truncation of cone(NA)[  11, in the sense of 1.2.7 and 1.2.8.

8.4 The Dold-Kan Correspondence

Let A be an abelian category. The normalized chain complex N(A) of a sim-
plicial object A of d (8.3.6) depends naturally on A and forms a functor IV
from the category of simplicial objects in A to the category of chain com-
plexes in A. The following theorem, discovered independently by Dold and
Kan in 1957, is called the Dold-Kan correspondence. (See [Dold].)

Dold-Kan Theorem 8.4.1 For any abelian category A, the normalized chain
complexfunctor N is an equivalence of categories between Sd and Ch,u(d).
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S A =
simplicial

objects in A I
-% Ch,o(A) =

chain complexes C in A

.with C, = 0 for n < 0

Under this correspondence, simplicial homotopy corresponds to homology
(i.e., x,(A) ?Z H,(NA))  and simplicially homotopic morphisms correspond to
chain homotopic maps.

Corollary 8.4.2 (See 2.4.7) The simplicial homotopy groups x*A of a simpli-
cial  object A of A form a universal d-functor (the left derived functors of the
functor no).

Corollary/Definition 8.4.3 (Dual Dold-Kan correspondence) For any abe-
lian category A, there is an equivalence

cosimplicial

objects in A I
N*, Chî(A)  =

cochain complexes C in A

with C” = 0 for n < 0 ’

N*A is a summand of the unnormalized cochain CA of A. We define the co-
homotopy of a cosimplicial object A to be the cohomology of N*A, that is, as
níA  = Hí(N*A).  Then níA  Z Hí(CA).  Finally, if A has enough injectives,
the cohomotopy groups n *A are the right derived functors of the functor x0.

8.4.4 The equivalence in the Dold-Kan Theorem is concretely realized by an
inverse functor K:

Ch,o(A) 1; SA=
simplicial

objects in A I

which is constructed as follows. Given a chain complex C we define K,(C)
to be the finite direct sum epn @ CP[v],  where for each p p n the index n
ranges over all surjections [n] -+ [p] in A and CP[n]  denotes a copy of C,.

If cr: [m] + [n] is any morphism in A, we shall define K(a):  K,(C) +
K,(C) by defining its restrictions K(a, n): Cp[n]  + K,(C). For each surjec-
tion n: [n] -+ [p], find the epi-manic factorization en’  of na! (8.1.2):

[ml 5 InI

4. ( Iv

191 c-s [PI.

If p = q (in which case ncr  = 17í)  we take K(a, n) to be the natural identifica-
tion of CP[n]  with the summand CP[ví]  of K,(C). If p = q + 1 and E = ep
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(in which case the image of n(r is the subset (0, . . , p - l} of [p]),  we take
K(a, n) to be the map

dc, - c,-1= CJrl'l  c Kn(C).

Otherwise we define K (a, n) to be zero. Here is a picture of K(C):

co = co @ Cl E co @ Cl a3 Cl CB  c2 s co CD (C,)j @ (C,)3 $ c3.. .

Exercise 8.4.1 Show that K(C) is a simplicial object of A. Since it is clearly
natural in C, this shows that K is a functor.

It is easy to see that NK(C) E C. Indeed, if n: [n] -+ [p] and n # p, then

rl = rli, . . . r]i, and CP[n]  = (CT,  . . . q, C,)[id,] lies in the degenerate subcom-
plex D(K(C)).  If n is the identity map of [n],  then ai restricted to C,[id,]
is K(E~, id,), which is 0 if i # n and d if i = rz. Hence N,(KC)  = C,[id,]
and the differential is d. Therefore in order to prove the Dold-Kan Theorem
we must show that K N (A) is naturally isomorphic to A for every simplicial
object A in d.

We first construct a natural simplicial map +A:  KN(.~) + A. If q: [n] +
[p] is a surjection, the corresponding summand of K N,, (A) is NP(  A), and we

define the restriction of @A to this summand to be NP(A) c A, --% A,. Given
(Y:  [m] + [n] in A, and the epi-manic factorization E$ of qa in A (8.1.2) with
ní:  [ml -+ [q], the diagram

KN,(A) 3 N , ( A )  c  A ,  5 A , ,

4 I& I& Ia

KN,(A) 3 Nq(A) c  A ,  5 A ,

commutes because E: N,(A) + N,(A) is zero unless E = E,,. (Check this!)
Hence @A is a simplicial morphism from K N(A) to A and is natural in A.
We have to show that @A is an isomorphism for all A. From the definition
of +A it follows that N@A:  NKN(A) --+ N(A) is the above isomorphism
NK(NA) S NA. The following lemma therefore implies that @A is an iso-
morphism, proving that N and K are inverse equivalences.

Lemma 8.4.5 If f: B + A is a simplicial morphism such that Nf: N(B) +
N(A) is an isomorphism, then f is an isomorphism.
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Proof We prove that each f,,: B, -+ A,, is an isomorphism by induction on
n, the case n = 0 being the isomorphism Bo = NOB Z NoA = A. Recall from
exercise 8.3.9 that the brutal loop space AA is the kernel of au: PA + A,
(PA), = A,+l, and that N(AA)  is the translate ((NA)/Ao)[l]. Therefore
NAf: N(AB) + N(AA) is an isomotphism.  By induction both f,, and
(Af )n are isomorphisms. From the 5-lemma applied to the following diagram,
we deduce that fn+l is an isomorphism. 0

0 - (AB),
a0

- B,,+l + B, + 0

Af& I fn+l fîJZ

0  + ( A A ) ,  + An+1  -% A,  - 0 .

Exercise 8.4.2 Show that N and K are adjoint functors. That is, if A is a
simplicial object and C is a chain complex, show that $ induces a natural
isomorphism:

HomsA(K(C),  A) S Homch(C, NA).

Exercise 8.4.3 Given a semi-simplicial object B in A, KC(B) is a simplicial
object. Show that KC is left adjoint to the forgetful functor from simplicial
objects to semi-simplicial objects. (Cf. exercise 8.1.5.) Hint: Show that if A is
a simplicial object, then there is a natural split sujection  KC(A) + A.

To conclude the proof of the Dold-Kan Theorem 8.4.1, we have to show
that simplicially homotopic maps correspond to chain homotopic maps. We
saw in 8.3.13 that if f 2 g then Nf and Ng were chain homotopic. Con-
versely suppose given a chain homotopy {s,} from f to g for two chain maps
f, g: C + Cí. Define hi: K(C), + K (Cí>,+l  as follows. On the summand C,,
of K(C), corresponding to n = id, set

oif ifi <n- 1
hi on C,, = an-1 f - ans,-ld i f i = n - 1

a,(f -s,_ld) -s,, ifi = n .

On the summand CP[n]  of K(C), corresponding to r]: [n] + [p], n # p, we
define hi by induction on n - p. Let j be the largest element of [n] such that
n(j)  = n(j + 1) and write 9 = níqj.  Then aj maps CP[qí]  isomorphically onto
CP[n], and we have already defined the maps hi on CP[qí].  Writing hi for the
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composite of C,[n]  Z C,,[ní]  with hi restricted to CP[ní],  we define

hi on C,,[T~]  =
ojhi-t i f j  ti

oj+lhi ifjzi.

A straightforward calculation (exercise!) shows that {hi} form a simplicial
homotopy from K(f) to K(g). 0

Exercise 8.4.4 (Eilenberg-MacLane  spaces) Let G be an abelian group, and
write G[-n] for the chain complex that is G concentrated in degree IZ (1.2.8).

1. Show that the simplicial abelian group K(G[-n]) is an Eilenberg-
MacLane space of type K(G, n) in the sense of 8.3.4 and that the
loop space of exercise 8.3.9 satisfies AK(G[-n  - 11)  Z K(G[-n])  for
n > 0.

2. Suppose that a simplicial abelian group A is an Eilenberg-MacLane
space of type K (G, n). Use the truncation t>,NA (1.2.7) to show that
there are simplicial maps A t B + K(G[-n])  that induce isomor-
phisms on homotopy groups. Hence A has the same simplicial homotopy
type as K(G[-n]). A similar result holds for all Eilenberg-MacLane
spaces, and is given in [May, section 231.

Exercise 8.4.5 Suppose that A has enough projectives, so that the category of
Sd of simplicial objects in A has enough projectives (exercise 2.2.2). Show
that a simplicial object P is projective in Sd if and only if (1) each P,, is
projective in A, and (2) the identity map on P is simplicially homotopic to
the zero map.

Augmented Objects 8.4.6 An augmented simplicial object in a category A
is a simplicial object A, together with a morphism 6: A0 + A-1 to a fixed
object A-1 such that a& = sat. If A is an abelian category, this allows us to
augment the associated chain complexes C(A) and N(A) by adding A-1 in
degree -1.

An augmented simplicial object A, + A-1 is called aspherical if rrn (A,) =
0 for n # 0 and E: q(A,) g A-1.  In an abelian category, this is equivalent to
the assertion that the associated augmented chain complexes are exact, that
is, that C(A) and N(A) are resolutions for A-1 in A. For this reason, A,
is sometimes called a simplicial resolution of A-1.  We will use aspherical
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Thus diag(A),  = Ann, the face operators are i3i = $a:, and the degeneracy

operators are ai = f$~y.

Eilenberg-Zilber Theorem 8.51 Let A be a bisimplicial object in an abe-
lian category A. Then there is a natural isomorphism

n,diag(A)  2 H*  Tot(CA).

Moreover there is a convergentjrst  quadrant spectral sequence

Ebs = ++), E& =+$(A) =+ TC~+~ diag( A)

Proof  We first observe that no Z HO. By inspection, we have decomposi-
tions Alo = a,h(Aoo) CD NIO, AOI  = ~,ì(AcIo>  @ NOI,  and Al1 = $ëo,h(Aoo)  $

#(NIo) @ &ëoI)  @ NII.  Now HoTot = Aoo/($(A$o)  + a,u(Nol))
and nodiag(A)  is the quotient of A00 by

Hence there is a natural isomorphism nodiag(  A) ZZ Ho Tot (A).
Now the functors diag(A) and Tot(CA)  are exact, while n, and H* are

Sfunctors,  so both n,diag(A)  and H*  Tot(CA)  are homological b-functors
on the category of bisimplicial objects in A. We will show that they are
both universal d-functors, which will imply that they are naturally isomor-
phic. (The isomorphisms are given explicitly in 8.5.4.) This will finish the
proof, since canonical first quadrant spectral sequence associated to the double
complex CA has EL4 = H,V(C,,) = n,ì(A&  and E& = H,h(C(ni(AP*))) =

njn,U(A) and converges to HP+4  Tot(CA)  Z npfq diag(A).
To see that rr*  diag and H*  Tot C are universal d-functors, we may assume

(using the Freyd-Mitchell Embedding Theorem 1.6.1 if necessary) that A has
enough projectives. (Why?) We saw in exercise 2.2.2 that this implies that
the category of double complexes-and hence the category of bisimplicial
objects by the Dold-Kan correspondence-has enough projectives. By the next
lemma, diag and Tot C preserve projectives. Therefore we have the desired
result:

rr,diag  = (L,rro)diag  = L,(n,diag),

H,Tot C = (L,Hu)Tot  C = L,(HoTot C). 0

Lemma 8.52 The functors diag and Tot C preserve projectives.
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Proof Fix a projective bisimplicial object P. We see from exercise 8.4.5 that
any bisimplicial object A is projective if and only if each A,, is projective
in A, each row and column is simplicially null-homotopic, and the vertical
homotopies hy are simplicial maps. Therefore diag(P)  is a projective simpli-

cial object, since each diag(P),  = P,,,, is projective and the maps hi = h:hp
form a simplicial homotopy (8.3.11) from the identity of diag( P) to zero. Now
Tot(C P) is a non-negative chain complex of projective objects, so it is projec-
tive in Ch?o(d)  if and only if it is split exact if and only if it is exact. But every
column of Tot(CP)  is acyclic, since H,(CP,,)  = n,(P,*) = 0, so Tot(CP)  is
exact by the Acyclic Assembly lemma 2.7.3 (or a spectral sequence argument).

Application 8.5.3 (Kiinneth formula) Let A and B be simplicial right and
left R-modules, respectively. Their tensor product (A @R B) = A, @R Bq iS

a bisimplicial abelian group, and the associated double complex C(A @ B)
is the total tensor product Tot C(A) @R C(B) of 2.7.1. The Eilenberg-Zilber
Theorem 8.5.1  states that

n*diag(A @R B) 2 H,(Tot C(A) @R C(B)).

This is the form in which Eilenberg and Zilber originally stated their theorem
in 1953. Now suppose that X and Y are simplicial sets and set A = R[X],
B = R[Y] 8.2.3. Then diag(A @I B) g R[X x Y], and the computation of the
homology of the product X x Y (8.2.6) with coefficients in R is

H,(X  x Y; R) = n,diag(A  @ B) g H,(Tot C(X) @ C(Y)).

The Kiinneth formula 3.6.3 yields &(X x Y) 1: @p+q=n H,,(X) @ H,(Y)
when R is a field. If R = Z there is an extra Tor term, as described in 3.6.4.

The Alexander-Whitney Map 8.5.4 For many applications it is useful to
have an explicit formula for the isomorphisms in the Eilenberg-Zilber Theo-
rem 8.51. If p + 4 = II, we define fpq:  A,, + A,, to be the map

ai+l..  . a,ìa;.  . . a ; .

The sum over p and 4 yields a map f,,: A,, ++  Tot, (CA), and the fn assemble
to yield a chain complex map f from C(diag(A)) to Tot(CA).  (Exercise!) The
map f is called the Alexander-Whitrzey  map, since these two mathematicians
discovered it independently while constructing the cup product in topology.
Since f is defined by face operators, it is natural and induces a morphism of
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universal Sfunctors  f*: n,diagA  -+ H*  Tot(CA).  Moreover, fu: Am = Am,
so f* induces the natural isomorphism nodiag  A 2 HO Tot (C A). Therefore the
Alexander-Whitney map is the unique chain map (up to equivalence) inducing
the isomorphism f* of the Eilenberg-Zilber Theorem.

The inverse map V: Tot(CA)  + C(diagA) is related to the shuffle product
on the bar complex (6.5.11). The component V,,: A,, + A,, (n = p + q) is
the sum

over all (p, q)-shuffles p. The proof that V is a chain map is a tedious but
straightforward exercise. Clearly, V is natural, and it is easy to see that 0,
induces the natural isomorphism HoTot % rrudiag A. Therefore V, is
the unique isomorphism of universal Sfunctors  given by the Eilenberg-Zilber
Theorem. In particular, V, is the inverse of the Alexander-Whitney map f*.

Remark The analogue of the Eilenberg-Zilber Theorem for semi-simplicial
simplicial objects is false; the degeneracies are necessary. For example, if
A,, is zero for p # 1, then Jrtdiag(A)  = A11 need not equal HI  Tot(CA) =

nl(A1,).

8.6 Canonical Resolutions

To motivate the machinery of this section, we begin with a simplicial descrip-
tion of the (unnormalized) bar resolution of a group G. By inspecting the con-
struction in 6.5.1 we see that the bar resolution

is exactly the augmented chain complex associated to the augmented simpli-
cial G-module

in which B,U is the free ZG-module on the set Gî. In fact, we can construct
the simplicial module B,U  directly from the trivial G-module Z using only the
functor F = ZG@:  G-mod + G-mod; B,U  is Fn+ëZ  = ZG 63~ . . . C+z ZG,
the face operators are formed from the natural map E: ZG 8~ M + M, and
the degeneracy operators are formed from the natural map n: M = Z 63~ M +
ZG &Q M.
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In this section we formalize the above process (see 8.6.11)  so that it yields
augmented simplicial objects whose associated chain complexes provide
canonical resolutions in a wide variety of contexts. To begin the formalization,
we introduce the dual concepts of triple and cotriple. (The names ìtripleî and
ìcotripleî are unfortunate because nothing occurs three times. Nonetheless
it is the traditional terminology. Some authors use ìmonadî and ìcomonadî,
which is not much better.)

Definition 8.6.1 A triple (T, I], /_L) on a category C is a functor T: C -+ C,
together with natural transformations ;rl: idc =+ T and p: TT =+ T, such that
the following diagrams commute for every object C.

TT(TC)  = T(TTC)z  T ( T C ) TC= T ( T C )  ë7TC-TC

1 fiTC 1 kc =L 1 F J=

PC
T ( T C )  - l-C TC

Symbolically, we may write these as I = k&T) and w(Tn) = id =

F(vT).
Dually, a cotriple (I, F, S) in a category A is a functor I: A -+ A, together

with natural transformations E: -L=+ idA and 6: l_=+_L1,  such that the follow-
ing diagrams commute for every object A.

SA
I A  - I(1 A) IA

1 S/l 1 JL4 =I( s1 L=

l_(IA) -%I(IIA) =  II IA- I(IA) --LA
J-&A &LA

Symbolically, we may write these as (I 6)s = (S I)S and (I E)S = id =
(E I )S.  Note the duality: a cotriple in A is the same as a triple in d'p.

Exercise 8.6.1 Provided that they exist, show that any product ffT, of triples
T, is a triple and that any coproduct LI I, of cotriples I, is again a cotriple.

Exercise 8.6.2 Show that the natural transformation E of a cotriple satisfies
the identity E(E l-) = ~(1 E). That is, for every A the following diagram com-
mutes:
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l&A

1 (J- A) w - L A

CIA 1 1 &A

IA 5 A.

Main Application 8.6.2 (Adjoint functors) Suppose we are given an adjoint
pair of functors (F, U) with F left adjoint to U.

That is, Homa(FC, B) % Homc(C,  US) for every C in C and B in B. We
claimthatT=UF:C-,Cispartofatriple(T,rl,~)andthatI=FU:B~
13 is part of a cotriple (I, E, S).

Recall from A.6.1 of the Appendix that such an adjoint pair determines two
natural transformations: the unit of the adjunction n: ida -+ U F and the counit
of the adjunction E: F U + i&. We define S and p by

SE = F(rpJe):  F(cJB) + F(UF(UB)), KC = U(EFC):  U(FU(FC)) + U(K).

In the Appendix, A.6.2 and exercise A.6.3, we see that (EF) o (Fq): FC +
FC and (UE) o (VU):  UB -+ UB are the identity maps and that E o (FUs) =
E o (EFU): FU(FU(B)) + B. From these we deduce the triple axioms for

(T, rl, P):

p(Tq) = U((eF) o (Fq)) = id, p(nT)  = ((UE) o (qU))F = id,

@(Tp)  = (U&F) o (UFUEF)  = U(E o UFE)F  = U(E o EUF)F = p(pT).

By duality applied to the adjoint pair (U ìP,  Fop),  (I, E, S) is a cotriple on B.

Example 8.6.3 The forgetful functor U: G-mod + Ab has for its left ad-
joint the functor F(C) = ZG 63~  C. The resulting cotriple on G-mod has
-L= FU, and I (Z) Z ZG. The following construction of a simplicial object
out of the cotriple _L on the trivial G-module Z will yield the simplicial G-
module used to form the unnormalized bar resolution described at the begin-
ning of this section; see 8.6.11.

Simplicial Object of a Cotriple 8.6.4 Given a cotriple I on A and an object
A, set I,, A =In+’ A and define face and degeneracy operators
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We claim that I, A is a simplicial object in A. To see this, note that

&q =I’ (E l_)6  Iî-ë=I’  (1) Inpi= identity, and

ai+lCi  =I’ (I &)a  In-ë=_L’  (1) Inpi= identity.

Similarly, we have

&i3i+l = I’  (&(I 6)) Iî-’  = I’  (&(& I)) Iî-’  = i3ii3i,

Oi+lOi  = I’  ((I 6)s) Iî-’  = I’  ((6 1)s) Iî-’  = CTiCTi.

The rest of the simplicial identities are formally valid. The map &A: I A -+ A
satisfies ~6í0  = ~81 (because &(F I) = ~(1 E)), so in fact I, A + A is an
augmented simplicial object.

Dually, given a triple T on C, we define L” = TîëC and 8’ = TíqTí-ë,
oi = TípTî-ë. Since a triple T on C is the same as a cotriple Top  on Cop,
L* = T*+ëC is a cosimplicial object in C for every object C of C.

Definition 8.6.5 Let I be a cotriple in a category A. An object A is called
l-projective if &A: 1 A + A has a SeCtiOn  f: A +I A (i.e., if &Af = idA).
For example, if I= FU for an adjoint pair (F, U), then every object FC is
I-projective because Fn: FC -+ F(UFC)  = _L (FC) is such a section.

Paradigm 8.6.6 (Projective R-modules) If R is a ring, the forgetful functor
U: R-mod + Sets has the free R-module functor F as its left adjoint; we call
FU the free module cotriple. Since FU (P) is a free module, an R-module
P is FU-projective if and only if P is a projective R-module. This paradigm
explains the usage of the suggestive term ìl-projective.î It also shows that a
cotriple on R-mod need not be an additive functor.

l-Projective Lifting Property 8.6.7 Let U: A + C have a left adjoint F,
and set l_ = FU. An object P is I-projective if and only if it satisJes the
following lifting property: given a map g: A1 + A2 in A such that U A1 +
UA2 is a split surjection and a map y: P + AZ, there is a map /I: P -+ A1
such that y = gj3.

Proof The lifting property applied to FU( P) -+ P shows that P is I-
projective. For the converse we may replace P by FU(P) and observe that
since HomA(FU(P), A) Z Homc(UP,UA), the map Homd(FU(P),AI)  +
Homd(FU(P),  AZ) is a split surjection. 0
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Exercise 8.6.3 Show that an object P is -L-projective if and only if there is
an A in A such that P is a retract of _L A. (That is, there are maps i: P +I A
and r: I A -+ P so that ri = idp.)

Proposition 8.6.8 (Canonical resolution) Let I be a cotriple in an abelian
category A. If A is any I-projective object, then the augmented simplicial ob-
ject I, A 5 A is aspherical, and the associated augmented chain complex
is exact.

0 t A &I A a,-a,12A  &13A  A.. . .

Proof For n 2 0, set fn =_Lî+ëf:  -Lnf’  A +l_n+2A,  and set f-1 = f. By
definition, &+I f,, =_Lnf’ (sf) = identity and anfu = (6 -L)(J_  f) = fs. If
n > 1 and 0 5 i < n + 1, then (setting j = n - i and B =lj A) naturality of E
with respect to g =-Ljf yields

We saw (in 8.4.6 and exercise 8.4.6) that such a family of morphisms (fn)
makes I, A + A ìcontractible,î hence aspherical. V

Corollary 8.6.9 If A is abelian and U: A + C is a functor having a lef
adjoint F: C -+ A, then for every C in C the augmented simplicial object
I, (FC) + FC is contractible, hence aspherical in A.

Proposition 8.6.10 Suppose that U: A + C has a left adjoint F: C + d

Then for every A in A the augmented simplicial object U(_L,  A) % UA is
left contractible in C and hence aspherical.

Proof Set f-1 = nU: UA + UFUA = U(-L A) and fn = nU Iî.  Then the
( fn} make U(l_, A) left contractible in the sense of 8.4.6. (Check this!) V

8.61 Applications

Group Homology 8.6.11 If G is a group, the forgetful functor U: G-mod +
Ab has a left adjoint F(C) = ZG @z C. For every G-module M, the re-
sulting simplicial G-module I, M + M is aspherical because its underly-
ing simplicial abelian group U (I, M) + UM is aspherical by 8.6.10. More-
over by Shapiroís Lemma 6.3.2 the G-modules lnfl M = F(C) are acyclic
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for H,(G; -) in the sense of 2.4.3. Therefore the associated chain complex
C(-L, M) is a resolution by H,(G;  -)-acyclic G-modules. It follows from
2.4.3 that we can compute the homology of the G-module M according to the
formula

K(G; W = H,(C(-L WC)  = n,((L WC),

using the homotopy groups of the simplicial abelian group (I, M)G.
If we take M = Z, C(I, Z) is exactly the unnormalized bar resolution of

6.5.1. The proof given in 6.5.3 that the bar resolution is exact amounts to a
paraphrasing of the proof of proposition 8.6.10.

The Bar Resolution 8.6.12 Let k -+ R be a ring homomorphism. The for-
getful functor U: R-mod + k-mod has F(M) = R @Q M as its left adjoint,
so we obtain a cotriple -!-= FU on R-mod. Since the homotopy groups of the
simplicial R-module I, M may be computed using the underlying simplicial
k-module U(I, M), it follows that I, M + M is aspherical 8.4.6 (I, M is
a simplicial resolution of M). The associated augmented chain complexes are
not only exact in R-mod, they are split exact when considered as a complex
of k-modules by 8.6.10. The unnormalized chain complex B(R, M) associ-
ated to I, M is called the (unnormalized) bar resolution of a left R-module
M. Thus ,L?(R,  M)o = R @k M, and /I(R, M)n is R@ë(ì+ë)  @k M. Note that

B(R, M) = B(R, R) @R M:

0 t M & R @,k M + R @k R 8.k M +-. .

The normalized bar resolution of M, written B(R, M), is the normalized chain
complex associated to I, M and is described in the following exercise.

Exercise 8.6.4 Write E for the cokemel  of the k-module homomorphism
k + R sending 1 to 1, and write @ for @k. Show that the normalized bar res-
olutionhasB,(R,M)=R@R@.. . @ R 8 M with n factors R, with (well-
defined) differential

d(ro @ 71 @ . . . Fn @ m) = rorl  @ ?2 @ . . . 63 F, 8 m

n-1

+ C(-1)ërt-J  @ . . @ Firi+1 @ . . . @ m
i=l

+ (-lYr0 @ 71 @ . . . 63 ?,_I CZ3  r,m.
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Proposition 8.6.13 Suppose k is commutative. If M (resp. Mí) is a left mod-
ule over a k-algebra R (resp. Rí),  then there is a chain homotopy equivalence
of bar resolutions of the R @Q Rí-module  M @ Mí:

Tot(,!?(R,  M) @k /V(Rí,  Mí)) L B(R @k Rí,  M @k Mí).

Proof Let A (resp. Aí)  denote the simplicial k-module R@* ~3 M (resp.
Rí@*  @I  Mí), where @ denotes @k. The diagonal of the bisimplicial k-module
A @ Aí is the simplicial k-module [p] H (R@p @ M) @I  (Rí@t’  @Q  M) 2 (R 6~
Rí)@J’  @ (M @ Mí) whose associated chain complex is B(R @ Rí, M @ Mí).
The Eilenberg-Zilber Theorem (in the Ktinneth formula incarnation 85.3)
gives a chain homotopy equivalence V from the total tensor product Tot
C(A @I  Aí) E Tot C(A) @I C(Aí) = Tot /I(R, M) @ /I(Rí,  Mí) to C diag (A @
Aí) Z p(R @ Rí, M @ Mí). 0

Remark The homotopy equivalence Tot B( R, R) @I  /3(Rí,  Rí) L B(R @ Rí,

R @ Rí) is fundamental; applying @IR~R~(M  @I  Mí) to it yields the proposition.

Exercise 8.6.5 (Shuffle product) Use the explicit formula for the shuffle map
V of 6.5.11 and 8.5.4 to establish the explicit formula (where F ranges over all
(p, q)-shuffles):

V((r0  C3 . . . @ rp 0 m) @ (rh @ . . 63 ri @ mí)) =

C(-l)p(rO @rh> @ Wp(l) C3 ... C3 wp(p+q)  18 (m amí).
/L

Here the ri are in R, the rs are in Rí,  m E M, mí E Mí, and 201,  . . . , w,,+~

is the ordered sequence of elements t-1 @ 1, . . . , rp @ 1, 1 &I r;, . . ., 1 @ r; of
R @ Rí.

Free Resolutions 8.6.14 Let R be a ring and FU the free module cotriple,
where U: R-mod + Sets is the forgetful functor whose left adjoint  F(X) is
the free module on X. For every R-module M, we claim that the augmented
simplicial R-module (FU),M + M is aspherical (8.4.6). This will prove that
FU,M  is a simplicial resolution of M, and that the associated chain complex
C = C( FU*M)  is a canonical free resolution of M because

Hi(C) = ni(FU*M)  =ni(UFU*M)  =
M  i = O
0

i #O.
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Indeed, the underlying augmented simplicial set U (FU),M -+ UM is fi-
brant and contractible by 8.6.10. If we choose [0] = v(O) as basepoint in-
stead of 0, then the contraction satisfies fn([O])  = [0] for all n, and therefore
U(FU),(M)  is aspherical (by exercise 8.4.6). As the sets n,U(FU),M are
independent of the choice of basepoint (exercise 8.3. l), the augmented simpli-
cial R-module FU,(M) + M is also aspherical, as claimed.

Sheaf Cohomology 8.6.15 Let X be a topological space and Sheaves(X)
the category of sheaves of abelian groups on X (1.6.5). If F is a sheaf we
can form the stalks Fx and take the product T(F) = n,,, x,(.Fx) of the
corresponding skyscraper sheaves as in 2.3.12. As F, = x* and U,(.7=)  = &
are adjoint, each F,U,(F)  = x,(FX)  .IS a  t r i p l e .  H e n c e  t h e i r  p r o d u c t  T 

3 & (T*+ëF)  and a corresponding augmented cochain complex

d
0  --cd+ T ( F )  = T2(fl  --+ ... .

The resulting resolution of .Y=  by the r-acyclic sheaves T*+ë(F) is called the
Godement resolution of .ZF, since it first appeared in [Gode]. (The proof that
the Godement resolution is an exact sequence of sheaves involves interpreting
n U,(3) as a sheaf on the disjoint union X” of the points of X.)

Example 8.6.16 (Commutative algebras) Let k be a commutative ring and
Commalg the category of commutative k-algebras. Let P* + R be an aug-
mented simplicial object of Commalg; if its underlying augmented simplicial
set is aspherical we say that P* is a simplicial resolution of R.

The forgetful functor II: Commalg -+ Sets has a left adjoint taking a set
X to the polynomial algebra k[X] on the set X; the resulting cotriple -L on
Commalg sends R to the polynomial algebra on the set underlying R. As with
free resolutions 8.6.14, U(I, R) + UR is aspherical, so I, R is a simplicial
resolution of R. This resolution will be used in 8.8.2 to construct Andrt-
Quillen homology.

Another cotriple Is on arises from the left adjoint Sym of the forgetful
functor Uí: Commalg -+ k-mod. The Symmetric Algebra Sym(M)  of a k-
module M is defined to be the quotient of the tensor algebra T(M) by the
2-sided ideal generated by all (x @ y - y @I x) with x, y E M (under the iden-
tification i : M L, T(M)). From the presentation of T(M) Z k @ M @ . . . 63
M@ëm  @ . . . in 7.3.1 it follows that Sym(M)  is the free commutative algebra
on generators i(x), x E M, subject only to the two k-module relations on M:

IZ i(x) = i(u) and i(x) + i(y) = i(x + y) (a! E k; x, y E M).
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Thus any k-module map M --+  R into a commutative k-algebra extends
uniquely to an algebra map Sym(M) + R. This gives a natural isomorphism
Homk(M,  R) Z HomcOmmatg(Sym(M),  R), proving that Sym is left adjoint
U. The resulting cotriple on Commalg sends R to the symmetric algebra
Ií(R)  = Sym(UíR)  and we have a canonical adjunction E: Sym(UíR)  -+ R.
As the simplicial k-module Uí(I,  R) --+ UíR  is aspherical, ISR + R is an-
other simplicial resolution of R in Commalg, and there is a simplicial map
I, R +-Ls R, natural in R.

Exercise 8.6.6 Let X be a set and M the free k-module with basis X. Show
that Sym(M)  is the commutative polynomial ring k[X]. Then show that the
map I, k[X] +I: k[X] is a simplicial homotopy equivalence.

Exercise 8.6.7 In general, show that Sym(M)  = k @ M @I  S2(M) @ . . . $
Sî(M)  @ . . ., where F(M) is the module (M @ . . . @ M)c,,  of coinvariants
for the evident permutation action of the nth symmetric group C, on the it-
fold tensor product of M.

8.7 Cotriple Homology

Suppose that A is a category equipped with a cotriple I= (I, E, 8) as de-
scribed in the previous section, and suppose given a functor E: A + M with
M some abelian category. For each object A in A we can apply E to the aug-
mented simplicial object I, A ++ A to obtain the augmented simplicial object
E(J-,A)  + E(A) in M .

Definition 8.7.1 (Barr and Beck [BB])  The cotriple homology of A with
coejticients in E (relative to the cotriple _L) is the sequence of objects
H, (A; E) = n, E (I, A). From the Dold-Kan correspondence, this is the same
as the homology of the associated chain complex C( E I, A):

OtE(IA) A E(L2A) & E(L3A) t....

Clearly cotriple homology is functorial with respect to maps A + Aí in
A and natural transformations of the ìcoefficient functorsî E -_, Eí. The
augmentation gives a natural transformation E!: Ho(A;  E) = no(E I, A) +
E(A), but at this level of generality E! need not be an isomorphism. (Take
_L = 0.)

Dually, if (T, v, p) is a triple on a category C and E: C -+ M is a functor,
the triple cohomology of an object C with coefficients in E is the sequence of
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objects Hî(C;  E) = JPE(T*+’ C), which by definition is the cohomology of
the associated cochain complex

0 + E(TC)  & E(T*C) 5 E(T3C) + . . .

associated to the cosimplicial object E(T*+ëC)  of M. By duality, Hn(C;  E)
is the object i-I,(C; EîP)  in the opposite category Mop corresponding to
Eon: Cop  -+ &ton; we shall not belabor the dual development of triple coho-
mology.

Another variant occurs when we are given a contravariant functor E
from A to M. In this case E(I,A) is a cosimplicial object of M. We set
Hî(A;  E) = x” E (I, A) and call it the cotriple cohomology of A with co-
efficients in E. Of course if we consider I to be a triple on d"P and take as
coefficients E: d"P + M, then cotriple cohomology is just triple cohomology
in disguise.

Example 8.7.2 (Tor and Ext) Let R be a ring and I the free module cotriple
on mod-R (8.6.6). We saw in 8.6.14 that the chain complex C(I,M) is a
free resolution of M for every R-module M. If N is a left R-module and we
take E(M) = M @ëR  N, then homology of the chain complex associated to
E(I,M) = (J_,M) 63í~  N computes the derived functors of E. Therefore

H,,(M; @ëRN)  = Tort(M, N).

Similarly, if N is a right R-module and E(M) = HomR(M,  N), then the co-
homology of the cochain complex associated to E(I,M)  = HomR(I,M, N)
computes the derived functors of E. Therefore

Hí(M;  HOIIlR(--,  N)) = Extn,(M, N).

Definition 8.7.3 (Barr-Beck [BB]) Let I be a fixed cotriple on A and M
an abelian category. A theory of -L-left derived functors (L,, h, a) is the as-
signment to every functor E: A -+ M a sequence of functors L, E: A + M,
natural in E, together with a natural transformation A: LoE + E such that

1. h:Lo(EI)~E_LandL,(EI)=Oforn#OandeveryE.
2. Whenever E: 0 -+ E’ + E --+  Eî + 0 is an exact sequence of functors

such that 0 -+ EíI+  E I-+ EîI+  0 is also exact, there are ìconnect-
ingî maps a: L, Eî -+ L,_I Eí, natural in E, such that the following se-
quence is exact:

. ..L.Eí+  L,E+ L,EîA  L,_lEí+  L,_lE....
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Uniqueness Theorem 8.7.4 Cotriple homology H,(-;  E) is a theory of I-
left derived functors. Moreover; if (L,, h, a) is any other theory of I-left
derived jiinctors then there are isomorphisms L,E g H,(-; E), natural in
E, under which h corresponds to E and a corresponds to the connecting map
for H,(-;  E).

Proof A theory of left derived functors is formally similar to a universal (ho-
mological) S-functor on the functor category Mî,  the E I playing the role of
projectives. The proof in 2.4.7 that left derived functors form a universal 6-
functor formally goes through, mutatis mutandis, to prove this result as well.

8.7.1 Relative Tor and Ext

8.7.5 Fix an associative ring k and let k + R be a ring map. The forget-
ful functor U: mod-R + mod-k has a left adjoint, the base-change functor
F(M) = M @k R. If N is a left R-module, the relative Tor groups are defined
to be the cotriple homology with coefficients in @RN  (relative to the cotriple
I = FU):

Toriík(M,  N) = Hp(M; @ëRN) = T~((LM)  @R N),

which is the homology of the associated chain complex C(I,M  @ N) (8.3.8).
Since (J- ìëM)~RN=(IPM)~kR~RNrIPM~kN,wecangivean
alternate description of this chain complex as follows. Write @ for @k and
R@p  for R @ R @I . . @ R, so that IJíM  = M @I R@Jí.  Then (I, M @ N) i s
the simplicial abelian group [p] H M @I  R@ëp  @ N with face and degeneracy
operators

rnrl GE3  r2 C3 . . . C3 rp 63 n ifi=O

ai(m@rrl@.~ .@rp@n)=  rn@...@rtrt+)@...@n  ifOci <p

I m @ t-1 @ . . ’ @ t-r-1 @ rpn if i = p;

oi(m~rl~...~rrp~nn)=m~...~ri-l~l~rri~...~n.

(Check this!) Therefore Torflk(M,  N) is the homology of the chain complex

As in 2.7.2, one could also start with left modules and form the cotriple homol-
ogy of the functor M@R:  R-mod + Ah relative to the cotriple Ií(N)  = R @k
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N on R-mod. The resulting simplicial abelian group [p] H M @I R@J’ @I  N is
just the front-to-back dual (8.2.10) of the one described above. This proves
that relative Tor is a ìbalancedî functor in the sense that

Toriík(M,  N) = H,(M; @RN)  = Hp(N;  M@R).

If N is a right R-module we define the relative Ext groups to be the cotriple
cohomology with coefficients in the contravariant functor HomR(-, N):

ExtPR,k(M, N) = HP(M;  HomR(-, N)) = rrp HomR(_L,M,  N),

which is the same as the cohomology of the associated cochain complex
C(HOmR(l..,M,  N)). Since HOmR(M  @k R, N) Z Homk(M,  N) by 2.6.3,
HomR(I,  M, N) is naturally isomorphic to the cosimplicial abelian group

[PI H Homk(M  ~73  R @P, N) = (k-multilinear maps M x RP -+ N} with

(aíf)(m,  ro, . . , rp) =

1

fk-0, rl, . . . , rp> ifi=O
f(m,. . ,tî-]ri,  . . .) if0 < i < p

f(m, ro,  . . . , r,-drp ifi=p;

(~ëf>hrl,~~~,r,-l>  = fh...,ri,  l,ri+l,...,rp-l).

Exercise 8.7.1 Show that Tor:lk(M,  N) = M @.R N and Extil,(M,  N) =

HOmR(M, N).

Example 8.7.6 Suppose that R = k/I for some ideal Z of k. Since I M Y
M for all M, (I, M) 8 N and HomR(l_,  M, N) are the constant simplicial

groups M @ N and Hom( M, N), respectively. Therefore TorFjk (M, N) =

Ext’R,k(M, N) = 0 for i # 0. This shows one way in which the relative Tor
and Ext groups differ from the absolute Tor and Ext groups of Chapter 3.

Just as with the ordinary Tor and Ext groups, the relative Tor and Ext groups
can be computed from I-projective resolutions. For this, we need the follow-
ing definition.

Definition 8.7.7 A chain complex P* of R-modules is said to be k-split if
the underlying chain complex U(P,)  of k-modules is split exact (1.4.1). A
resolution P* + M is called k-split if its augmented chain complex is k-split.

Lemma 8.7.8 Zf E: 0 -+ Mí + M -+ Mî -+ 0 is a k-split exact sequence of
R-modules, there are natural long exact sequences
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. Tor,Rlk(Mí,  N) -+ Tor,Rik(M, N) + Tor,Rík(Mî,  N) & T$;(Mí,  N) .

. . Ext*,,,(Mî,  N) + Ext*,,,(M,  N) + Ext*,,,(Mí,  N) -% Ext$(Mî,  N).

Proof Since U(I)  is split exact, for every p > 1 the complexes (IP+’

&)  ë8R  N =  U(E)  ë8k  (R @p  @R N) and HOXIIR(d-P+’  E, N) = Homk(U&  @k
R@p, N) are exact. Taking (co-) homology yields the result. 0

By combining adjectives, we see that a ìk-split I-projective resolutionî of
an R-module M is a resolution P* + M such that each Pi is I-projective and
the augmented chain complex is k-split.

0  t M  = PO = P1 = P2 . . .

For example, we saw in 8.6.12 that the augmented bar resolutions B( R, M) -+
M and /I( R, M) + M are k-split I-projective resolutions for every R-module
M.

Comparison Theorem 8.7.9 Let P* + M be a k-split I-projective reso-
lution and fí: M -+ N an R-module map. Then for every k-split resolution
Q* + N there is a map f: P* + Q* lifting fí. The map f is unique up to
chain homotopy equivalence.

Proof The proof of the Comparison Theorem 2.2.6 goes through. (Check
this!) 0

Theorem 8.7.10 If P* -+ M is any k-split I-projective resolution of an R-
module M, then there are canonical isomorphisms:

Tor21k(M, N) ZG  H,(P @R N),

Ext*,,,(M,  N) 2 H* HOmR(P,  N).

Proof Since @RN  is right exact and HomR(-, N) is left exact, we have iso-

morphisms Torzlk(M,  N) Z M @.R N G Ho(P ë8~  N) and Extilk(M, N) Z

HomR(M,  N) % Ho HomR(P, N). Now the proof in 2.4.7 that derived func-
tors form a universal S-functor goes through to prove this result. 0

Lemma 8.7.11 Suppose RI and R2 are algebras over a commutative ring
k; set l_i = Rig and 112 = RI @ R2@. If PI is 11 -projective and P2 is _Lz-
projective, then PI ~3 P2 is Il2-projective.
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Proof In general Pi is a summand of Ri @3  Pi, so P1 @I P2 is a summand of

112 (PI ~3 fí2)  ” (RI ~3 PI) @ CR2 @ P2). 0

Application 8.7.12 (External products for Tor) Suppose k is commutative,
and we are given right and left Rt-modules  Ml and Nl (resp. Rz-modules M2
and N2).  Choose k-split li-projective  resolutions Pi + Ni; Tot(Pt  @ P2) is
therefore a k-split It2-projective  resolution of the R1 Q3 R2-module  Nl @ N2.
(Why?) Tensoring with Ml @ M2 yields an isomorphism of chain complexes

Tot{(Ml @R, PI) @ CM2 EJR~  P2)) 2 (MI @ M 2 )  @R,ZGR~  Tot(P1 @ P2).

Applying homology yields the external product for relative Tor:

TorRík(Mt,  Nt)  @k TorFík(M2,  N2) + Tor$>@RZ)ëk(M1  @ Mu, No @ N2).

As in 2.7.8, the (porism version of the) Comparison Theorem 2.2.7 shows that
this product is independent of the choice of resolution. The external product is
clearly natural in Ml, NI, M2, N2 and commutes with the connecting homo-
morphism 6 in all four arguments. (Check this!) When i = j = 0, it is just the
interchange (Ml 63.~~ Nl) @k CM2 @.R* N2) E (MI 63 M2) @R,~IR~ (NI @ N2).

The bar resolutions fi(Ri,  Ni) of 8.6.12 are concrete choices of the Pi. The
shuffle map V: Tot fi(Rl, NI) @ /I(R2, N2) -+ p(R1 @ R2,  N1 @ N2) of 8.6.13
and exercise 8.6.5 may be used in this case to simplify the construction (cf.
[MacH,  X.71).

Exercise 8.7.2 (External product for Ext) Use the notation of 8.7.12 to pro-
duce natural pairings, commuting with connecting homomorphisms:

Extí,,,,(Ml,  N2) ë8.k  Ext;,lk(Mz,  N2) + Ext;;i,RZ~,k(M1  ë8  M2, Nl @ N2).

If i = j = 0, this is just the map

Hom(M1, NI) 8 Hom(M2, Nd + Hom(Mt  @ M2, Nt @J N2).

Example 8.7.13 Suppose that R is a flat commutative algebra over k. If I
is an ideal of R generated by a regular sequence x = (xl, . . , xd), then T =
Torfik(R/I,  R/I) is isomorphic to (R/l)d and

TorFík(R/I,  R/Z) z AíT for i > 0.
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In particular these vanish for i > d. To see this, we choose the Koszul reso-
lution K(x) + R/Z (4.5.5); each Ki(x) = AiRd  is -L-projective. Since every
differential in R/I @R K(x)  is zero, we have

TorFfk(R/I, R/I) Z R/I @R Kt(X)  E AíT

More is true: we saw in exercise 4.5.1 that K(x)  is a graded-commutative

DG-algebra, so Tortfk(R/I,  R/I) .IS naturally a graded-commutative R/Z-
algebra, namely via the exterior algebra structure. This product may also be
obtained by composing the external product

Torflk(R/I,  R/I)@Torflk(R/I,  R/I) + Tor,RBRik(R/I@R/I, R/I@RfI)

with multiplication arising from R @ R -+ R and R/I ~3 R/I + R/I. Indeed,
the external product is given by K(x) ~3 K(x) and the multiplication is re-
solved by the Koszul product K(x) @ K(x) + K(x); see exercise 4.5.5.

Theorem 8.7.14 (Products of rings) Let k + R and k -+ R’ be ring maps.
Then there are natural isomorphisms

Tor!RXRí)ëk(M  x Mí, N x Ní) Z Tortlk(M, N) @ Tor2îk(Mí,  Ní),

Ext;RXR,),k(M  x Mí, N x Ní) ì=  Ext*,,,(M,  N) @ EXt*,,,(kfí,  Ní).

Here M and N are R-modules, Ml and Ní are RI-modules,  and we consider
M x Mí and N x N’ as (R x Rí)-modules  by taking products componentwise.

Proof Write _L and Ií for the cotriples @R and 63Rí,  so that I @ I is
the cotriple @(R x Rí). Since (I @ Ií)(M  x Mí) 2 (I M) CB (I Mí) @ (I’
M) @ (I’ Mí), both I M = M c3 R and I Mí = Mí C3 Rí are (I fB Lí)-
projective (R x Rí)-modules  (exercise 8.6.3). The bar resolutions B(R,  M) +
M and B(Rí,  Mí) í  Ií)-projective resolutions;
so is the product B(R,  M) x /3(Rí,  Mí) + M x Mí. Using this resolution to
compute relative Tor and Ext over R x Rí yields the desired isomorphisms, in
view of the natural k-module isomorphisms

(M x Mí)  @(RARE)  (N x Ní) g (M @R N) @ (Mí@R~  Ní),

HomRXR!(M  x Mí, N x Ní) Z HomR(M,  N) @ HomRr(Mí,  Ní). 0

Call a right R-module P relativelyBat if P @)R N* is exact for every k-split
exact sequence of left R-modules N,. As in exercise 3.2.1 it is easy to see that

P is relatively flat if and only if Torflk (P, N) = 0 for * # 0 and all left mod-
ules N.
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Relatively Flat Resolution Lemma 8.7.15 Zf P -+ M is a k-split resolution

of M by relatively flat R-modules, then Tor,Rík(M,  N) ” H,(P @R N).

Proof The proof of the Flat Resolution Lemma 3.2.8 goes through in this
relative setting. 0

Corollary 8.7.16 (Flat base change for relative Tor) Suppose R -+ T is a
ring map such that T is flat as an R-module. Then for all T-modules M and
all R-modules N:

Torflk(M,  N) % Torrlk(M,  T i8.R N).

Moreover; if R is commutative and M = L @R T these are isomorphic to

TorRlk(L @.R T, N) E T @R Tar,Rík(L,  N).

Proof This is like the Flat base change 3.2.9 for absolute Tor. Write P + M
for the k-split resolution associated to I, M + M, with I = @RT. The right
side is the homology of the chain complex P @r (T ë8R  N) S P @R N, so
it suffices to show that each P, = (Iî M) @k T is a relatively flat R-module.
Because k is commutative there is a natural isomorphism P @.R N S T @R
N @k (In M) for every N. If N* is a k-split exact sequence of left R-modules,
so is N, @k (In M); since T is flat over R, this implies that P @R N* E
T @R N* @ëk  (1” M) iS exact. 0

Exercise 8.7.3 (Localization) Let S be a central multiplicative set in R, and
M, N two R-modules. Show that

TorS-ëRlk(S-ëM,  S-IN)  ETT~~~ë~(S-ëM,  N) E S-ëTorfík(M,  N).

Vista 8.7.17 (Algebraic K-theory) Let R be the category of rings-without-
unit. The forgetful functor U: ëR + Sets has a left adjoint functor F: Sets -+
R, namely the free ring functor. The resulting cotriple I: R + R takes a
ring R to the free ring-without-unit on the underlying set of R. For each
ring R, the augmented simplicial ring I, R -+ R is aspherical in the sense
of 8.4.6: the underlying (based, augmented) simplicial set U(I, R) + UR
is aspherical. (To see this, recall from 8.6.10 that U(I, R) is fibrant and
left contractible, hence aspherical). If G: R + Groups is any functor, the I-
left derived functors of G (i.e., derived with respect to I) are defined to be
L,G(R) = rr,G(I, R), the homotopy groups of the simplicial group G(.l,
R). This is one type of non-abelian homological algebra (see 83.5).
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Classical examples of such a functor G are the general linear groups
GL,(R),  defined for a ring-without-unit R as the kernel of the augmenta-
tion GL,(Z @ R) + GL,(Z).  The inclusion of GL,(R) in G&+1(R) by
M ti (f y) allows us to form the infinite general linear group GL(R) as the
union UGL,(R).  By inspection, L,GL(R) = limm+oo L,GL,(R).

One of the equivalent definitions of the higher K-theory of a ring R, due to
Gersten and Swan, is

K,,(R) = L,_zGL(R) = T,~~GL(I, R) for n 2 3,

while K1 and K:! are defined by the exact sequence

0 -+ K2(R)  + LoGL(R)  --f GL(R) + Kl(R) + 0.

If R is a free ring, then K,(R) = 0 for n > 1, because GL(I,  R) -+ GL(R)
is contractible (8.6.9). If R has a unit, then LoGL(R)  is the infinite Stein-
berg group St(R) = 12 St,(R) of 6.9.13; St(R) is the universal central ex-

tension of the subgroup E(R) of GL (R) generated by the elementary matrices
(6.9.12). For details we refer the reader to [Swanl].

8.8 And&-Quillen Homology and Cohomology

In this section we fix a commutative ring k and consider the category Com-
malg = k-Commalg of commutative k-algebras R. We begin with a few defi-
nitions, which will be discussed further in Chapter 9, section 2.

8.8.1 The Ktihler diflerentials of R over k is the R-module fiRlk  having the
following presentation: There is one generator dr for every r E R, with da = 0
if 01 E k. For each r, s E R there are two relations:

d(r + s) = (dr) + (ds) and d(rs) = r(ds) + s(dr).

If M is a k-module, a k-derivation D: R + M is a k-module homomorphism
satisfying D(rs) = r(Ds) + s(Dr);  the map d: R --+ aR/k  (sending r to dr)
is an example of a k-derivation. The set Derk(R, M) of all k-derivations is an
R-module in an obvious way.

Exercise 8.8.1 Show that the k-derivation d: R -+ fiR/k  is universal in the
sense that Derk(R, M) Z HornR(fiR/k,  M).

Exercise 8.8.2 If R = k[X] is a polynomial ring on a set X, show that
fiQX]/k  is the free R-module with basis (dx : x E X}. If K is a k-algebra,
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conclude that QK[XI/K  2 K 8.k &[X]/k.  These results will be generalized in
exercise 9.1.3 and theorem 9.1.7, using 9.2.2.

Recall from 8.6.16 that there is a cotriple I on Commalg, I R being
the polynomial algebra on the set underlying R. If we take the resulting
augmented simplicial k-algebra I, R + R, we have canonical maps from
I, R = In+’ R to R for every IZ. This makes an R-module M into a
I, R-module. The next definitions were formulated independently by M.
Andre and D. Quillen in 1967; see [Q].

Definitions 8.8.2 The AndrLQuillen  cohomology Dn(R/ k, M) of R with
values in an R-module M is the cotriple cohomology of R with coefficients
in Derk(--, M):

Dî(R/k,  M) = xnDerk(l,R,  M) = Hn(R;  Derk(-,  M)).

The cotangent complex [LRIk  = [LR/k(&R)  of the k-algebra R is defined
to be the simplicial R-module [n] H R @(&R)  Q&$)/k.  The AndrbQuillen
homology of R with values in an R-module M is the sequence of R-modules

&(Rlk  M) = r,(M  @ëR  kR/k).

When M = R, we write D,(R/k)  for the R-modules D,(R/k,  R) = x*kR/k.
There is a formal analogy: D, resembles Tor, and D* resembles Ext*.

Indeed, the cotangent complex is constructed so that HomR([LRIk,  M) Z
Derk(_L,  R, M) and hence that D*(R/k, M) Z n* HomR([LR/k,  M). To see
this, note that for each n we have

HomR(R  B&R)  Q(i,R)/k,  M) g HOml,,R(f+lnR)/kt  W 2 Derk(LR,  W.

Exercise 8.8.3 Show that DO(R/k,  M) S Derk(R,  M) and Do(R/k, M) 2

M @ëR  fiR/k.

Exercise 8.8.4 (Algebra extensions [EGA, IV]) Let Exalcommk(R,  M) de-
note the set of all commutative k-algebra extensions of R by M, that is, the
equivalence classes of commutative algebra surjections E -+ R with kernel
M, M2 = 0. Show that

Exalcommk(R,  M) S Dí(R,  M).

Hint: Choose a set bijection E g R x M and obtain an element of the mod-
ule Homseb(-L  R, M) Y Derk(12  R, M) by evaluating formal polynomials
f E-L R in the algebra E.
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Exercise 8.8.5 Polynomial k-algebras are I-projective objects of Commalg
(8.6.7). Show that if R is a polynomial algebra then for every M and i # 0
Dí(R/k,  M) = Di(R/k,  M) = 0. We will see in exercise 9.4.4 that this van-
ishing also holds for smooth k-algebras.

Exercise 8.8.6 Show that for each M there are universal coefficient spectral
sequences

E~q = Tori(Dq(R/k),  M) * D,+,(Rlk, W;

E;’ = Ext;(D,(R/k), M) =+ Dpfq(R/k,  M).

If R is a field, conclude that

D,(R/k, M) Z D,(R/k) @R M and Dq(R/k,  M) 2 HomR(D,(R/k),  M).

In order to give the theory more flexibility, we need an analogue of the fact
that I-projective resolutions may be used to compute cotriple homology. We
say that an augmented simplicial k-algebra P* + R is a simplicial polynomial
resolution of R if each Pi is a polynomial k-algebra and the underlying aug-
mented simplicial set is aspherical. The polynomial resolution I, R -+ R is
the prototype of this concept. Since polynomial k-algebras are I-projective,

there is a simplicial homotopy equivalence P* ,I* R (2.2.6, 8.6.7). There-
fore Derk(P,,  M) 2: Derk(J-,  R, M) and D*(R/k,  M) Z nn Derk(P,,  M).
Similarly, there is a chain homotopy equivalence between the cotangent com-
plex [LR,I;  and the simplicial module [LRIk(P*):  [n] t-+ R @p, fip,Jk. (Exer-
cise!) Therefore we may also compute homology using the resolution P*.

8.8.3 Here is one useful application. Suppose that k is noetherian and that R
is a finitely generated k-algebra. Then it is possible to choose a simplicial poly-
nomial resolution P* + R so that each P,, has finitely many variables. Conse-
quently, if M is a finitely generated R-module, the R-modules Dq(R/k,  M)
and D,(R/ k, M) are all finitely generated.

8.8.4 (Flat base change) As another application, suppose that R and K are
k-algebras such that Torf (K, R) = 0 for i # 0. This is the case if K is flat
over k. Because these Tors are the homology of the k-module chain complex
C(K@k I, R), it follows that K@k 1, R -+ K @k R is a simplicial polyno-
mial resolution (use 8.4.6). Therefore

D*(K@&R  /K, M) ì=  IT*D~~K(K%ë~  LR, M)

S TT* Derk(l,R,  M) = D*(R/k,  M)
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for every K @I  R-module M. Similarly, from the fact that ~~lxl/k 2 K @k
&[X]/k  for a polynomial ring k[X] it follows that [LKBRIK 2 K @k [LRIk  and
hence that D,(K @k R /K) S K @k D,(R/k).  This family of results is called
Flat base change.

Exercise 8.8.7 Show that D*(R/k,  M) = D,(R/k, M) = 0 if R is any local-
ization of k.

8.8.5 As a third application, suppose that R is free as a k-module. This will
always be the case when k is a field. We saw in 8.6.16 that the forgetful
functor Uí: Commalg -+ k-mod has a left adjoint Sym; the resulting cotriple
Is(R)  = Sym(UíR)  is somewhat different than the cotriple 1. Our assump-
tion that R is free implies that Sym(UíR)  is a polynomial algebra, and free
as a k-module. Hence -Ls (R) --f R is also a simplicial polynomial resolu-
tion of R. Therefore D*(R/k,  M) is isomorphic to the cotriple cohomology
rr*(_Ls  R, M) of R with respect to the cotriple Is. Similarly, [LRIk and Li,, =
{R @3(pR) n(pR)/k} are homotopy equivalent, and D,(R/k, M) E n,(M @R

ëi,k).

8.8.6 (Transitivity) A fourth basic structural result, which we cite from [Q],
is Transitivity. This refers to the following exact sequences for every k-algebra
map K --f R and every R-module M:

0 -+ DerK(R,  M) -+ Derk(R, M) + Derk(K, M) & ExalcommK(R,  M) --f

Exakommk(R,  M) --f Exalcommk(K,  M) -f-+ D*(R/K, M) +

+ Dî(R/K,  M )  + Dî(Rlk,  M )  + Dî(K/k,  M )  --f+ Dî+ë(R/K,  M )  + ,

and its homology analogue:

.ë.  + D,+l(R/K)  5 R  @ëK  &(Klk) + D,(R/k)  + D,(R/K)  5 Dn-l(Rlk) -+ . . . .

The end of this sequence is the first fundamental sequence 9.2.6 for aR/k.

Exercise 8.8.8 Suppose that k is a noetherian local ring with residue field
F = R/m. Show that Dí(F/k)  2 Dl( F/k) E m/m2,  and conclude that if R
is a k/I-algebra we may have D*(R/k,  M) # D*(R/(k/Z),  M).

Exercise 8.8.9 (Barr) In this exercise we interpret Andre-Quillen homology
as a cotriple homology. For a commutative k-algebra R, let CommalglR
be the ìcommaî category whose objects are k-algebras P equipped with
an algebra map P + R, and whose morphisms P -+ Q are algebra maps
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such that P + R factors as P -+ Q + R. Let Diff: CommalglR -+ R-mod
be the functor Diff(P)  = Qp/k  @p R. Show that J- induces a cotriple on
CommalglR, and that if we consider R as the terminal object in CommalglR,
then the cotriple homology groups (8.7.1) are Andre-Quillen homology:

D,(R/k) = H,(R; Diff) and D,(R/k,  M) = H,,(R; Diff @R Ml.

8.8.1 Relation to Hochschild Theory

When k is a field of characteristic zero, there is a much simpler way to calcu-
late D*(R/k, M) and D,(R/k,  M), due to M. Barr [Barr].

Barrís Theorem 8.8.7 Suppose C,(R) is an R-module chain complex, natu-
ral in R for each R in Commalg, such that

1. Ho(C,(R))  Z fiRIk  for each R.
2. If R is a polynomial algebra, C,(R) + QRlk  is a split exact resolution.
3. For each p there is a functor Fp: k-mod + k-mod such that C,(R) 2

R @k F,(UR),  where UR is the k-module underlying R.

Then there are natural isomorphisms

Dq(R/k,  M) Z’ Hq HomR(C,(R),  M) a n d

D,(Rlk,  M) Z H,(M @R CAR)).

Proof We give the proof for cohomology, the proof for homology being simi-
lar but more notationally involved. Form the first quadrant double complex

Epq = HOmR(C0 (IíR)  M )p 4 '

with horizontal differentials coming from C, and vertical differentials coming
from the naturality of the C,. We shall compute H* Tot(Eu) in two ways.

If we fix q, the ring 1: R is polynomial, so by (2) C,(..Li  R) + filp,k is

split exact. Hence HP HOtnR(C,(_L~  R), M) = 0 for p # 0, while

Ho HomR(C,(..L~R),  M) Z HornR(fi+,k,  M) 2: Derk(_Li  R, M).

Thus the spectral sequence 5.6.2 associated to the row-filtration on Eo degen-
erates at E2 to yield HqTot(Eu)  Z HqDerk(l_sR,  M) = Dq(R/k,  M).

On the other hand, if we fix p and set G(L) = Homk(Pp(E),  M) we see

by condition (3) that E,ë*  = G(U 12 R). But the augmented simplicial k-

module U Is R -+ U R is left contractible (8.4.6),  because Is R = Sym(U R)



8.8 Andre-Quillen Homology and Cohomology 299

(see 8.6.10). As G is a functor, Ei* --+ G(UR)  = HomR(C,(R),  M) is

also left contractible, hence aspherical. Thus Hq(El*) = 0 for 4 # 0, and

Hí(El*)  2 HomR(C,(R),  M). Thus the spectral sequence 5.6.1 associated
to the column filtration degenerates at E2 as well, yielding HP Tot(Eu) zz
HPHOmR(C,(R),  hf). 0

Preview 8.8.8 In the next chapter, we will construct the Hochschild homol-
ogy H,(R, R) of a commutative k-algebra R as the homology of a natural R-
module chain complex C,h(R)  with C:(R) = R @k Fp(UR),  Fp(L) being the
p-fold tensor product (L @k L @k . . 8.k L). There is a natural isomorphism
H~(R, R) % fiR/k  and the map C:(R) + C,h(R)  is zero. We will see in 9.4.7

that if R is a polynomial algebra, then H,(R, R) &’ L?2n,,,,  so C,h does not quite
satisfy condition (2) of Barrís Theorem.

To remedy this, we need the Hodge decomposition of Hochschild homol-
ogy from 9.4.15. When Q C k there are natural decompositions Fp(L) =

@F,(L)(ë)  such that each C,h(R)(i)  = R @k F,(U R)(ë)  is a chain subcomplex
of C,h(R) and C,h(R)  = @C,h(R)(ë).  If M is an R-module (an R-R bimod-

ule via mr = rm), set Hf)(R,  M) = H,(M @R C,h(R)(ë))  and H&(R,  M) =

HîHomR(C,h(R)(ë),  M). The Hodge decomposition is

H,,(R,  M) = @H,(ë)(R,  M) and Hn(R,  M) = @Hg)(R,  M).

If R is a polynomial algebra, then H,(ë)(R,  R) = 0 for i # n, and H,(n)(R,  R) 2!
S-Z:,,  is a free R-module (exercise 9.4.4). In particular, since C,h(R)(ë)  = 0 for

i > n the augmented complex C,h (R)(ë)  -+ S&,,[-i]  is split exact for all i.

If we let C,(R) be C:+,(R) (I), then the above discussion show that C,
satisfies the conditions of Barrís Theorem 8.8.7. In summary, we have proven
the following.

Corollary 8.8.9 Suppose that k is a$eld of characteristic zero. Then Andre-
Quillen homology is a direct summand of Hochschild homology, and Andre-
Quillen cohomology is a direct summand of Hochschild cohomology:

D,(R/k, M) 2: H4(lt)l(R,  M) and Dq(Rlk,  M) % H;Tí(R,  M).
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Hochschild and Cyclic Homology

In this chapter we fix a commutative ring k and construct several homology
theories based on chain complexes of k-modules. For legibility, we write @
for @k and R@” for the n-fold tensor product R 123 . . . 8 R.

9.1 Hochschild Homology and Cohomology of Algebras

9.1.1 Let R be a k-algebra and M an R-R bimodule. We obtain a simplicial
k-module M 8 R@ë*  with [n] H M @ R@ëî  (M @ R@ëO  = M) by declaring

I mrl @ i-2  @J . . . C3 r, ifi=O

&(m @rl @I... @r,)= rn~rrl~...~rriri+l~...~rr, ifOti <n
r,m C3 rl C3 . . . C3 i-,-l ifi-n

q(m @ r-1 63 . . @ rn) = m 8 . . @ ri @ 1 63 ri+l @ . . @ r,,

where m E M and the ri are elements of R. These formulas are k-multilinear,
so the & and ai are well-defined homomorphisms, and the simplicial identities
are readily verified. (Check this!) The Hochschild homology H,(R, M) of R
with coefficients in M is defined to be the k-modules

H,(R, M) = n,(M @ R@*)  = H,,C(M  63 R@*).

Here C(M @ R@*)  is the associated chain complex with d = x(-l)ë&  :

w+

For example, the image of 80 - 81 is the k-submodule [M, R] of M that is gen-
erated by all terms mr-rm (m E M, r E R). Hence Ho(R,  M) S M/[M,  R].
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Similarly, we obtain a cosimplicial k-module with [n] H Homk(R@ë,  M) =
(k-multilinear maps f: R” -+ M] (Hom(R@ëO,  M) = M) by declaring

I rofh, . . . , m> ifi=O
(aíf)(rg;..,r,)= f(r0 ,..., ri-1ri ,...) ifO<itn

f(r0,. . . , rn-l)rn ifi = n

(oíf)(rl,  ... , r,-1)  = fh, . . . , ri, 1, rifl, . . . , m).

The Hochschild cohomology H*(R, M) of R with coefficients in M is defined
to be the k-modules

Hî(R,  M) = rrî(Homk(Rí*,  M)) = HîC(Homk(R@*,  M)).

Here C Homk  (R*, M) is the associated cochain complex

aî-ai
O--+M- Homk(R,  M )  > Homk(R 8 R ,  M )  5 ... .

For example, it follows immediately that

Hí(R,M)=(mEM:rm=mr  forallrER].

Exercise 9.1.1 If R is a commutative k-algebra, show that M @ R@*  is a
simplicial R-module via r . (m @ rl @ . . .) = (rm) @ r-1 @I . . . . Conclude that
each H,(R, M) is an R-module. Similarly, show that HomR(R@*,  M) is a
cosimplicial R-module, and conclude that each H” (R, M) is an R-module.

Exercise 9.1.2 If 0 + MO + Ml + M2 + 0 is a k-split exact sequence of
bimodules (8.7.7),  show that there is a long exact sequence

..’ L Hi(R, O ) + Hi(R, Ml) + Hi(R, M2) --f+ Hi-l(R, MO)..ë.

Example 9.1.2 (Group rings) Let k[G] of a group G, and
,M for M 

trivial left G-module structure ( g m  =  m  f o r  a l l  g  E G ,  E M ) .  I f  B,U
H,(G; M )  
M @QC B,U,  the chain complex that in degree i is M @ (ZG)@ì.  By inspec-

ZG, EM. S i m i l a r l y ,
H*(G; i s  t h e  c o h o m o l o g y  o f  t h e  c h a i n  c o m p l e x  Homc(B,U, w h i c h  i s
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the same as the complex Homk ((ZG) @*,EM)  used to define Hochschild coho-
mology. Thus

H,(G; M) 2 H,(ZG;,M) and H*(G; M) Y H*(ZG;  ,M).

The above definitions, originally given by G. Hochschild in 194.5, have the
advantage of being completely natural in R and M. In order to put them into
a homological framework, it is necessary to consider the enveloping algebra
Re = R @k RîP  of R. Here RìP  is the ìopposite ringî; RíP  has the same un-
derlying abelian group structure as R, but multiplication in RíP  is the opposite
of that in R (the product r . s in R ëP  is the same as the product sr in R). The
main feature of RîP  is this: A right R-module M is the same thing as a left
RíP-module  via the product r . m = mr because associativity requires that

(r . $1 . m = (sr) m = m(sr) = (ms)r = r (ms) = r . (S . m).

Similarly a left R-module N is the same thing as a right Ríp-module  via
n . r = rn. Consequently, the main feature of Re is that an R-R bimodule
M is the same thing as a left Re-module via the product (r @ s) . m = rms,
or as a right Re-module via the product m . (r @ s) = smr. (Check this!) This
gives a slick way to consider the category R-mod-R of R-R bimodules as
the category of left Re-modules or as the category of right Re-modules. In
particular, the canonical R-R bimodule structure on R makes R into both a
left and right Re-module.

Lemma 9.1.3 Hochschild homology and cohomology are isomorphic to rel-
ative Tor and Extfor the ring map k -+ Re = R &I RîP  :

H,(R, M) 2 Tor:ëlk(M,  R) and H*(R,  M) 2 Ext*,,,,(R, M)

Proof Consider the unnormalized bar resolution /I(R, R) of R as a left R-
module (8.6.12). Each term B(R, R)n = R@ë+’  @ R is isomorphic as an R-R
bimodule to R @ R @’ @ R 2 (R @I  Rîp)  8 R@’ and hence is I-projective
(8.63, where _L = Re@.  Since B(R, R) is a k-split I-projective resolution
of the Re-module R, 8.7.10 yields

TorfCík(M,  R) = H,(M @Re B(R, R)) and

Ext*,,,,(R,  M) = H* HOIIIRe(jt?(R,  R), M).

On the other hand, the isomorphism M @Re  (R @ R@ëî  @ R) + M 8 R” send-
ing m @ (rg @ . . 63 r,+l) to (r,+lmro)  @ (rl (8 . . . @I m) identifies M CCJR~
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/?(R, R) with the chain complex C(M @I R@*)  used to define Hochschild ho-
mology. Similarly, the isomorphism HornRe  (R @ R@” @R, M) + Homk( R@ì,

M) sending f to f( 1, -, 1) identifies HomRe(/?(R, R), M) with the cochain
complex C(Homk(R@*,  M)) used to define Hochschild cohomology. 0

Next we show that in good cases, such as when k is a field, we can identify
Hochschild homology and cohomology with the absolute Tor and Ext over the
ring Re.

Lemma 9.1.4 If P and Q are flat (resp. projective) k-modules, then so is

P 63 Q.

Proof Let & be an exact sequence of k-modules. If P and Q are flat, then
by definition & @ P and hence & @ P @ Q are exact; hence P @ Q is flat. If
P and Q are projective, then Hom(Q, E) and hence Hom(P, Hom(Q, I)) g
Hom(P @ Q, E) are exact; as we saw in 2.2.3, this implies that P 8 Q is
projective. 0

Corollary 9.1.5 ZfR isflat as a k-module, then H,(R, M) 2 Tor,Rí(M,  R). Zf
R is projective as a k-module, then H*(R, M) S Ext*,,(R,  M).

Proof If R is flat (resp. projective), then each R@’ is a flat (resp. projective)
k-module, and hence each B(R,  R)n g Re @ R@” is a flat (resp. projective)
Re-module.  Thus B(R,  R) is a resolution of R by flat (resp. projective) Re-
modules. It follows that the relative Tor (resp. relative Ext) modules are iso-
morphic to the absolute Tor (resp. absolute Ext) modules. 0

Here are three cases in which H,(R, M) is easy to compute. First, let us
recall from 7.3.1 that the tensor algebra of a k-module V is the graded algebra

Proposition 9.1.6 Let T = T(V) be the tensor algebra of a k-module V, and
let M be a T-T bimodule. Then Hi (T, M) = 0 for i # 0, 1 and there is an
exact sequence

O+H,(T,M)+M@V&M+Ho(T,M)+O

where b is the usual map b(m @ v) = mu - urn. In particular tfa denotes the
cyclicpermutationa(vl~...~vj)=vj~vl~...vj-lofV~jandwewrite
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(V@j)” and (V@ëj),,  for the invariants and covariants of this group action,
then we have

Ho(T, T) = k @ &V@$, Hl(T, T) = &Víj)?
j=l j=l

Proof The formula d(t @ v @ tí) = tv @I  tí - t @I vtí defines a T-T bimodule
map from T @I  V @I T to T @ T. As the kernel I of the multiplication p: T @
T~Tisgeneratedbytheelementsv~l-l~v=d(l~~~l)and~d=
0, the image of d is I. As d is a direct sum (over p and q) of maps from
V@ëJ’  @I V @ Vq  to V@Jí+’  @I V@ and to V@J’ @J V@q+ë,  each of which is an
isomorphism, d is an injection. (Check this!) Hence

O+T@VVTTT@TTT+O

is a I-projective resolution of the Te-module  T; p is k-split by the map id @

1: T + T 8 T. Hence we can compute Tor,ìlk(M,  T) using this resolution.
Tensoring with M yields Hi(T, M) = 0 for i # 0, 1 and the advertised exact
sequence for H1  and HO. 0

Exercise 9.1.3 (Polynomials) If R = k[xl, . . . , x,], show that Re is isomor-
phic to the polynomial ring k[yt,  ’ . , yn, ~1, . . , z,] and that the kernel of
Re + R is generated by the regular sequence x = (yt - zt , . . . , y, - z,). Us-
ing the Koszul resolution K(x) of 4.5.5, show that Hp(R, R) 2 HP(R, R) S
AP(Rî)  for p = 0, . . , IZ, while H,(R, M) = HP(R,  M) = 0 for p > n and
all bimodules M. This is a special case of Theorem 9.4.7 below.

Exercise 9.1.4 (Truncated polynomials) If R = k[x]/(xî+’  = 0), let u = x 8
1-1~~andv=xî~1+xî~ë~x+.~~+x~~Xn-1+1~xXnaselements
in Re. Show that

0 t R t Re & Re $- Re & Re & Re t"i-...

is a periodic Re-resolution of R, and conclude that Ht(R, M) and Hí(R,  M)
are periodic of period 2 for i 2 1. Finally, show that when &I E R we have

Hi(R, R) E Hí(R,  R) % R/(YR)  for all i > 1.

Let k + f! be a commutative ring map. If R is a k-algebra, then Re = R 6&C
is an E-algebra. If A4 is an Re- Re bimodule then via the ring map R -+
Re (r H r &I 1) we can also consider M to be an R-R bimodule. We would
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like to compare the Hochschild homology H,k(R, M) of the k-algebra R with
the Hochschild homology Hz(Re, M) of the e-algebra Rr = R @ 4!..

Theorem 9.1.7 (Change of ground ring) Let R be a k-algebra and k + e a
commutative ring map. Then there are natural isomorphisms for every Re- Re
bimodule M:

H,k(R, M) % Hz(Re, M) and H,*(R, M) 2 H,*(Re, M).

Proof The unnormalized chain complexes used for computing homology are
isomorphic by the isomorphisms M @k R @k  . . . @k R G M Be (R @k l) @e

. . . @e (R @k e). Similarly, the unnormalized cochain complexes used for com-
puting cohomology are isomorphic, by the bijection  between k-multilinear
maps R” + M and f?-multilinear  maps (Rr)” -+ M. 0

Theorem 9.1.8 (Change of rings) Let R be a k-algebra and M an R-R
bimodule.

1. (Product) If R’ is another k-algebra and Mí an Rí-  R’ bimodule, then

H,(R x Rí,  M x Mí) Z H,(R, M) @ H,(Rí,  Mí)

H*(R x Rí, M x Mí) E H*(R, M) @ H*(Rí,  Mí) .

2. (Flat base change) If R is a commutative k-algebra and R + T is a ring
map such that T is flat as a (left and right) R-module, then

H&T, T @ëR  M @.R T) g T ë8R  f&CR,  Ml.

3. (Localization) If S is a central multiplicative set in R, then

H,(S-ëR,  SSíR)  Z H,(R, SíR)  2 S-ëH,(R,  R) .

Proof For (l), note that (R x Rí)e  Z Re x Rfe x (R @ RíOP)  x (Rí 8 Rap);
since M and Mí are left Re and Ríe-modules,  respectively, this is a special case
of relative Tor and Ext for products of rings (8.7.14). For (2), note that Re +
Te makes Te flat as an Re-module (because Te @Re M = T ë8,R  M @R T). By
flat base change for relative Tor (8.7.16) we have

Torrelk(T,  Te @ M) Z Tor:ëlk(T,  M) E T @R Torfefk(R,  M).

The first part of (3) is also flat base change for relative Tor 8.7.16 with T =
SSíR,  and the isomorphism H,(R, SíR)  Z S-ëH,(R,  R) is a special case
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of the isomorphism Tor RíIk(S-ëM,  N) g S-’  Tor,Rîk(M,  N) for localization
(3.2.10 or exercise 8.7.3). 0

Here is one way to form R-R bimodules. If M and N are left R-modules,
Homk(M,  N) becomes an R-R bimodule by the rule rfs : m F+ rf(sm).
The Hochschild cohomology of this bimodule is just the relative Ext of 8.7.5:

Lemma 9.1.9 Let M and N be kft R-modules. Then

Hî(R,  HOfIlk(bf, N)) g EXtilk(M,  N).

Proof Let B = B( R, R) be the bar resolution of R. Thinking of M as an R-k
bimodule, we saw in 2.6.2 that the functor @RM:  R-mod-R + R-mod-k is
left adjoint to the functor Homk(M,  -). Naturality yields an isomorphism of
chain complexes:

HomR(B @R M, N) S HomR_R(B,  Homk(M,  N)).

As B @R M is the bar resolution B(R, M), the homology of the left side
is the relative Ext. Since the homology of the right side is the Hochschild
cohomology of R with coefficients in Hom(M, N), we are done. 0

9.2 Derivations, Differentials, and Separable Algebras

It is possible to give simple interpretations to the low-dimensional Hochschild
homology and cohomology modules. We begin by observing that the kernel of
the map d: Homk(R,  M) -+ Homk(R @I R, M) is the set of all k-linear func-
tions f: R -+ M satisfying the identity

ftrori)  = rofh) +  f(ro)r1.

Such a function is called a k-derivation (or crossed homomorphism); the
k-module of all k-derivations is written Derk(R,  M) (as in 8.8.1). On the
other hand, the image of the map d: M + Homk(R,  M) is the set of all k-
derivations of the form fm (r) = rm - mr; call f,,, a principal derivation and
write PDer( R, M) for the submodule of all principal derivations. Taking Hí,

we find exactly the same situation as for the cohomology of groups (6.4.5):

Lemma 9.2.1 Hí(R,  M) = Derk(R, M)/PDerk(R,  M).
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Now suppose that R is commutative. Recall from 8.8.1 that the Kahler
dtxerentials of R over k is the R-module 52 Rfk defined by the presentation:
There is one generator dr for every r E R, with da = 0 if o E k. For each
t-1, r:! E R there are two relations:

d(ro + rt) = d(ro) + d(q) and d(rorl)  = ro(dr1)  + (dro)rl.

we saw in exercise 8.8.1 that Derk(R, M) g HOrnR(fiR/k,  M) for every right
R-module M. If we make M into a bimodule by setting rrn = mr for all r E R,
m E M then H ’  (R, M) G Derk (R, M). This makes the following result seem
almost immediate from the Universal Coefficient Theorem (3.6.2),  since the
chain complex C(M @ R@*)  is isomorphic to M @.R C(R 8 R@*).

Proposition 9.2.2 Let R be a commutative k-algebra, and M a right R-
module. Making M into an R-R bimodule by the rule rm = mr, we have
natural isomorphisms Ho(R,  M) 2 M and Hl(R, M) Z M @R fiRlk. In par-
ticular,

Proof Since rm = mr for all m and r, the map au - at: M @ R + M is zero.
Therefore HO S M and HI (R, M) is the quotient of M @k R by the relations
that for all m E M, ri E R mrl @I r2 - m 8 rlrz + r2m 8 t-1 = 0. It follows
that there is a well-defined map Hl(R, M) -+ M @,R QRfk  sending m @ r
to m 8 dr. Conversely, we see from the preSentatiOn  of fiR/k that there is
an R-bilinear map M x nR/k  + Hl(R, M) sending (m, rldr2) to the class
of mrl @ r2; this induces a homomorphism M @R QR/k  + Hl(R, M). B y
inspection, these maps are inverses. 0

Corollary 9.2.3 If S is a multiplicatively closed subset of R, then

Q(,-&),k  = +@R,k).

Proof The Change of Rings Theorem (9.1.8) states that Hl(S-ëR,  S-ëR)  E
S-ëHl(R,  R). 0

Alternate Calculation 9.2.4 For any k-algebra R, let I denote the kernel of
the ring map E: R @I R + R defined by e(r1 @ r2) = rlr2. Since r H r @ 1

defines a k-module splitting of E, the sequence 0 + I + Re -% R -+ 0 is k-
split. As HI (R, Re) = 0, the long exact homology sequence (exercise 9.1.2)
yields

Hl(R, M) 2íker(Z  @Re  M + ZM).
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If R is commutative and rm = mr, then IM = 0 and HI (R, M) 2
Z/Z2  @ RM. In particular, if we take M = R this yields

fiR/k ” Hl(R, R) 2 I/12.

Explicitly, the generator dr E fiR/k corresponds to 1 @I r - r @ 1 E I/12.
(Check this!)

Example 9.2.5 Let k be a field and R a separable algebraic field extension
of k. Then QR/k = 0. In fact, for any r E R there is a polynomial f(x) E k[x]
such that f(r) = 0 and fí(r)  # 0. Since d: R + QR/k  is a derivation we have
fí(r)dr  = d(f(r)) = 0, a n d hence dr = 0. As Q;2Rlk is generated by the drís ,
we get fdRfk  = 0.

Exercise 9.2.1 Suppose that R is commutative and M is a bimodule satisfy-
ing rm = mr. Show that there is a spectral sequence

E& = TorF(H,(R,  R), M) * H,+,(R,  M).

Use this to give another proof of proposition 9.2.2. Then show that if M (or
every H,(R, R)) is a flat R-module, then H,(R, M) S H,(R, R) ë8.R  M for
all n.

The following two sequences are very useful in performing calculations.
They will be improved later (in 9.3.5) by adding a smoothness hypothesis.

First Fundamental Exact Sequence for R 9.2.6 Let k + R + T be maps
of commutative rings. Then there is an exact sequence of T-modules:

The maps in this sequence are given by cx(dr 18 t) = tdr and p(dt) = dt.

Proof Clearly /? is onto. By the Yoneda Lemma (1.6.1 l), in order for this
sequence of T-modules to be exact at @/k. it is sufficient to show that for
every T-module N the sequence

HOmT(fiR/k  ë8.R  T, N) 5 HomT(~T/k,  N) c =ëmT(aT/R,  N)

be exact. But this is just the sequence of derivation modules

Derk(R, N) t Derk(T, N) t DerR(T, N),
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and this is exact because any k-derivation D: T -+ N satisfying D(R) = 0 is
an R-derivation. 0

Second Fundamental Exact Sequence for Q 9.2.7 Let I be an ideal of
a commutative k-algebra R. Then there is an R-module map 6: I/I2 +
QRfk @R R/I defined by 6(x) = dx &I  1, fitting into an exact  sequence

Proof If x E I and r E R, then S(rx) = dx @ r as dr @ x = 0; if r E I then
rx E I2 and S(rx) = 0. Hence 6 is well defined and R-linear. Once more we
use the Yoneda Lemma 1.6.11 to take an R/I -module N and consider

HOmR,r(I/12,  N) z Derk(R,  N) z Derk(R/I,  N) t 0.

If D: R + N is a k-derivation, then (S*  D)(x) = D(x), so if S*D = 0, then
D(I) = 0, and D may be considered as a k-derivation on R/I. 0

9.2.1 Finite Separable Algebras

A finite-dimensional semisimple algebra R over a field k is called separable if
for every extension field k E e the E-algebra Re = R @k e is semisimple.

Lemma 9.2.8 If K is a finite field extension of k, this definition agrees
with the usual definition of separability: every element of K is separable
over k.

Proof If x E K is not separable, its minimal polynomial f E k[X] has mul-
tiple roots in any splitting field f?. Then K @ e contains k(x) @ t? = C[X]/f,
which is not reduced, so K @ f? is not reduced. Otherwise we can write K =
k(x), where the minimal polynomial f of x has distinct roots in any field ex-
tension f? of k. Hence K @ fZ = [[X]/(f) is reduced, hence semisimple. 0

Corollary 9.2.9 AJinite-dimensional  commutative algebra over ajeld is sep-
arable if and only if it is a product of separablejeld extensions.

Proof A finite commutative algebra R is semisimple if and only if it is a
product of fields. R is separable if and only if these fields are separable. 0

The matrix rings M,(k) form another important class of separable algebras,
since M,(k) @k C Z M,(e).  More generally, Wedderburnís Theorem states
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(4.2.2). If M and N are left Re-modules, we saw in 9.1.3 and 9.1.9 that
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Ext*,&M, N) = Ext*,!& M, N) 2 H*(Re,  Homk(M,  N)).

As (4) holds for Re, the right side is zero for * # 0 and all M, N; the Global
Dimension Theorem (4.1.2) implies that Re has global dimension 0. Hence (2)

=+ (1). 0

Lemma 9.2.12 (Villamayor-Zelinsky) Let R be an algebra over aJield  k. If
R is projective as an Re-module,  then R isJinite-dimensional  as a vector space
over k.

Proof Let {xi} be a basis for R as a vector space and {fí}  a dual basis for
Homk(R, k). As Re is a free left R-module on basis { 1 @I xi} with dual basis
(1 @ fí)  S HomR(Re, R), we have

LA= c(1 @ fí)(u) @xi for all u E Re.

Now if R is a projective Re-module, the surjection E: Re + R must be split.
Hence there is an idempotent e E Re such that Re . e 2 R and I = 1. In
particular, (1 @ r - r @ 1)e  = 0 for all r E R. Setting u = (1 @J  r)e = (r @ 1)e
yields

(*) r = E(U) = C(l C3 fi>((r  63 1)e)  . Xi = r x(1 @ fi>(e>Xi.

Therefore the sum in (*) is over a finite indexing set independent of r. Writing
e = c ecrpxa  8 xp with e,p E k allows us to rewrite (*) as

r = x(1 @ fi)(ecrpx,  @ rxgbi  = CGpf(rXp)(&Xi).

Therefore the finitely many elements x,xi span R as a vector space. 0

9.3 H*, Extensions, and Smooth Algebras

From the discussion in Chapter 6, section 6 about extensions and factor sets
we see that H*(R, M) should have something to do with extensions. By a
(square zero) extension of R by M we mean a k-algebra E, together with
a surjective ring homomorphism E: E -+ R such that ker(s)  is an ideal of
square zero (so that ker(s)  has the structure of an R-R bimodule), and an
R-module isomorphism of M with ker(s). We call it a Hochschild extension
if the short exact sequence 0 + M -+ E -+ R -+ 0 is k-split, that is, split
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as a sequence of k-modules. Choosing such a splitting CT:  R -+ E yields a k-
module decomposition E 2 R @ M, with multiplication given by

(*I (ri, md(r2,  m2> = hr2, rim2 + mir2 + fh, r2)).

We call the function f: R 631 R + M the factor set of the extension corre-
sponding to the splitting U. Since the product (ro, O)(rl  , O)(rz, 0) is associa-
tive, the factor set must satisfy the cocycle condition

rof(r1,  r2) - f(rori,  r2) f f(r0, rlr2) - f(r0, rl)r2 = 0.

Conversely, any function satisfying this cocycle condition yields a Hochschild
extension with multiplication defined by (*). (Check this!) A different choice
0í:  R + E of a splitting yields a factor set fí, and

fíh,  0) - f(ri, r2) = o'(rda'(r2)  - aí(rlr2)  - a( + a(rlr2)

= aíh)[aí(r2)  - a(r2)l  - [aí(rlr2)  - a(rlr2)l

+ [oí(u)  - ah)la(r2),

which is the coboundary of the element (aí - a) E Hom(R, M). Hence a
Hochschild extension determines a unique cohomology class, independent of
the choice of splitting cr.

The trivial extension is obtained by taking E Z R @ M with product
(rt, ml)(r2, m2) = (rlr2, rlrn2  +mlr2).  Since its factor set is f = 0, the trivial
extension yields the cohomology class 0 E Hî(R,  M).

As with group extensions, we say that two extensions E and Eí are equiv-
alent if there is a ring isomorphism cp : E S Eí making the familiar diagram
commute:

O+M+E-+R+O

II ëp1  II

O-M-Eí-R-0.

Since E and Eí share the same factor sets, they determine the same cohomol-
ogy class. We have therefore proven the following result.

Classification Theorem 9.3.1 Given a k-algebra R and an R-R bimodule
M, the equivalence classes of Hochschild extensions are in I-I correspon-
dence with the elements of the Hochschild cohomology module H2(R, M).
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9.3.1 Smooth Algebras
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9.3.2 We say that a k-algebra R is smooth (over k) if for every square zero

extension 0 + M + E 5 T + 0 of a k-algebra T by a T-T bimodule
A4 and every algebra map u: R -+ T, there exists a k-algebra homomorphism
U: R + E lifting u in the sense that EU = u. For example, it is clear that every
polynomial ring R = k[xl , . . , x,] is smooth over k.

If R is smooth and J is a nilpotent ideal in another k-algebra E, then every
algebra map R + E/J may be lifted to a map R + E. In fact, we can lift it
successively to R -+ E/J2, to R -+ E/J3, and so on. Since Jm = 0 for some
m, we eventually lift it to R + E/Jm = E.

Proposition 9.3.3 (J.H.C. Whitehead-Hochschild) Zf k is a jield, then a k-
algebra R is smooth if and only if H2(R,  M) = 0 for all R-R bimod-
ules M.

Proof If R is smooth, every extension of R by a bimodule M must be trivial,
so H2(R,  M) = 0 by the Classification Theorem 9.3.1. Conversely, given an
extension 0 + M --+ E + T + 0 and v: R --+ T, let D be the pullback D =
((r, e) E R x T : u(r) = .Z in T). Then D is a subring of R x E and the kernel
of D + R is a square zero ideal isomorphic to M.

O--FM-D-R-O

II I b

O-M-E-T-+0.

Since k is a field, D is a Hochschild extension of R and is classified by an
element of H2(R, M). So if H2(R,  M) = 0, then there is a k-algebra splitting
D: R + D of D + R; the composite of a with D -+ E is a lifting of R + T.
Quantifying over all such M proves that R is smooth. 0

Corollary 9.3.4 If R is an algebra over a field k and H2(R, M) = 0 for
every R-R bimodule M, then any k-algebra surjection E + R with nilpotent
kernel must be split by a k-algebra injection C-F:  R -+ E.
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Exercise 9.3.1 (Wedderburnís Principal Theorem) Let R be a finite-dimen-
sional algebra over a field k, with Jacobson radical J = J(R). It is well known
that the quotient R/J is a semisimple ring ([BAII, 4.21). Prove that if R/J
is separable, then there is a k-algebra injection R/J c R splitting the natural
surjection R -+ R/J. Hint: Use the General Version 4.3.10 of Nakayamaís
Lemma to show that J is nilpotent.

Exercise 9.3.2

1. (Localization) If R is smooth over k and S c R is a central multiplicative
set, show that S-ëR  is smooth over k.

2. (Transitivity) If R is smooth over K and K is smooth over k, show that
R is smooth over k.

3. (Base change) If R is smooth over k and k + l is any ring map, show
that R I& l is smooth over E.

4. If k is a field, show that any filtered union of smooth algebras is smooth.

Exercise 9.3.3 Let 0 + M + E --% T + 0 be a square zero algebra exten-
sion and u: R + E a k-algebra map. If uí: R A E is any k-module map with
EU’ = FU, then u’  = u + D for some k-module map D: R + M. Show that u’
is a k-algebra map if and only if D is a k-derivation.

Fundamental Sequences for Q with Smoothness 9.3.5 Let k --+ R L T
be maps of commutative rings.

1. If T is smooth over R, then the first fundamental sequence 9.2.6 becomes
a split exact sequence by adding 0 + on the left:

0 -+ &(/k @R T  -% fiT/k L OTIR + ë.

2. If T = R/I and T is smooth over k, then the second fundamental se-
quence 9.2.7 becomes a split exact sequence by adding 0 -+ on the left:

Proof For (I), let N be a T-module, and D: R -+ N a k-derivation. Define
a ring map cp from R to the trivial extension T @ N by (o(r) = (f(r), Dr).
By smoothness, the projection T @ N -+ T is split by an R-module homo-
morphism o: T + T @ N. Writing a(t) = (t, Dít), then Dí: T + N is a k-
derivation of T such that Díf = D. (Check this!) Now take N to be aR/k 8.R
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T; Dí corresponds to a T-bilinear map y: fl;2Tlk  + QRlk @.R T. If D is the
derivation D(r) = dr @ 1, then ya is the identity on N and v splits a.

For (2), note that smoothness of T = R/I implies that the sequence 0 +

I/I* --f R/I* f\ R/I ++ 0 is split by a k-algebramap (T: R/I + R/I*.  The
map D = 1 - of: R -+ R/I* satisfies fD = f - (fa) f = 0, so the image of
D lies in I/I* and D is a derivation. Moreover the restriction of D to I is the
natural projection I + Z/Z*.  By universality, D corresponds to an R-module
map e: QRfk -+ I/I* sending rds to rD(s). Thus e kills IfiRlk and factors
through fiR/k @R R/I, with 66 the identity on I/I*. 0

We are going to characterize those field extensions K that are smooth over
k. For this, we recall some terminology and results from field theory [Lang,
X.61. Let k be a field and K a finitely generated extension field. We say that K
is separately generated over k if we can find a transcendence basis (tl, . ’ , t,)
of K/k such that K is separably algebraic over the purely transcendental field
k(tl, . . . , t,.). If char(k) = 0, or if k is perfect, it is known that every finitely
generated extension of k is separably generated.

Proposition 9.3.6 Zf k is a$eld, every separably generated extension jield K
is smooth over k.

Proof K is separably algebraic over some purely transcendental field F =
k(tl,  . . , tr). As F is a localization of the polynomial ring k[tl, . . , t,.], which
is smooth over k, F is smooth over k. By transitivity of smoothness, it suffices
to prove that K is smooth over F. Since K is a finite separable algebraic
extension of F, we may write K = F(x), where f(x) = 0 for some irreducible
polynomial f with fí(x) # 0. Suppose given a map u: K -+ T and a square
zero extension 0 + M + E + T + 0. Choosing any lift y E E of u(x) E T,
we have f(y + m) = f(y) + fí(y>m  for every m E M. Since u(f(x))  = 0
and u(fí(x))  is a unit of T, f(y) E M and fí(y) is a unit of E. If we put
m = -f(y)/fí(y),  then f(y + m) = 0, so we may define a lift K + E b y
sending x to y + m. 0

Corollary 9.3.7 If k is a per$ect$eld, every extensionJield  K is smooth over
k. In particulal; every extensionJield  is smooth when char(k) = 0.

Proof If K, is a finitely generated extension subfield of K, then K, is
separably generated and hence smooth. If M is a K-K bimodule, then
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H2(K,, M) = 0. As tensor products and homology commute with filtered di-
rect limits, we have H2(K,  M) = lim H2(K,, M) = 0. Hence K is smooth.+

0

When char(k) # 0 and k is not perfect, the situation is as follows. Call K
separable (over k) if every finitely generated extension subfield is separably
generated. The proof of the above corollary shows that separable extensions
are smooth; in fact the converse is also true [Mat, 2O.L]:

Theorem 9.3.8 Let k c K be an extension offields.  Then

K is separable over k + K is smooth over k.

Remark 9.3.9 One of the major victories in field theory was the discovery
that a field extension k c K is separable if and only if for any finite field
extension k c tZ the ring K @k e is reduced. If char(k) = p, separability is also
equivalent to Ma&meís  criterion for separability: K is linearly disjoint from
the field e = kí/Jíî  obtained from k by adjoining all p-power roots of elements
of k. See [Mat, 27.F] and [Lang, X.61. Here is the most important part of this
relationship.

Lemma 9.3.10 Let  K be a separably generated extension of a$eld k. Then
for every$eld  extension k c l the ring K @k JZ is reduced.

Proof It is enough to consider the case of a purely transcendental extension
and the case of a finite separable algebraic extension. If K = k(x) is purely
transcendental, then each K @ e = e(x) is a field. If K is a finite separable
extension, we saw that K @ e is reduced for every J! in 9.2.8 0

Exercise 9.3.4 A commutative algebra R over a field k is called separable
if R is reduced and for any algebraic field extension k c l the ring R @k e is
reduced. By the above remark, this agrees with the previous definition when R
is a field. Show that

1.
2.
3.
4.

5.

Every subalgebra of a separable algebra is again separable.
The filtered union of separable algebras is again separable.
Any localization of a separable algebra is separable.
If char(k) = 0, or more generally if k is perfect, every reduced k-algebra
is separable; this completely classifies separable algebras over k.
An artinian k-algebra R is separable if and only if R is a finite product of
separable field extensions of k (see 9.2.9).
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6. A finite-dimensional algebra R is separable in the sense of this exercise
if and only if it is separable in the sense of section 9.2.1.

9.3.2 Smoothness and Regularity

For the next result, we shall need the Hilbert-Samuel function hR(n) = length
of R/m” of a d-dimensional noetherian local ring R. There is a polynomial
HR(t) of degree d, called the Hilbert-Samuel polynomial, such that hR(n)  =
HR(n) for all large n; see [Mat, 12.C&H].  For example, if R is the localization
of the polynomial ring K [xl, . . . , xd] at the maximal ideal A4 = (xt , . . . , xd),

then hR(n) = HR(n) = (ì+i-ë)  = n(n+l)$+-l)  for all n 2 1.

Theorem 9.3.11 Let R be a noetherian local ring containing ajeld k. If R is
smooth over k, then R is a regular local ring.

Proof Set d = dimK(m/m2),  and write S for the local ring of K[xl , . . . , Xd]
at the maximal ideal A4 = (xl, . . . , Xd). Note that S/M2 % K CD m/m2. By re-
placing k by its ground field if necessary, we may assume that the residue field
K = R/m is also smooth over k. This implies that the square zero extension
R/m2 + K splits, yielding an isomorphism R/m2 Z K @ (m/m2) 2 S/M2.
Since R is smooth, we can lift R + R/m2 g S/M2 to maps R + S/M” for
every n. By Nakayamaís Lemma 4.3.9, if R maps onto SIMn,  then R maps
onto S/Mî+’  (because m(S/Mn+t)  contains Mn/Mn+ë).  Inductively, this
proves that R/m” maps onto S/M” for every n and hence that hR(n)  L h&t)
for all n. Therefore the Hilbert polynomial HR(t)  has degree > d, and hence
dim(R) 2 d. Since we always have dim(R) 5 d (4.4.1),  this yields dim(R) =
d, that is, R is a regular local ring. 0

Definition 9.3.12 A commutative noetherian ring R is called regular if the
localization of R at any prime ideal is a regular local ring (see 4.4.1). We say
that R is geometrically regular over a field k if R contains k, and for every
finite field extension k c e the ring R @k e is also regular.

Corollary 9.3.13 Let R be a commutative noetherian ring containing ajield
k. If R is smooth over k, then R is geometrically regular over k.

Proof If R is smooth over k, then so is every localization of R. Hence R is
regular. For each k c e, R C?J f? is smooth over e, hence regular. 0

Remark In fact the converse is true: Geometrically regular k-algebras are
smooth over k; see [EGA, 01~(22.5.8)].



318 Hochschild and Cyclic Homology

Theorem 9.3.14 If R is a smooth k-algebra, then nR/k is a projective R-
module.

Proof we will show that fiR/k  satisfies the projective lifting prOperty.  Sup-
pose given an R-module surjection u: A4 + N and a map v: fiR/k + N. If I
is the kernel of Re + R, then the square zero algebra extension Re/12 + R is
trivial, that is, Re/12  % R @ I/I2 as a k-algebra. Moreover, I/I2 E fiRlk by
9.2.4. We thus have a diagram of k-algebras

Re + Re/12  ” R  @fiR/k

The kernel of R @ M + R @ N is the square zero ideal 0 CD ker(u).  By base
change (exercise 9.3.2) Re = R @,k  R is smooth over R, hence over k, so Re +
R @ N lifts to a k-algebra map w: Re --+  R @ M. Since w(Z) is contained in
0 @ A4 (why?), w(12) = 0. Thus w induces an R-module lifting I/I2 + M
of v. 0

Remark The rank of fiR/k is given in 9.4.8.

Application 9.3.15 (Jacobian criterion) Suppose that R = k[xl, . . , x,1/J,
where J is the ideal generated by polynomials ft , . . . , fm. The second fun-
damental sequence 9.2.7 is

J/J2 & Rn -+ fiR/k -+ 0,

where R” denotes the free R-module on basis {dxl, . . . , dx,}. Since J/J2
is generated by ft , . . . , f,,, the map 6 is represented by the m x n Jacobian
matrix (afi/axj). Now suppose that R is smooth, so that this sequence is

split exact and J/J2 is also a projective R-module. If M is a maximal ideal
of k[xl,  . , x,] with residue field K = R/M, and d = dim(RM), then JM
is generated by a regular sequence of length H - d, so (J/J2)  @R K is a
vector space of dimension 12 - d. Therefore the Jacobian matrix (afi/axj)  has
rank II - d when evaluated over K = R/M. This proves the necessity of the
following criterion; the sufficiency is proven in [EGA, Otv(22.6.4)],  and in
[Mat, section 291.

Jacobian criterion: R is smooth if and only if the Jacobian matrix
(afi/axj)  has rank n - dim(RM) when evaluated over R/M  for every
maximal ideal M.
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9.4 Hochschild Products

There are external and internal products in Hochschild homology, just as there
were for absolute Tor (and Ext) in 2.7.8 and exercise 2.7.5, and for relative
Tor (and Ext) in 8.7.12 and exercise 8.7.2. All these external products involve
two k-algebras R and Rí and their tensor product algebra R @ Rí. To obtain
internal products in homology we need an algebra map R @ R -+ R, which
requires R to commutative. This situation closely resembles that of algebraic
topology (pretend that R is a topological space X; the analogue of R being
commutative is that X is an H-space). We shall not discuss the internal prod-
uct for cohomology, since it is entirely analogous but needs an algebra map
R -+ R @ R, which requires R to be a Hopf algebra (or a bialgebra).

We begin with the external product for Hochschild homology. Let R and R’
be k-algebras. Since the bar resolution /3(R, R) is an R-R bimodule resolu-
tion of R and /?(Rí,  Rí) is an Rí-  Rí bimodule resolution of Rí, their tensor
product /I( R, R) @ B(Rí,  Rí) comes from a bisimplicial object in the category
bimod of (R 8 Rí) -( R @I  Rí) bimodules. In 8.6.13 we showed that the shuffle
product V induces a chain homotopy equivalence in bimod:

Tot/3(R,  R) 8 /I(Rí,  Rí) v\ B(R %I Rí,  R @ Rí).

If M is an R-R bimodule and Mí is an RI-R’ bimodule, then we can tensor
over (R @ Rí)e  with M 8 Mí to obtain a chain homotopy equivalence

Tot((M  8~’  /J(R,  R)) @ (M’ 63~” B(Rí,  Rí))]  5 (M @ Mí)  C+(R~R!)~  kJ(R 8 R', R Q R').

Recall from 9.1.3 that the Hochschild chain complex C(M 621 R@*)  is isomor-
phic to M @Re  p (R, R). Hence we may rewrite the latter eqUiValenCe  as

Tot(C(M  @ Rí*)  @ C(Mí @ Rí@*))  v\ C((M 8 Mí) @ (R 8 Rí)ë*).

If we apply HOUlbi,~(-,  M @ Mí) we get an analogous cochain homotopy
equivalence

Tot HOtTlbi,&(B(R,  R) 8 B(Rí,  Rí), A4 8 Mí) -% C Homk((R  @ Rí)@ë*,  M @ Mí),

but the natural map from HomR(B, M) @ Horn&Ií,  Mí) to HOmbimod(p  8
j?ë,  M @ Mí) is not an isomorphism unless R or Rí is a finite-dimensional al-
gebra. The Ktinneth formula for complexes (3.6.3) yields the following result.

Proposition 9.4.1 (External products) The shufJre product V induces natural
maps
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Ht(R, M) @ Hj(Rí,  Mí) L Hi+j(R @ Rí, M @ Mí),

Hí(R,  M) @ Hj(Rí,  Mí)  -& Hí+j(R  @ Rí,  M @Mí).

For i = j = 0 these products are induced by the identity map on M @ Mí. If
k is a jeld,  the direct sum of the shufJle product maps yields natural isomor-
phisms

H,z(R 63 Rí,  M 63 Mí) 2 [H&R,  M) @ H,(Rí,  Mí) ],

=@ Hi(R,  M) @I Hj(Rí,  Mí) .
i+j=n

Similarly, the shufle product V: H*(R, M) @ H*(Rí,  Mí) + H*(R @ Rí,

M 631  Mí) is an isomorphism when either R or R’ is jinite-dimensional over
afield k.

Remark The explicit formula for V in exercise 8.6.5 shows that the external
product is associative from H (R, M) 8 H (Rí, Mí) @ H (Rî, Mî) to H (R @I
Rí @ Rî, M @I  Mí @ Mî).

Exercise 9.4.1 Let 0 + MO --+ Ml + M2 + 0 be a k-split exact sequence of
R-R bimodules. Show that V commutes with the connecting homomorphism
3 in the sense that there is a commutative diagram

Hi(R,  M2) @ Hj(Rí,  Mí) J+ Hi+j (R @ Rí,  M2 8 Mí)

a8i.j. la

V
Hi-l(R, MO) 8 Hj(Rí,  Mí)  + Hi+j-l(R  @ Rí,  MO 8 Mí) .

9.4.1 Internal Product

Now suppose that R is a commutative k-algebra. Then the product R 8 R -+
R is a k-algebra homomorphism. Composing the external products with this
homomorphism yields a product in Hochschild homology

H,(R, M) 63 f&&R,  Mí)  + H,+,(R,  M @ìRe  Mí).

Here M @I Mí is an R-R bimodule by r(m @ mí>s  = (rm) 63 (mís). When
M = Mí = R, the external products yield an associative product on H,(R, R).
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In fact, more is true. At the chain level, the shuffle product 8.6.13 gives a map

Tot C(R @ R@*) C+ C(R @ R@*) 5 C((R @J R) 8 (R 63 R)@*) + C(R @ R@*).

Proposition 9.42 If R is a commutative k-algebra, then

1. C(R 8 R@*) = R @Re  t!I(R,  R) is a graded-commutative dt#erential
graded k-algebra (4.5.2).

2. H,(R, R) is a graded-commutative k-algebra.

Proof It suffices to establish the first point (see exercise 4.5.1). Write C, for
C(R @I R@*) = R @Re jI(R, R). The explicit formula for V (exercise 8.65)
becomes

G-0 C3  r-1 @ . . .CQ rp)V(rA  63  rp+l @ + . . c3 rp+q) =

c (-lYL(ror$  C3  ruLl(l) @ . . . @ r,-ë(P+4)’
F

where p ranges over all (p, q)-shuffles. The product V is associative, be-
cause an (n, p, q)-shuffle may be written uniquely either as the composi-
tion of a (p, q)-shuffle and an (n, p + q)-shuffle, or as the composition of
an (n, p)-shuffle and an (n + p, q)-shuffle. Interchanging p and q amounts
to precomposition with the shuffle v = (p + 1, . . . , p + q, 1, . . . , p); since
(- 1)î = (- 1)PQ the product V is graded-commutative. Finally, we know that
V: Tot(C, 8 C,) + C, is a chain map. Therefore if we set p = (r-0,  r-1, . . . , rp)
and p’  = (r-h, rp+l, . . . , r,+,) and recall the sign trick 1.25 for dî we have the
Leibnitz formula:

d(pVpí)  = V(d* + dî)(p  8 pí) = (&)Vp’ + (-l)ppV(dpí). 0

Corollary 9.4.3 If R is commutative and M is an R-R bimodule, then
H* (R, M) is a graded H* (R, R)-module.

9.4.2 The Exterior Algebra !C$,,

As an application, recall that HI (R, R) is isomorphic to the R-module fiR/k  of
Kahler  differentials of R over k. If we write s2:,, for the nth exterior product

An(aR/k), then the exterior algebra Q&k on QRlk is
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Note that Qo,,, = R and L-&k = !&/k.  a;,, is the free graded-commutative

R-algebra generated by aR,k; if K, is a graded-commutative R-algebra, then
any R-module map QRf k + K1 extends uniquely to an algebra map R*,,, -+

K*.

Corollary 9.44  If R is a commutative k-algebra, the isomorphism Qk,, Z
Hl(R, R) extends to a natural graded ring map $rcr: S-l>,, + H,(R, R). IfQ c

R, this is an injection, split by a graded ring subjection  e: H,(R, R) + a:,,.

Proof Since H,(R, R) is graded-commutative, the first assertion is clear. For
the second, define a map e: R@ëì+’  -+ S22n,,,  by the multilinear formula

1
e(ro @ rl 8.. @ rn) = Trodrl  A . . ’ A dr,.

n.

The explicit formula for V shows that e(pVpí)  = e(p) A e(pí)  in Q2*,,,.  There-

fore e is a graded R-algebra map from R@*+’ to a:,,. An easy calculation
shows that e(b(ro @ . . . ~3 m+l)) = 0. (Check this!) Hence e induces an alge-
bra map HH,(R, R) -+ Qk,,. To see that e splits @, we compute that

e@(rodrl  A . . . A dr,) = e((ro @ rl)V(l @ rz)V . . . V(1 @ m))

= e(ro 18 r-1) A e(1 8 t-2) A . . . A e(1 @ r,)

= rodrl  A r-2 A . . . A r,. 0

Definition 9.4.5 We say that a commutative k-algebra R is essentially offi-
nite type if it is a localization of a finitely generated k-algebra. If k is noethe-
rian, this implies that R and Re = R @I  R are both noetherian rings (by the
Hilbert Basis Theorem).

Proposition 9.4.6 Suppose that R is a commutative algebra, essentially of
finite type over aJield k. If R is smooth over k, then Re is a regular ring.

Proof We saw in 9.3.13 that smooth noetherian k-algebras are regular. By
smooth base change and transitivity (exercise 9.3.2),  Re = R @I  R is smooth
over R and hence smooth over k. Since Re is noetherian, it is regular. 0

Theorem 9.4.7 (Hochschild-Kostant-Rosenberg) Let R be a commutative al-
gebra, essentially ofjnite type over afield k. If R is smooth over k, then y? is
an isomorphism of graded R-algebras:
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Proof As with any R-module homomorphism, + is an isomorphism if and
only if $ @R R,,, is an isomorphism for every maximal ideal m of R. The
Change of Rings Theorem (9.1.8) states that H,(R, R) @R R, % H,(R,,,, Rm).
Since Q2*,,,  @R R, = S1*,m,k, pb @.R R, is obtained by replacing R by R,.
Hence we may assume that R is a local ring.

Let I be the kernel of R 8 R + R and M the pre-image of m in Re =
R @I R. M is a maximal ideal in the regular ring Re, so S = (Re)~ is a regular

local ring. By flat base change (8.7.16) H,(R, R) G’ Torslk(R, R). Since S
and R = S/ZM are regular local rings, ZM is generated by a regular sequence
of length d = dim(R) = dim(S) - dim(R); see exercise 4.4.2. We also saw in

8.7.13 that the external product makes Torîlk(R,  R) isomorphic to h*fiR/k  =
ai,k as a graded-commutative R-algebra. Since the external product can also
be computed via the bar resolution and the shuffle product (8.7.12),  the above

product agrees with the internal product on H*( R, R) r Torîlk(  R, R). 0

Remark 9.4.8 We saw in 9.3.14 and 8.7.13 that aR/k is a projective mod-
ule whose localization at a maximal ideal m of R is a free module of rank
dim(R,).  Hence for d = dim(R) = max{dim(R,)} we have fid,,, # 0 and

H,,(R,  R) = Szî,,,  = 0 for n > d. The converse holds: If H, (R, R) = 0 for
all large II, then R is smooth over k. See L. Avramov and M. ViguC-Poirrier,
ìHochschild homology criteria for smoothness,î Znternational  Math. Research
Notices (1992, No.l),  17-25.

Exercise 9.4.2 Extend the Hochschild-Kostant-Rosenberg Theorem to the
case in which k is a commutative noetherian ring; if R is smooth over k and
essentially of finite type, then $ : S22*,,,  E H,(R, R). Hint: Although S and
R = S/Z may not be regular local rings, the ideal Z is still generated by a
regular sequence of length d.

9.4.3 Hodge Decomposition

When Q c R and R is commutative, we shall show (in 9.4.15) that the
Hochschild chain complex C,h(R)  = C(R @I  R@*)  decomposes as the direct
sum of chain complexes C,ì(R)(ë). The resulting decompositions H,(R, R) =

$H$)(R, R) and H*(R, R) = @H&(R, R) are called the Hodge decomposi-
tions of Hochschild homology and cohomology in order to reflect a relation-
ship with the Hodge decomposition of the cohomology of complex analytic
manifolds. (This relationship was noticed by Gerstenhaber and Schack [GS];
see Remark 9.8.19 for more details.) In the process, we will establish the
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facts needed to apply Barrís Theorem (8.8.7),  showing that the summand

HL(ë)(R,  R) may be identified with the Andre-Quillen homology modules

D,-t(Rlk).
If R does not contain Q, there is a filtration on H,(R, R) but need be no

decomposition [Q]. This filtration may be based on certain operations Aí;  see
[Loday, 4.5.151. When Q c R the eigenspaces of the kk give the decomposi-

tion; hk acts as multiplication by f k’ on C,h(R)(ë)  and hence on H,(ë)(R,  R)
and H&(R,  R). For this reason, the Hodge decomposition is often called the
1- decomposition.

The symmetric group C, acts on the n-fold tensor product R@ and hence
onM@R @PI by permutí gm coordinates: a(m @ q @ . .. 8 r,J = m @ ra-l 1 ~3
. . * @ t-,-l,. Consider, for example, the effect of the signature idempotent

en = i CQE&l) ìD  of QE,; the definition of the shuffle product V shows

that in R @ Rí@’  we have the identity:

n!&,(q)  63 r-1 63 . . . @I p-J = rn(1  @ q)V . . . V(1 ca m).

This element is an n-cycle in the Hochschild complex representing the ele-
ment @(rodrl  A . . . A dr,) of H,(R, R), where @ : C2i,k L, H,(R, R) is the
injection discussed in 9.4.4. The formula for the chain-level splitting e: R @
R@*  + sZ*,,, of $J is skew-symmetric, so we also have e(rn @ rl @ . .. 8

m) = e(en(ro  @ r-1 @ . . ~3 r,J). Hence e factors through sn (R @ R@ë).
The following criterion for recognizing the signature idempotent will be

handy. Consider the action of C, on the module R @ R@ë.

Barrís Lemma 9.4.9 If u E Q&, satisfies bu( 1 ~3 rl @I . . . @ m) = Ofor all
algebras R, then u = CE, for some c E Q.

Proof Write u = Ccbo. with cacQ.  We consider its action on the ele-
ment x = (1 @ 11 @I . . . @ r,) of R @ R@ë,  where R is the polynomial ring
k[rl, . . . , m]. In b(ux) = C c,b(l 63 rc-ll @ . . . 8 r-,-l,) the term

occurs once with coefficient (- l)ëc,  and once with coefficient (- l)ëcrO,
where t is the transposition (i, i + 1). Since these terms form part of a
basis for the free k-module R %I R@ì,  we must have co. = -csO for all
CJ and all r = (i, i + 1). Hence c, = (-1)ìcl  for all UE&,  and therefore
U = Cl z(-l)ìc7  = CIEn. 0

/

To fit this into a broader context, fix n > 1 and define the ìshuffleî elements
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spq of HE,, to be the sum C(-l)p~  over all (p, q)-shuffles  in E,, (so by
convention sPq  = 0 unless p + q = n). Let s,, be the sum of the sPq  for 0 <
p < n.

Lemma 9.4.10 bs, = sn_lb for every n.

Proof If p + q = n, x = ro @ * . . @ rt, and y = 1 @ r,,+ 1 8 . . . @ r,,, then
XVY = spq (ro 63 . . . 8 m). Since R@*+’  is a DG-algebra (9.4.2),  we have

bspq(ro @ ... 8 rn) = b(xVy) = (bx)Vy + (-l)PxV(by)

= sp--l.q((bx)  CQ Y>  + (-Upq,,q-dx  8 (by)).

Summing over p gives bs, = sn_lb. 0

Proposition 9.4.11 ([GS])  The minimal polynomial for s,,eQ& is

fn(x) = x(x - h2)  . . . (x - An),  where hi = 2” - 2.

Therefore the commutative subalgebra Q[s,] of QX,, contains n uniquely de-

termined idempotents etí,  i = 1, . . . , n such that s,, = c hiez) and Q[s,] =

n QeY). In particular; eX)e$)  = 0 for i # j. 0

Definition 9.4.12 The idempotents et) are called the Eulerian idempotents

of QE,. Because sn has only n eigenvalues, et’  = 0 for i > n. By convention,
(0)

e0 = 1 and eiî)  = 0 otherwise.

Proof If n = 1 then st = 0, while if t = (1,2) then s2 = 1 - t satisfies
x(x - 2). For n > 3 we proceed by induction. Since bs, = s+l b, we have
bfn_l(sn) = fn_l(sn_l)b  = 0. By Barrís Lemma, fn_l(sn) = ten for some
constant c. To evaluate c, note that cnsn = hn.sn  because s,, has A, terms and
E,,D = (- l)n~n for every CE&. Thus

fn-1(&l)  = Enfn-1(&d  = fn-l(~nhz)  = fn-1owEn) = C&n # 0,

where c = An fn_l(l)  # 0. Thus fn(sn> = cen(sn - h,) = 0.

Corollary 9.4.13 e$’ is the signature idempotent E,,.

Proof  Q[s,] COnbinS  Ed = fn-1(&J/c,  and E,& = h,,&,,.

Corollary 9.4.14 be:) = efllb for i < n, and be:) = 0.
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Lemma 9.55 rf L is a left R-module and Q is a projective right R-module
then Hi(R,  L @ Q) = Ofor i # 0 and Ho(R,  L @I Q) E Q @,R L.

Proof By additivity, it suffices to prove the result with Q = R. The standard
chain complex (9.1.1) used to compute H*( R, L 81 R) is isomorphic to the bar
resolution B(R,  L) of the left R-module L (8.6.12),  which has Hi(B) = 0 for
i # 0 and Ho(B) 2 R 8.R L. 0

Theorem 9.5.6 (R. K. Dennis) Hochschild homology is Morita invariant.
That is, if R and S are Morita equivalent rings and M is an R-R bimodule,
then

H&R,  M) 2 H,(S,  Q ë8.R  M @R p)-

Proof Let L denote the S-R bimodule Q @R M. Consider the bisimplicial k-
module Xij = S@’  @I L 6~ R@ëj  &I P, where the jfh row is the standard complex

9.1.1 for the Hochschild homology over S of the S-S bimodule L @I R@j 63 P
and the ith column is the standard complex for the Hochschild homology of
the R-R bimodule P 8 S@” @ L (with the P rotated). Using the sign trick
1.25,  form a double complex C,,. We will compute the homology of Tot(C)
in two ways.

. . .

L@R@R@P  t . . .

L@R@P t- S@L@R@P  + . . .

L@P t- S@L@P t- S@S@L@P  . . .

Since P is a projective right S-module, the jth row is exact except at i = 0,
where Ho(C*j) = P @s (L &I R@j) &Z  M @ R@j  (9.55). The vertical differ-
entials of the chain complex Ho(C*j) make it isomorphic to the standard com-
plex for the Hochschild homology of M. Thus  Hi Tot(C) E Hi(R,  M) for all
i. On the other hand, since P is a projective left R-module, the ith column
is exact except at j = 0, where Ho(Ci*)  = S@” 8 L @s P (9.5.5). The hor-
izontal differentials of Ho(Ci*)  make it isomorphic to the standard complex
for the Hochschild homology of L @,s P = Q @.R M 64~  P. Thus Hi Tot(C) Z
Hi(S,  Q 8.~ M 8s P) for all i. 0



9.5 Morita Invariance 329

Definition 9.5.7 (Trace) The usual trace map from M,(R) to R is the map
sending a matrix g = (Sij) to its trace C gii. More generally, given an R-R
bimodule M we can define maps trace, from M,(M) @ M,(R)@ìn  to M 8
R@” by the formula

These maps are compactible  with the simplicial operators & and oi (check
this!), so they assemble to yield a simplicial module homomorphism from
M,(M)@MM,(R)@*  to  M@R .@* They therefore induce a map on Hochschild
homology, called the trace map.

Corollary 9.58  The natural isomorphism of theorem 9.5.6 is given by the
trace map H,(M,(R),  Mm(M)) -+ H,(R, M).

Proof Let us write F = F(R,S,  P, Q,M)  for the natural isomorphism H,(R,
M) -+ H,(S, Q @ M @I P) given by the bisimplicial k-module X of theorem
9.5.6. Fixing R, set Sí = R and S = M,,,(R), Pí = R and P = Rm, Qí = R
and Q = (Rî)T.  The diagonal map A: R + M,(R) sending r E R to the

r 0
diagonal matrix

[ 1. . . . . is compatible with the maps Pí + P and Qí -+
0 r

Q sending p E Pí and q E Qí to (p, 0, . . . , O>T and (q, 0, . . . , O), respectively.
It therefore yields a map A: X(R, Sí, Pí, Qí)  + X(R,  S, P, Q). (Check this!)
This yields a commutative square

H,,(R, M) 5 H,,(R,R  C~RM@RR) = ffn(RtW

H,(R, M) A Z&W,(R),  Q 8 M @ P) = H,(M,(R),  M , ( M ) ) .

It follows that A is an isomorphism. At the chain level, we have

Clearly trace, (A (m @ rl 8 . . . C~I rn)) = m @ r-1 @ . . . C3  r,, so the trace map
H,(M,(R),  M,(M)) + H,(R, M) is the inverse isomorphism to A. 0
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Exercise 9.5.3 For m < n, consider the (nonunital) inclusion 1: M,(R) C,g 0M,(R)  sending g to o o .[ 1 Show that 1 induces a chain map 1, from the

complex M,(M)  @ M,(R)@* to the complex Mn(M) 8 M,(R)@*  for every
R-module M. Then show that this chain map is compatible with the trace maps
(i.e., that trace = trace ol,),  and conclude that L* induces the Morita invariance
isomorphism

H,(M,n(R),  M,(M)) S H,(Mn(R),  M,(M)).

Exercise 9.5.4 Let eii(r) denote the matrix with exactly one nonzero entry,
namely r, occurring in the (i, j) spot. Show that

trace el2(r1)  @ e23(r2)  @ . . @ e,l(m)  = rl @ . . . @ rn.

Then show that for any permutation (T of (1,2,  . . . , n)

h-ace  eol,02h)  @ enn,,i(rn)  = 1 rl @..+@rn ifoE&
0 if not,

where C,, is the subgroup of the symmetric group generated by (12 . . . n).

9.6 Cyclic Homology

The simplicial k-module ZR = R @ R@* used to construct the Hochschild
homology modules H* (R, R) has a curious ìcyclicî symmetry, which is sug-
gested by writing a generator rg 64 t-1 @ . . . 53 r, of R @ R@ëî  in the circular
form illustrated here.

rl @ . .

63 0

-_$ r0 ri

63 6
r, ~ . . .

The arrow -+ serves as a place marker, and there are n + 1 of the symbols
8. The n + 1 face and degeneracy operators replace the appropriate symbol 8
by a product or a ì8  1 @I,” respectively. This symmetry defines an action of the
cyclic group C,,+t on R @ R@ë; the generator t of Cn+t acts as the operator
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t(ro@.. .@rJ =r,@ro@... 8 r, _ 1. We may visualize t as a rotation of the
above circular representation (with the place marker fixed). Clearly i3i t = t ai _ 1
and Oit = tai-1 for i > 0; for i = 0 we have Clot = a, and agt = t20;,. (Check
this!) This leads to the notion of an abstract cyclic k-module: a simplicial k-
module with this extra cyclic symmetry. After giving the definition in this
fashion, we shall construct a category AC such that a cyclic k-module is a
contravariant functor from AC to k-mod, paralleling the definition in Chapter
8 of a simplicial object.

Definition 9.6.1 A cyclic object A in a category A is a simplicial object to-
gether with an automorphism tn of order n + 1 on each A, such that &t =
t&-l  and ait = tai-1 for i # 0, sot, = a,, and a& = t,f+lan.  (Writing t in-
stead of tn is an abuse of notation we shall often employ for legibility.)

We will use the term ìcyclic moduleî for a cyclic object in the category of
modules. For example, there is a cyclic k-module ZR associated to every k-
algebra R; Z,,R is R@ì+’ and the rest of the structure was described above.

Example 9.6.2 We will also use the term ìcyclic setî for a cyclic object in
the category of sets. For example, let G be a group. The simplicial set B G
(8.1.7) may be considered as a cyclic set by defining t on BG, = G” to be

t(g1,... 18,)  = (got  g1, . . . , gn_l), where go = (gt . . . g,)-l. Another cyclic
set is ZG, which has (ZG), = Gî+ë,

&Go, . . . , gn> = 1 (go? . . . 3 gigi+lt ” ’ 7 g,) ifi<n

(gngo,g1,  . . ..gn-1) ifi=n

cT(go,... ~gn)=(gO~ìë~gi~  l,gi+l,ìë)

t(go,  . . . 7 &I) = (&I, go9 . . .1 gel).

As the notation suggests, there is a natural inclusion BG c ZG and the free
k-modules k(ZG),  fit together to form the cyclic k-module Z(kG).

We now propose to construct a category AC containing A such that a cyclic
object in A is the same thing as a contravariant functor from AC to A. Recall
from Chapter 8, section 1 that the simplicial category A has for its objects
the finite (ordered) sets [n] = (0, 1, . . . , n), morphisms being nondecreasing
monotone functions. Let tn be the ìcyclicî automorphism of the set [n] defined
byt,(O)=nandt,(j)=j-1forjfO.

Definition 9.6.3 Let HomAc([n],  [p]) denote the family of formal pairs
((II,  tí),  where 0 5 i 5 n and (Y:  [n] + [p] is a nondecreasing monotone func-
tion. Let Homc([nl, [p]) denote the family of all set maps ~0: [n] + [p]
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which factor as q = atA for some pair (a, tí)  in Hom&[n],  [PI). Note that
p(i) 5 p(i + 1) 5 . . . 5 q~(i - 1) in this case. Therefore the obvious surjec-
tion from Hom&[n],  [p]) to Homc([n],  [p]) is almost a bijection-that is,
q uniquely determines ((Y,  tí)  such that q = ati unless q is a constant map,
in which case 40 determines a (a = ~0) but all n + 1 of the pairs ((p,  tí)  yield
the set map q. We identify HomA([n],  [p]) as the subset of all pairs ((21,  1) in

HomAc([nl,  [PI).
There is a subcategory C of Sets, containing A, whose objects are the sets

[n], n 2 0, and whose morphisms are the functions in Homc([n],  [p]). To see

this we need only check that the composition of @ = fiti and p = at,!, is in C,
and this follows from the following identities of set functions for the functions
Ei: [n - l] -+ [n] and qj: [n + l] + [n] generating A (see exercise 8.1.1)

i = O
tn&i = En

&i-l&l i>O I
a n d  tnqi = %I t;+1 i = O

Iqi-ltn+l i > 0 ’

Proposition 9.6.4 (A. Connes) The formal pairs in HomAc([n],  [p]) form
the morphisms of a category AC containing A, the objects being the sets [n]
for n > 0. Moreover, a cyclic object in a category A is the same thing as a
contravariant functor from AC to A.

Proof We need to define the composition (y,tk) of (p,tj) E HomAc([m],[n])
and ((Y,  tí)  E HomAc([n],  [p]) in such a way that if i = j = 0, then (v, tk) =
(a$, 1). If B is not a constant set map, then the composition típtj  in C is not
constant, so there is a unique (pí,  tk) such that tífitj  = ,!?ëtk;  we set (v, tk) =
(a/3í,  tk). If fi is constant, we set (v, tk) = (a/3, tj).  By construction, the pro-
jections from HomAc to Home are compatible with composition; as C is a
category, it follows that the (id,l) are 2-sided identity maps and that composi-
tion in AC is associative (except possibly for the identity (up o (/3, tj)) o pb =
(p o ((B, tj) o @)  when B is constant, which is easily checked). Thus AC is a
category and A + AC + C are functors. The final assertion is easily checked
using the above identities for t&i and t qj. 0

Remark The original definition given by A. Connes in [Connes] is that
HomAc([n],  [p]) is the set of equivalence classes of continuous increasing
maps of degree 1 from S’  = {z E 6: IzI = 1) to S’  sending the (n + l)ët  roots
of unity to (p + 1)” roots of unity. Connes also observed that AC is isomor-
phic to its opposite category (AC>ìP.  See [Loday] for more details.
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Exercise 9.6.1 Show that the automorphisms of [n] in AC form the cyclic
group C, + 1 of order n + 1.

Definitions 9.6.5 Let A be a cyclic object in an abelian category A. The chain
complex C,h!A)  associated to the underlying simplicial object of A (8.2.1)
is called the Hochschild complex of A. It is traditional to write b for the
differential of C,h (A), so that b = 6í0  - al + . . . f 8, goes from C,ì(A) = A, to
C,h_t (A) = A,_l.  The HochschiZd  homology H H,(A) of A is the homology

of C:(A); when A = ZR (9.6.1) we will write HH,(R) for HH,(ZR) =
H*( R, R). The acyclic complex of A, Cz (A), is the complex obtained from
C,h(A)  by omitting the last face operator. Thus C,ì(A) = An, and we write b’
for the resulting differential au - 31 + . . . F &_l  from A,, to An-l.

Exercise 9.6.2 Show the ìacyclicî complex C:(A) is indeed acyclic. Hint:
The path space PA (8.3.14) is a simplicial resolution of Ao.

Definition 9.6.6 (Tsyganís double complex) If A is a cyclic object in an abe-
lian category, there is an associated first quadrant double complex CC,,(A),
first  found by B. Tsygan in [Tsy], and independently by Loday  and Quillen in
[LQ]. The columns are periodic of order two: If p is even, the pth column is
the Hochschild complex C,h of A; if p is odd, the pth column is the acyclic
complex C,” of A with differential -bí.  (The minus sign comes from the sign
trick of 1.2.5.) Thus CC,,(A) is A,, independently of p. The qth row of
CC,,(A) is the periodic complex associated to the action of the cyclic group
C,+l on A,, in which the generator acts as multiplication by (-l>*t.  Thus the
differential A, + A, is multiplication by 1 - (-l)qt  when p is odd; when p
is even it is multiplication by the norm operator

N = 1 + (-1)qt  + ... + (-1)ëqt’  f.. . + (-l)qtq.

Lb -1-b’  56 -1-b’

1 - t N 1-t N
A2 +----- A2 + A2 + A2 +

lb -1-b’  Lb -1-b’

1+t
Al t A1 : A1 = A1 :

j_b -1-b’  Lb 1-b’

l - t
A0 - A0 : A0 Ii-r A0 :

Tsyganís double complex CC,, (A)
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Definition 9.6.7 The cyclic homology HC,(A)  of a cyclic object A is the
homology of Tot CC,,(A). The cyclic homology HC,(R)  of an k-algebra
R is the cyclic homology of the cyclic object ZR (= R @ R@*)  of 9.6.1. In
particular, HCo(A) = HHo(A) and HCo(R) = R/[R, R].

One of the advantages of generalizing from algebras to cyclic objects is that
a short exact sequence 0 + A --+ B + C -+ 0 of cyclic objects gives rise to
short exact sequences of Hochschild complexes as well as Tsygan complexes,
which in turn give rise to long exact sequences

. ..HH.(A) -+ HH,(B) + HHn(C) + HH,+l(A)...

. ..HC.(A) -+ HC,(B)+  HC,(C) -+ HC,_l(A)....

Lemma 9.6.8 CC,,(A) is a double complex.

Proof Set n = (-l>q.  We have to see that b(1 - nt) = (1 + nt)b’ and Nb =
bíN  as maps from A, to A,_l.  Now b - bí = r@, and the cyclic relations
imply that bt = aq - tbí, yielding the first relation. The cyclic relations also
imply that

q-1
b’  = C(-t)iagtq-i and b = e(-t)q-ëa,rí.

i = O i = O

(Check this!) Since (1 - nt) N = 0, we have ti N = níN  on A,. Since N( 1 t
nt) = 0, we have Nt’ = (--n)ëN  on A,_l.  Thus

4
nNb = n c N(n)q-iaqti  = nq+ëNaq  z(m)’ = Na,N,

i = O

q-1
nbíN  = r] ~(-t)ëi),nq-ëN  = nq+l  x(-nt,ëa,N  = Na,N.

i=O

This yields the second relation, Nb = bíN. 0

Corollary 9.6.9 Let A,/ - denote the quotient of A,, by the action of the
cyclic group. These form a quotient chain complex A,/ - of the Hochschild
complex C,h (A):

0 t A0 Ib Al/ -A A21 -A.. .

Indeed, A,/ - is the cokernel of the chain map Ccl, -+ CCo*,  so there is a
natural mapfrom  H,,(A*/ -> to HC,,(A).
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Remark Some authors define the cyclic homology of R to be H,,(R@*+ë/  -),
especially when k = C. The following lemma states that their definition is
equivalent to ours.

Lemma 9.6.10 Zf k contains Q, then H&(A) may be computed as the ho-
mology of the quotient complex A,/ - of the Hochschild complex.

Proof Filtering Tsyganís double complex 9.6.6 by rows yields a spectral se-
quence starting with group homology of the cyclic groups:

Z& = H,(C,+t;  A4) =+ HC,+,(A).

The edge map from HC,(A)  to the homology of E& = Ho(C,+l;  A,) =

A4/ - arises from the augmentation CCu, + A4/ -, so the E2 edge map
maps H,(A*/  -) to HC,,(A).  In characteristic zero the group homology van-
ishes (6.1.10) and the spectral sequence degenerates at E2. 0

Remark Filtering Tsyganís double complex by columns yields the even more
interesting spectral sequence 9.8.6 (see exercise 9.8.2).

The three basic homomorphisms S, B, and Z relating cyclic and Hochschild
homology are obtained as follows. The inclusion of C,h (A) as the column p =
0 in CC,,(A) yields a map I: HH,(A) += HC,(A). Now let CC:: denote the
double subcomplex of CC,,(A) consisting of the columns p = 0, 1; the inclu-
sion of C,h(A)  into CC:: induces an isomorphism HH,(A) g H,, Tot(CCii)
because the quotient is the acyclic complex C:(A). The quotient double com-
plex CC[-2]=  CC/CCî, which consists of the columns p 2 2, is isomor-
phic to CC,, except that it has been translated 2 columns to the right. The quo-
tient map Tot(CC,,)  --+ Tot(CC[-21)  therefore yields a map S: HC,(A) -+
HC,_z(A). The short exact sequence of double complexes

0 -+ CC” -r-t CC(A) L CC[-2]+  0

yields the map B: H C,_l (A) + H H,, (A) and the following ìSBI”  sequence.

Proposition 9.6.11 (SBI sequence) For any cyclic object A there is a long
exact ìSBZî sequence

. . . H&+1(A)  & H&l(A)  -% HH,,(A) & H&(A)  L HC,_z(A)  . . . .

In particular; there is a long exact sequence for every algebra R:

. HC,,+l(R) 2 HC,_l(R)  5 H,,(R, R )  L HC,,(R)  -% H&2(R)....
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Remark In the literature the ìSBIî sequence is also called ìConnesí se-
quenceî and the ìGysinî sequence. See exercise 9.7.4 for an explanation.

Corollary 9.6.12 If A --+ Aí is a morphism of cyclic objects with H H,, (A) 5
H H,, (Aí), then the induced maps HC,(A) -+ HC,, (Aí) are all isomorphisms.

Proof This follows from induction on n via the 5-lemma and 9.6.7. 0

Application 9.6.13 Let R be a k-algebra. The explicit formula in 9.5.7 for
the trace map Z(M,  R) + Z(R) shows that it is actually a map of cyclic
k-modules. Since it induces isomorphisms on Hochschild homology, it also
induces isomorphisms

HC,(M,R) 5 H&(R).

Exercise 9.6.3 For m < n, show that the nonunital inclusion 1: M,(R) L-)
M,,(R) of exercise 9.5.3 induces a cyclic map ZM,(R) + ZM,(R),  which
in turn induces isomorphisms

L*: H&M,(R)  2 H&M,(R).

Example 9.6.14 Since H,(k, k) = 0 for n # 0, the SBI sequence quickly
yields

HC,(k) =
k if n is even
0 if n is odd,

with the maps S: H&+2(k)  --+ HC,(k) all isomorphisms. The same calcula-
tion applies for any finite separable algebra R over a field k because we saw in
9.2.11 that H,(R, R) = 0 for all it # 0.

HCl 9.6.15 The SBI sequence interprets HCl(R)  as a quotient of HI (R, R):

Ho(R,  R) 5 Hl(R, R) -+ HCl(R)  -+ 0.

Now suppose that R is commutative, so that Ho( R, R) = R and HI (R, R) =
fiR/k.  The map B: R + fiR/k  maps r E R to dr. (Check this!) Therefore we
may identify B with d and make the identification
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Example 9.6.16 Since H,(k[x],  k[x]) = 0 for n 2 2, the S: HC,+&k[x])  +
HC,(k[x])  are isomorphisms for all n L 1 and there is an exact sequence

0 + HC2(kbl)  -s-t k[xl 5 fik[x]/k L HCl(k[x])  + 0.

If k contains Q, then xndx = d(xn+ë/n  + 1) for all n 2 0, so d is onto and
HCI (k[x]) = 0. This yields the calculation

1

k[x] ifn=O
HC,(k[xl)  =  k ifn>2iseven

0 if n 2 1 is odd.

Similar remarks pertain to the Laurent polynomial ring k[x, x-l], except that
the map d: k[x, x-l] + &[,,,-,I,, g k x,x-ë][ has cokernel k (on dx/x)
when Q c k. Thus when Q C k we have

HC,(k[x,  x-l]) E k for all n 1 1.

Remark We will compute HC,(R)  for a smooth algebra R in 9.8.11 and
9.8.12 in terms of de Rham cohomology.

Exercise 9.6.4 Consider the truncated polynomial ring R = k[x]/(nn+l)  over
a field k of characteristic 0. We saw in exercise 9.1.4 that dimk Hi (R, R) =
n for i > 0. Show explicitly that HCl(R) = 0. Then use the SBI sequence
to show that HCi (R) = 0 for all odd i, while for even i # 0 HCi (R) z
ZfCi (k) @ Hi (R, R) s kn+ë.  Another approach will be given in exercise 9.9.2.

9.6.1  Variations: HP and HN

9.6.17 We may use the periodicity of Tsyganís first quadrant double complex
CC,,(A) to extend it to the left, obtaining an upper half-plane double complex
CC:*(A).  (See 9.6.6.) The periodic cyclic homology of A is the homology of
the product total complex

HP,(A) = Hz+  Totî(CC,P,(A)).

If we truncate CCL to the left of the 2pth column, we obtain Tsyganís double
complex 9.6.6 translated 2p times. These truncations {CC,,[-2p]}  form a
tower of double chain complexes in the sense of Chapter 3, section 5. The
homology of this tower of double complexes is the tower of k-modules

. . . -s-t H&+4(A)  -s-, HC,+z(A) -% HC,(A).
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As we saw in 3.5.8, this means that there is an exact sequence

0 -+ l@ lHCn+~p+l(A)  + HP,(A)  + 12 HC,+z,(A)  + 0.

Moreover, it is visually clear from the periodicity of CC.&(A) that each map
S: H P,+z(A)  -+ HP,, (A) is an isomorphism. This accounts for the name ìpe-
riodic cyclic homologyî: the modules HP,, (A) are periodic of order 2.

Similarly, we can consider the ìnegativeî subcomplex CCz(A)  of the peri-
odic complex CC&(A)  consisting of the columns with p 5 0. This is a second
quadrant double complex. The negative cyclic homology of A is defined to be
the homology of the product total complex of CCg(A):

HN,(A)  = H* Totî(CC,N,(A)).

We leave it to the reader to check that there is an SBI exact sequence 9.6.11
for I: HN,  + HP* fitting into the following commutative diagram:

HFín+I(A)  : HC,,_l(A)  -f+ HN,,(A)  -r, H P , ( A )  -s, H&z(A)  ...

1
s

I
=

1 I
s

I=

H&+1(A)  : H&l(A) -f+ HH,(A)  -f, HC,(A) -s, H&-z(A)  ...

I
B

1, 1B
H&(A) HN,,_l(A)  =  HN,_l(A)

9.7 Group Rings

In this section we fix a commutative ring k and a group G. Our goal is to
compute HH,  and HC, of the group ring kG (9.7.5 and 9.7.9). To prepare
for this we calculate HC, of kBG, which we call H&(G).

In 9.6.2 we saw that BG could be regarded as a cyclic set by defining

t(g1, ... ?&) = ((g1 ..*gtl-ëv  g1, ... , gn_l).  Applying the free k-module
functor to BG therefore yields a cyclic k-module kBG. If we adopt the no-
tation HH,(G)  = HH,(kBG),  HC,(G)  = HC,(kBG),  and so on, then we
see (using 8.2.3) that

HH,(G)  = n,(kBG)  = H,(BG;  k) = H,(G; k).
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Theorem 9.7.1 (Karoubi) For each group G,
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HC,(G) z H,(G;  k) @ H,_z(G;  k) @ H,&G; k) @. . . .

Moreover, the maps S: HC,,(G) + HC,-2(G)  are the natural projections
with kernel H,(G;  k), and the maps B are zero.

Remark It is suggested to write Karoubiís Theorem in the form H&(G)  g
H,(G; k) 63 H&(k).

Proof Consider the path space EG = P(BG) of BG (8.3.14 and exercise
8.3.8), which as a simplicial set has (EG), = Gnfl and &(gn, . . . , g,) =
(. . . , gigi+t,  . . .) for i # n and &(gu, . . . , g,) = (go, . . . , g,-1).  If we define

t(go, . . . ?&z) = (go...gn,  (gl-%-l,  g1, g2, ...? gn-l)?

then the cyclic identities (të+’ = 1, ai t = t ai_,, etc.) are readily verified. (DO

so!) Therefore EG is also a cyclic set, and the projection n: EG + BG,
which forgets go, is a morphism of cyclic sets. Applying the free k-module
functor, n: kEG + kBG is a morphism of cyclic k-modules. More is true:
The group G acts on EG by g(gn, gt, . . .) = (ggu, gt, . s .> in a way that
makes kEG into a cyclic left kG-module,  and kBG = k @kc kEG. In partic-
ular, Tsyganís double complex CC,,(kEG) is a double complex of free kG-
modules and CC,,(kBG) = k 6&G  CC,*(kEG). It follows that HC,(G) =
H,Tot(CC,,(kBG))  is the hyperhomology W,(G;  TotCC,,(kEG))  of the
group G (6.1.15),  because each summand CC,,(kEG)  of TotCC,,(kEG) is
a free (hence flat) kG-module.

We saw in exercise 8.3.7 that the augmentation EG + 1 is a simplicial
homotopy equivalence. Applying the free module functor, the augmentation
kEG + k is a simplicial homotopy equivalence. Hence C,h(kEG)  is a res-
olution of the trivial kG-module  k, just as C,ì(kEG)  is a resolution of the
kG-module  0. Fitting these together, Tsyganís double complex CC,,(kEG)
is a ìresolutionî (in the sense of hyperhomology) of the trivial chain complex

which has Ki = 0 for i < 0 or i odd and Ki = k for i even, i 2 0. But the
hyperhomology of K, is easy to compute:

HCn(G) = W,(G; K*) = G Wn-zi(G;  k) = @ Hn-zi(G; k).
i=O
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The assertions that the maps S: HC, (G) -+ H&z(G)  are the natural projec-
tions with kernel HH,(G)  = H,(G; k), and that the maps B: H&l(G)  +
H Hn (G) are thus all zero, follow from a visual inspection of W,(G; K,). 0

Corollary 9.7.2

HP,(G) = l@ HC,+zi(G)  = l-& Hz(G; k), n even

nEu Hzi+t(G; k), n odd

Exercise 9.7.1 When Q c k, use kBG/ - to compute H&(G).

We now turn to the Hochschild homology of the group ring kG. Let < G >
denote the set of conjugacy classes of elements of G. Our first step is to find a
decomposition of the cyclic set ZG of 9.6.2 and the cyclic module Z(kG) =
k(ZG) which is indexed by <G>. There is a cyclic set map from ZG to the
trivial cyclic set < G >, which sends (go, gt , . . . , gn) E (ZG), = Gî+’  to the
conjugacy class of the product go . . . g, in < G >. (Check this!) For n = 0 this
yields an isomorphism

HCo(kG)  = HHo(kG)  3 k tG> = @k.
<G>

Indeed, the kernel of the surjection  kG + k < G > is generated by the el-
ements x -gxg -ë=ggí(gx)-(gx)ggí=b(gg’  @gx),  and HCo(k  < G >) =
k<G>.

Definition 9.7.3 For x E G, let Z,(G, x) denote the subset of Gn+’  = Z,G
consisting of all (go,  . . , gn) such that go. . . gn is conjugate to x, that is,
Z,(G, x) is the inverse image of <x > E < G > . As n varies, these form
a cyclic subset Z(G, x) of ZG. Note that Z(G, 1) is isomorphic to the
cyclic set BG (forget go). Applying the free k-module functor gives cyclic
k-submodules kZ(G, x) of kZ(G), one for each conjugacy class. We shall
write HH,(G,  x) for HH,(kZ(G,  x)), HC,(G,  x) for HC,(kZ(G,  x)), etc.
for simplicity. As Z(G) is the disjoint union of the cyclic sets Z(G, x), kZ(G)
is the direct sum of the kZ(G, x). Therefore HH,(kG) g @, HH,(G,  x) and
HC,(kG)  E $, HC,(G,  x).

To describe HH,(G,  x) etc. we recall that the centralizer subgroup of x E
G is the subgroup CG(X)  = (g E G : gxg-’  = x}. If xí is conjugate to x, then
CG(Xí)  and Co(x)  are conjugate subgroups of G. In fact, if we let G act on
itself by conjugation, then Cc(x) is the stabilizer subgroup of x; if we choose
a set (y} of coset representatives for G/CG(X),  then for each xí conjugate to x
there is a unique coset representative y such that yxíy-’  = x.
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Proposition 9.7.4 For each x E G the inclusion CG(X) C G induces isomor-
phisms HH*(CG(x),  x) E HH,(G,  x) and HC*(CG(x),  x) g HC,(G, x).

Proof Write H for CC(X), and choose a set (y) of coset representatives
for G/H, the coset of H being represented by y = 1. Given (go,  . . . , g,) E

Z,(G, x), let yi be the (unique) coset representative such that yi(gi+l . . gngu
. ..g.)yií=x  andset

&go,  . . .1 &I) = (Y&oYOí9  Yo&Y,ë,  . . . 1 Yi_lgi  Yií?  ” ’ 3 Yn-,g,Yií).

Each yi_lgi yi’ is in H (check this!), so p(gu, . . . , g,) E Z,(H, x). By in-
spection, p: Z(G,  x) -+ Z(H,  x) is a cyclic morphism splitting the inclusion
1 : Z(H, x) L, Z(G, x). There is a simplicial homotopy h from the identity
map of Z(G, x) to tp defined by

hi (go, . . ., -I8,) = (goY{ë,  YoglYl 3 ” 3 Yj-1SjYi”  Yj? gj+l? . ”  ’ gn)?

jzo,..., n. (Check this!) Hence the inclusion Z(H,  x) g Z(G, x) is a sim-
plicial homotopy equivalence. This implies that kZ(  H, x) E kZ(G, x) is
also a homotopy equivalence. Hence HH,(H, x) = n,kZ(H,  x) is isomor-
phic to HH,(G,  x) = r,kZ(G,  x), which in turn implies that HC,(H, x) 2

HC,(G,x). 0

Corollary 9.7.5 For each x E G, HH,(G,  x) % H,(CG(X);  k). Hence

HHdRG) = @ fh(C~(x);k).
xe<G>

Proof We have to show that H H,(CG(X),  x) is isomorphic to H,(CG  (x); k)
for each x, so suppose x is in the center of G. There is an isomorphism
Z(G, 1) + Z(G,  x) of simplicial sets given by (go, . . . , g,) F+ (xgo, gt, . . . ,
g,J.  Therefore H,(G; k) = HH,(kBG)  % HH,(G,  1) is isomorphic to

H&(G, x). 0

Remark One might naively guess from the above calculation that HC*(kG)
would be the sum of the modules HC*(CG(X))  = H,(CG(X);  k) 8 HC,(k).
However, when G is the infinite cyclic group T and Q C k, we saw in 9.6.16
that for n 1 1

HC,(kT)  = HC,(k[t,  t-l]) 2 k g HC,(T).

Therefore if Q 5 k, then for all x # 1 in T we have HC,(T,  x) = 0, n # 0.
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Exercise 9.7.2 Show that tn-’  @I t E Zl(kT,  tî)  represents the differential
tî-ldt  in HHl(kT)  2 &Tfk,  and use this to conclude that for general k.

i = O
i > 1 odd
i > 2 even.

Lemma 9.7.6 If Q C k and x E G is a central element ofjinite ordel;  then

HC,(G,  x) ” H&(G) ” H,(G; k) @ HC,(k).

Proof Let G denote the quotient of G by the subgroup (x} generated by n,
and write j for the image of g E G in G. The map of cyclic sets Z(G, x) -+
Z(G,  1) sending (go,  . . . , gn) to (&, . . . , 8,) induces the natural map from
H,(G; k) 2 HH,(G,  x) to H,(G; k) L&’ HH,(G,  l), because its composition
with the simplicial isomorphism Z(G, 1) --+ Z(G, x) is the natural quotient
map. The Hochschild-Serre spectral sequence E& = H,(G; Hq((x}; k)) +
H,+,(G;  k) degenerates since Q c k (6.1.10) to show that the natural map
H,(G; k) + H,(I?;  k) is in fact an isomorphism. This yields HC,(G)  2

HC,(G)  by Karoubiís Theorem 9.7.1, as well as HC,(G,  x) S HC,(G,  1) %
HC,(@. 0

Corollary 9.7.7 If Q E k and G is ajnite group, then

HC,(kG)  ” @ HC,(CG(X))  ” k<G> @H&(k).
XEb>

Remark When k is a field of characteristic zero, Maschkeís Theorem states
that kG is a semisimple (hence separable) k-algebra. In 9.2.11 we saw that this
implied that H Hn (kc) = 0 for n # 0, so the SBI sequence yields an alternate
proof of this corollary.

Example 9.7.8 (G = C2)  Things are more complicated for general k, even
when G is the cyclic group C2 = (1, x) of order 2. For example, when k = Z
the group HC,(C2,  x) is Z for n even and 0 for n odd, which together with
Karoubiís Theorem for H C, (C2)  yields

(

z @ z,
HCn(ZC.2)  =  (Z/2)(ìfl)/2,

n even
n odd .

This calculation may be found in [G. Cortifias, J. Guccione, and 0. Villa-
mayor, ìCyclic homology of K[Z/pZ],”  K-theory 2 (1989), 603-616).
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Exercise 9.7.3 (Kassel) Set k = 2! and show that HP,,(ZC2)  is not the inverse
limit of the groups HC,+2i (ZC2) by showing that

H Pu(C2,  X) g l$ ’  HC2i+l(C2,  X) g 22/z,

where 22 denotes the 2-adic integers. Hint: Show that the SBI sequence breaks
up, conclude that S is multiplication by 2, and use 3.5.5.

Theorem 9.7.9 (Burghelea) Suppose that Q c k. Then HC,(kG)  is the di-
rect sum of

@ HC,(CG(~))  g @  &(CG(~);  k) 63 ffC&)
*Ed> XECG>

finite order finite order

(33 fMW(x); k).
XECG>

infinite order

Here W(n) denotes the quotient group CG(X)/[Xî).

Proof We have already seen that HC,(kG) is the direct sum over all x in
< G > of the groups HC, (CG (x), x), and that if x has finite order this equals
HC,(CG(X)). Therefore it remains to suppose that x E G is a central element
of infinite order and prove that HC,(G,x)  S H,(G/T;  k), where T is the
subgroup of G generated by x. For this, we pull back the path space E(G/ T)
of 9.7.1 to Z(G, x).

Let E be the cyclic subset of E(G/T)  x Z(G,  x) consisting of all pairs
(e, z) which agree in B(G/T).  Forgetting the redundant first coordinates of
e and z, we may identify E, with (G/T) x G” in such a way that (for ,& E

G/T, gl E G):

(go&, g2, . . .t ad, i = O

ai(go,gl,...,gJ=  (2o,...,gigi+i,...),  O<i<n
( 60, g1,. . . > gn-l>? i = n

t~go,gl,~~~,gn~=~go~~~~,,~gl~~~g,~-1,gl~~~~~~,-l~.

As in the proof of Karoubiís theorem 9.7.1,  the action of G/ T on the 20 co-
ordinate makes E into a cyclic G/T-set and makes the morphism of cyclic
sets n: E + Z(G,  x) into a principal G/T-fibration (exercise 8.2.6). There-
fore kZ(G, x) = k @&IT kE, Tsyganís double complex CC,,(kE)  consists
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of free kc/T-modules  and CC,,kZ(G,x) = k @kc/T CC,,(kE). We will
prove that TotCC,,(kE) is a free kG/ T-module resolution of k, so that

HC,(G, x) = H&k @ëkc/T  TotCC,,(kE)) = H,(GIT;  k).

The homotopy sequence for the principal G/ T-fibration E + Z(G, x)
(exercise 8.2.6 and 8.3.5) shows that Xi(E) = 0 for i # 1 and xl(E) g T.
The natural cyclic map Z(T,  x) + E, which sends (to, . . ., t,) E Tn+’  to

(1, t1, . . . , f,) E E, = (G/T) x G” induces isomorphisms on simplicial ho-
motopy groups and therefore on simplicial homology (see 8.2.3). That is,
HH,(T, x) g HH,(kE). It follows that if Q C k, then

HC,(kE) S HC,(T, x) =
k  n = O
0  n#O.

Hence the natural map from CCm(kE)  = KG/T to k = HCo(kE)  provides
the augmentation making Tot CC,,(kE) -+ k into a free kG/ T-resolution of
k, as claimed. 0

Exercise 9.7.4 Show that the SBI sequence for Z(G,  X) may be identified
with the Gysin sequence of 6.8.6:

... H,(G;  k) c%f Hn(G/T;  k) + H,_z(G/T;  k) + H,_l(G; k) . . . .

Hint: Compare C,h(G, x) + CC,,(G,  X) to the coinflation  map for G --+
G/T .

9.8 Mixed Complexes

We can eliminate the odd (acyclic) columns in Tsyganís double complex 9.6.6
CC,,(A), and obtain a double complex B,,(A) due to A. Connes. To do this,
fix the chain contraction s,, = ta,: A, + An+1  of the acyclic complex C:(A)
and define B: A,, + An+1  to be the composite (1 + (-l)ìt)sN,  where N
is the norm operator on A,. (Exercise: Show that s is a chain contraction.)
Setting n = (-l)ì,  we have

B2 = (1 - nt)sN(l + @)sN  = 0

bB + Bb = b(1 + gt)sN + (1 - r]r)sNb = (1 - r]r)(bís  + sbí)N

= (1 - nt)N = 0.
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Connesí double complex B,,(A) is formed using b and B as vertical and
horizontal differentials, with 13 P4 = A,_, for p ? 0. We can formalize this
construction as follows.

B B B
M3 + M2 t Ml + MO

Lb -Ib J-b

M 2  L MI : MO

-Ib l.b

Ml : MO

lb

MO

Definition  9.8.1 (Kassel) A mixed complex (M, b, B) in an abelian category
A is a graded object (Mm: m 2 0) endowed with two families of morphisms
b: M,,, + M,,,_l  and B: M,,, -+ M,,,+l such that b2 = B2 = bB + Bb = 0.
Thus a mixed complex is both a chain and a cochain complex.

The above calculation shows that every cyclic object A gives rise to a
mixed complex (A, b, B), where A is considered as a graded object, b is the
Hochschild differential on A and B is the map constructed as above.

Definition 9.8.2 (Connesí double complex) Let (M, b, B) be a mixed com-
plex. Define a first quadrant double chain complex a,,(M)  as follows. B,,
is Mq_p  if 0 5 p 5 q and zero otherwise. The vertical differentials are the b
maps, and the horizontal differentials are the B maps.

We write H,(M) for the homology of the chain complex (M, b), and
HC,(M)  for the homology of the total complex Tot@?*,(M)).  HC,(M)  is
called the cyclic homology of the mixed complex (M, b, B), a terminology
which is justified by the following result.

Proposition 9.8.3 Zf A is a cyclic object, then H&(A)  is naturally isomor-
phic to the cyclic homology of the mixed complex (A, b, B).

Proof For each 0 5 p 5 q, set t = q - p and map BP, = At to CC2p,t  @
CC2p_l,r+l  = At @ At+1  by the map (1, sN). The direct sum over p, q gives
a morphism of chain complexes Tot@& + Tot(CC,,).  (Check this!) These
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two complexes compute HC,(A, b, B) and HC,(A), respectively by 9.8.2
and 9.6.6; we have to see that this morphism is a quasi-isomorphism. For
this we filter a,, by columns and select the ìdouble columnî filtration for
c c , ,  : F&C = @{CC,, : t 5 2p}.  The morphism Tot(&J  -+ Tot(CC,,) is
filtration-preserving, so it induces a morphism of the corresponding spectral
sequences 5.4.1. To compare these spectral sequences we must compute the
E1 terms. Clearly EL4(l?)  = H4_,,(A). Let Tp denote the total complex of the

2-column double complex obtained from the (2~ - l)ët  and (2~)~~ columns
of  cc , , ; the degree p + 4 part of Tp is CC2,,,_,  @ CC2P_i,q_P+l.  The
translates (1.28) of C:(A) and C;(A) fit into a short exact sequence 0 -+

C:(A)]1  - ~PI-, Tp+ C,hG4>[-%4 -+ 0, so the spectral sequence 5.4.1

associated to the double column filtration of CC has Ei4 = (Tp)p+4  and

E;y(W = Hp+4(Tp) g ffp+&(AE2pl)  2 f&-&4).

By inspection, the map Eh4(t3)  + EL,(CC) is an isomorphism for all p
and q. By the Comparison Theorem (5.2.12)  Tot(B) + Tot(CC) is a quasi-
isomorphism. 0

Remark If A is a cyclic object, any other choice of the chain contraction
s, such as s, = (-l)na,,  will yield a slightly different mixed complex M =
(A, b, Bí). The proof of the above proposition shows that we would still have
HC,(M) S HC,(A).  Our choice is dictated by the next application and by the
historical selection s(rg @ . . . @ rn) = 1 @ rg @ . . . @ r, for A = ZR in [LQ].

Application 9.8.4 (Normalized mixed complex) By the Dold-Kan Theorem
84.1, the Hochschild homology of a cyclic k-module A may be computed
using either the unnormalized chain complex C:(A) or the normalized chain
complex C,(A) = C:(A)/&(A),  obtained by modding  out by the degener-
ate subcomplex D,(A). Since D,(A) is preserved by t (why?) as well as our
choice of s, it is preserved by B = (1 f t)s(C f tí).  Hence B passes to the
quotient complex C,(A), yielding a mixed complex (C,(A), b, B). Since the
morphism of mixed complexes from (A, b, B) to (C,(A), b, B) induces an
isomorphism on homology, it follows (say from the SBI sequence 9.8.7 be-
low) that it also induces an isomorphism on cyclic homology: HC,(A) g
HC&(A)).

One advantage of the normalized mixed complex is that it simplifies the
expression for B = (1 f t)sN. Since ts = t2a,, = ogt = 0 on C,(A), we have

B = ta,N = ta, + (-l)ìt2a,_l  + ë. + (-l)ìëtîëa,_i  + ’ ’ + (-l)ntnîag
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In particular, if R is a k-algebra and A = ZR, then in c,(A) = B,,(R, R):

B(ro  @ . . .
i=O

Example 9.8.5 (Tensor algebra) Let T = T(V) be the tensor algebra (7.3.1)
of a k-module V. If ur, . . . , Vj E V, write (~1  . . . Vj) for their product in the
degree j part V@j  of T; the generator (3 of the cyclic group Cj acts on V@j
by a(ul . . . U j )  = (UjUl ë. .uj_t).In9.1.6wesawthatHi(T,T)=Ofori#O,
so to use Connesí double complex 9.8.2 it suffices to describe the map

B: Ho(T, T) = @(V@j), -+ @(V@)” = Hl(T, T).

Of course the definition of B: T + T @ T yields B(r) = 1 @ r + r @I 1 for
every r E R. If we modify this by elements of the form b(ro @ t-1 @I r2) =
rot-1 @ r2 - t-0 @ t-it-2  + r2r0 @I r-1 we obtain a different representative of the
same element of Hl(T, T). Thus for r = (~1 . . . uj) we have

B(r) = r @ 1 + 1  @ r  - u1 69 (~2.  .  .  Uj) +  (u2. . .  vj) g u1 +  r g 1

- Cîlu2) 63 (W f ’ ’ Uj) + (U3 * * . UjUl) @ U2

+ (u2... Uj) C3 U1 + r @ 1

- C(Ui+lîëUjUl” ’ Ui-1) 63 Ui + r @I  1.

Upon identifying the degree j part of T @ V with V@j  and ignoring the degen-
erate term r 18 1 by passing to c*, we see that B(r) = (1 + cr + . . . + aj-l)r
as a map from (V@j),  to (V@j)ì.  Identifying B with the norm map for the
action of Cj on V@j, we see from Connesí complex and 6.2.2 that

HC,(T) = HCn(k) @ 6 Ha(Cj;  If@ë).
j=l

In particular, if Q c k, then HC,(T) = HC,(k) for all n # 0.

Exercise 9.8.1 If R has an ideal I with I2 = 0 and R/Z 2 k, show that

n+1
HCn(R)  = iYCî(k)  @ $ Hn+l-j(Cj; I@ë).

j=l
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Connesí Spectral Sequence 9.8.6 The increasing filtration by columns on
D,,(M) gives a spectral sequence converging to H&(M),  as in 5.6.1. Since
the prh column is the translate M[-p] of (M, f b), we have

d1 differential Hi(M) -+ Hi+1 (M) induced by Connesí operator B.
This quickly yields HCo(M) = Ho(M), HCl(M) = Hl(M)/B(Mo)  and a se-
quence of low degree terms

In order to extend this sequence to the left, it is convenient to proceed as
follows. The inclusion of M* as the column p = 0 of B = B,,(M)  yields a
short exact sequence of chain complexes

0 -+ M* L Tot(B) A Tot(B)[-21  -+ 0,

since B/M, is the double complex obtained by translating B up and to the
right. The associated long exact sequence in homology is what we sought:

. . HC,+l(M)  5 H&l(M)  5 H,,(M) -& HC,(M) A HC,,-2(M)ë...

(9.8.7)

We call this the ìSBI sequenceî of the mixed complex M, since the proof
of 9.8.3 above shows that when M = (A, b, B) is the mixed complex of a
cyclic object A this sequence is naturally isomorphic to the SBI sequence of
A constructed in 9.6.11. As in Zoc. cit., if M + M’ is a morphism of mixed
complexes such that H,(M) ~2 H,(Mí),  then H&(M)  g HC,(Mí)  as well.

Exercise 9.8.2 Show that the spectral sequence 5.6.1 arising from Tsyganís
double complex CC,,(A), which has E&, 4 = HH,(A),  has for its d* differ-

ential the map H H,(A) + H Hq+l (A) induced by Connesí operator B. Then
show that this spectral sequence is isomorphic (after reindexing) to Connes’
spectral sequence 9.8.6. Hint: Show that the exact couple 5.9.3 of the filtration
on &,, is the derived couple of the exact couple associated to CC,,(A).

Notational consistency Our uses of the letter ìBî are compatible. The map
B: M,,, + M,+l defining the mixed complex M induces the d’ differentials
B: H,(M) -+, Hm+l  (M) in Connesí spectral sequence because it is used for
the horizontal arrows in Connesí double complex 9.8.2. This is the same
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map as the composition BZ: H,,,(M) + HC,,,(M) += H,+l(M) in the SBI se-
quence (9.8.7). (Exercise!)

Trivial Mixed Complexes 9.8.8 If (C,, b) is any chain complex, we can
regard it as a trivial mixed complex (C,, b, 0) by taking B = 0. Since the
horizontal differentials vanish in Connesí double complex we have

HCn(C*, b, 0) = H,(C)  @ &-2(C) cB I&-4(C)  @ . . . .

Similarly, if (C*, B) is any cochain complex, we can regard it as the trivial
mixed complex (Cî,  0, B). Since the rows of Connesí double complex are the
various brutal truncations (1.2.7) of C, we have

HC,(C*, 0, B) = Cî/B(Cî-ë)  @ Hî-2(C)  @ Hî-4(C)  @. . . .

The de Rham complex 9.8.9 provides us with an important example of this
phenomenon.

9.8.1 de Rham  Cohomology

9.8.9 Let R be a commutative k-algebra and SJ?2*,,,  the exterior algebra of
K5hler differentials discussed in sections 9.2 and 9.4. The de Rham differential
d: S22n,,, -+ a$: is characterized by the formula

d(rodr1  A . . . A dr,,) = dro A dq  A . . . A dr,, (r-i  E R).

We leave it to the reader to check (using the presentation of nR/k in 8.8.1;
see [EGA, IV.16.6.21)  that d is well defined. Since d2 = 0, we have a cochain
complex (a2*,,k,  d) called the de Rham complex; the cohomology modules

HiR(R) = H*(S2ilk) are called the (algebraic) de Rham cohomology of R.
All this is an algebraic parallel to the usual construction of de Rham cohomol-
ogy for manifolds in differential geometry and has applications to algebraic
geometry that we will not pursue here. The material here is based on [LQ].

Exercise 9.8.3 Show that d makes fik,, into a differential graded algebra

(4.5.2), and conclude that HiR (R) is a graded-commutative k-algebra.

If we consider (STZglk, d) as a trivial mixed complex with b = 0, then by
9.8.8

HC,,(figIk, 0, d) = fiî,,,/dnîR;;  @ H;i2(R> @ . . . .
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In many ways, this serves as a model for the cyclic homology of R. For ex-
ample, in 9.4.4 we constructed a ring homomorphism $: a*,,,  + H,(R, R),
which was an isomorphism if R is smooth over k (9.4.7). The following result
allows us to interpret the d’ differentials in Connesí spectral sequence.

Lemma 9.8.10  The following square commutes:

Proof Given a generator w = rodrl  A . . . A dr, of Q2î,,,,  $(w)  is the class of

(r-0 @rt)V(l  @ rz)V...V(l  @I-~)  =n!en(rO @ ... @ rn)

=c (-1Yro @ rO-l(t)  63 . . . @ r,-l(,)
f7

where o ranges over all permutations of (1, + . . , n} and V denotes the shuf-
fle product on p(R,  R) given in 9.4.2. Passing to the normalized complex
B,(R,  R), defining a(O) = 0 and applying B, the description in 9.8.4
gives us

cc- 1)” c (-1)í 63 ro-lr-t(0)  @r-~-It-l(l)  8 . . . C3 ro-lt-qn)
cl t

where t ranges over the cyclic permutations p H p + i of {0, 1, . . . , n}.  Since
every permutation I_L of (0, 1, . . . , n) can be written uniquely as a composite
ta, this expression equals the representative of +(dr0  A drl A . . A dr,) :

(n + l)!s,(l 8 rg @ . . . 63  rn) = c(-1)’ 8 rF-l(oj @ . . . 63  rF-l(nj. 0
K

Porism Suppose that l/(n + l)! E R. The above proof shows that

B(nk,)(ro  E3 . .@ r,J = (n + l)!s,+l(l @ rg 8 . @ rn)

=  n!&+l B(ro @ . . @ m).

Dividing by n! gives the identity BE, = en+1  B.
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Corollary 9.8.11 Zf R is smooth over k, the E2 terms of Connesí spectral
sequence are

We will now show that in characteristic zero this spectral sequence collapses
at E2; we do not know if it collapses in general. Of course, when R is smooth,
the sequence of low-degree terms always yields the extension (split if l/2 E
R):

0 -+ Q;,kld%,k -+ HC2(R) -+ H&(R) -+ 0.

9.8.12 Assuming that R is commutative and Q c R, we saw in 9.4.4 that the
maps e: R@ëì+’  + S-22î,,,  defined by e(ro @ . . .) = rodrl  A . . . A dr,,/n!  satis-
fied eb = 0 and e+ = identity. In fact, e is a morphism of mixed complexes
from (R@*+ë,  b, B) to (Qi,k, 0, d) because by 9.8.4

Therefore e induces natural maps

Theorem 9.8.13 Zf R is a smooth commutative algebra, essentially offinite
type over a$eld  k of characteristic 0, then e induces natural isomorphisms

Proof On Hochschild homology, e induces maps H,,(R, R) + H H,,(Qi,k)  =

52ilk. When R is smooth, the Hochschild-Kostant-Rosenberg Theorem 9.4.7
states that these are isomorphisms. It follows (9.8.7) that e induces isomor-
phisms on HC, and HP* as well. 0

Exercise 9.8.4 When R is commutative and Q c R, show that Q~,k/d52~~~

and H$i2( R) are always direct summands of H C, (R). I do not know if the

other Hd;2i  (R) are direct summands.
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Exercise 9.8.5 Show that the SBI sequence for a trivial mixed complex
(C*, 0, B) is not split in general. Conclude that the SBI sequence of a smootl
algebra R need not split in low degrees. Of course, if R is smooth and finitel!
generated, we observed in 9.4.8 that H,(R,  R) = 0 for n > d = dim(R), s(
the first possible non-split map is S: HCd+l(R) + HCd_l(R).

9.8.2 Hodge Decomposition

There is a decomposition for cyclic homology analogous to that for Hoch.
schild homology. To construct it we consider Connesí double complex a,,
(9.8.2) for the normalized mixed complex (c:(R), b, B). Lemma 9.8.15 be.
low shows that B sends t?(R)(ë)  to Ch,,+t (R)(ì+ë).  Therefore there is a doublt

subcomplex I3:; of &,, whose pfh column is the complex c,h(R)(ë-P)  shiftec
p places vertically.

. . . . . . . . .

B
CCí)  - c,_,n

-Ci-l) +L . . . +K pi+, t_ 0

. . . . . . . . .

Lb Lb b
cîí  B

l+l - ëi
-(i-l) L . B C:l) _ 0. . t-

b Lb Lb
cíi)  B+ ci_l-(i-l) L . B

. . t - (1)
I Cl ëBR  t-0

Lb Lb b
0 0 0

Definition 9.8.14 (Loday)  If i > 1, then HCt)(R) = H, Tot 2322. Because

eiîí  = 0 for n # 0, HCzí)(  R) = HC$ì(  R) = R. The Hodge decomposition of
HC, for n > 1 is

HC,(R)  = H&ë)(R)  @ HCc2) @ ë.  . @ H@)(R).

ez:;’B =  Be$)foreverynandi  ën.

Proof When n = i = 1 we have Bef)(ro  8 q) = B(ro 8 t-1)  = 1 @ r-0 8 rl -
1 G3 t-1 @I r-0, which is &2B(r0  @ rl). More generally, if i = n, the equality
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Exercise 9.8.5 Show that the SBI sequence for a trivial mixed complex
(C*,  0, B) is not split in general. Conclude that the SBI sequence of a smooth
algebra R need not split in low degrees. Of course, if R is smooth and finitely
generated, we observed in 9.4.8 that H,,(R, R) = 0 for n > d = dim(R), so
the first possible non-split map is S: HCd+l(R)  --+ HCd-l(R).

9.8.2 Hodge Decomposition

There is a decomposition for cyclic homology analogous to that for Hoch-
schild homology. To construct it we consider Connesí double complex 23,,
(9.8.2) for the normalized mixed complex (c;(R), b, B). Lemma 9.8.15 be-
low shows that B sends @(R)(ë)  to t?n n+l(R)(i+? Therefore there is a double

subcomplex ,13:!  of &+ whose Rth column is the complex C$(R)(i-fí)  shifted
p places vertically.

. . . . . .

B - ( i - l )  B
CCí)  t- c,_, t-n

. . . . . .

i..b lb

c!”  B
1+1 + ëi

- ( i - l )  &

b b

c!ë)  B - ( i - l )  B
+ ci_l  +

16 b

0 0

. . .

. . L pi+, - 0

. . .

lb
B

,.. t_
C2
-0) -0

4-b

B
I . .  t_ - (1)

Cl ëBR  -0

Lb

0

Definition 9.8.14 (Loday) If i > 1, then HC!)(R) = H,, Tot 2322.  Because

en -(O) - 0 for n # 0
HC,, for n 1 1 is ’

H Ciîí  (R) = H Cr’ (R) = R. The Hodge decomposition of

HC,(R) = HC(ë+R)  @ HCc2) @ . . . @ H@(R).n n

Lemma 9.8.15 ezz;’B = Be:) for every n and i 5 n.

Proof When n = i = 1 we have Bef)(ro &I rl) = B(ro  @ r-1) = 1 631  rn 63 r-1 -
1 @ rt @ rc, which is E~B(Q @ rl). More generally, if i = n, the equality



e,,+lB = Be,, was established in the porism to lemma 9.8.10.  For i < n, we
proceed by induction. Set F = efz;)B - Be!). The following calculation
shows that b(F) = 0:

bezzí)B  = e?+ë)bB  = -et+ë)Bb  = _BezJIb = -Bbef)  = +bBez).

Now observe that there is an element u of Q&+1  such that

~(1 @ r-0 @I . . . @I rn) = efz;)B(ro  @ . . . @ r,) - Bet)(rg @ . f. 63 m).

By Barrís Lemma 9.4.9, u = CE~ and it suffices to evaluate the constant c.

Because i < n we have c,+teyIt) = 0 and s,,et) = 0. Therefore

sn+tu(l 8 ro 8 . . . @ r,J = --En+t  Be(ë)@0  @ . .” .CQrr,>

= -Be,ey)(ro  @3 . . . @ rJ

= 0.

This gives the desired relation u = E,+~u = 0. 0

Corollary 9.8.16 HCF)(R) = Rî,,,/dR~~~.

Proof Filtering & by columns and looking in the lower left-hand corner,

we see that HCF)(R) is the cokemel  of the map B = d: HF_i*)(R,  R) -+

H(ì)(R  R)n 1. 0

Theorem 9.8.17 When Q s R, the SBI sequence breaks up into the direct
sum of exact sequences

. . . HCf;,(R)A  HC;:;) (R)BîH(ë)(R  R)&HC(ë)(R)&HC(ë-ë)n 1 n n_l (R) . . .

Proof The quotient double complex l?ci/c,h(R)(ë)  is a translate of a&-ì. 0

Corollary 9.8.18 Let k be a$eld of characteristic zero. Then

H@(R) E H,(ë)(R,  R) = D,_l(R/k)

(Andreí-Quillen  homology) for n > 3, while for n = 2 there is an exact se-
quence

0 + Dl(R/k)  -+ HC;)  + H&(R/k)  + 0.
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Exercise 9.8.6 Show that if R is smooth over k, then HCt)(R) = 0 for i <

n/2, while if n/2 5 i < n we have HCt)(R)  % HjLWn(R/k).

Exercise 9.8.7 Show that there is also a Hodge decomposition for HP*(R):

HP,(R) = l-IHP(ë)(R)* .

If R is smooth, show that HP,(ë)(R) E H&ì(R/  k).

Remark 9.8.19 (Schemes) It is possible to extend Hochschild and cyclic
homology to schemes over k by formally replacing R by OX and Rí@’  by
O_$ìí  to get chain complexes of sheaves on X, and then taking hyperco-
homology (Chapter 5, section 7). For details, see [G-W]. If X is smooth

over k and contains Q, it turns out that HH,(ë)(X)  r Hí-ì(X,  $) and

HP,(ë)(X) = H;i-n(X . If X is a smooth projective scheme and p = i - n,)

then H@(X) is the prh level FPH&?(X)  of the classical Hodge filtration
on H&(X) 2 H*(X(C);  k). This direct connection to the classical Hodge
filtration of H&(X)  justifies our use of the term ìHodge decomposition.”

9.9 Graded Algebras

Let R = @Rt  be a graded k-algebra. If ru, . . . , rp are homogeneous elements,
define the weight of ro @ . . . @ rt, E R@tí+’  to be w = C (ri], where (ri( = j

means that ri E Rj. This makes the tensor product R@p+’ into a graded k-

module, (R@p+ë),  being generated by elements of weight w. Since the face
and degeneracy maps, as well as the cyclic operator t, all preserve weight,
the {(R@Pfí)W}  form a cyclic submodule (ZR), of ZR = R@*+’ and al-
lows us to view Z R = @(ZR),  as a graded cyclic module or cyclic ob-
ject in the abelian category of graded k-modules (9.6.1). As our definitions
work in any abelian category, this provides each H HP(R)  = H Hp(ZR)  and
HC,(R)  = HC,(ZR)  with the structure of graded k-modules: HH,(R),  =
HH,((ZR),)  and HC,(R), = HC,((ZR),).  We are going to prove the fol-
lowing theorem, due to T. Goodwillie [Gw].

Goodwillieís Theorem 9.9.1 If R is a graded k-algebra, then the image of
S: HC,(R), + HC,_z(R), is annihilated by multiplication by w. In par-
ticular, if Q c R, then S = 0 on HC,(R), for w # 0, and the SBZ sequence
splits up into short exact sequences

0 + HC,_l(R), 5 HH,(R), L HC,(R), + 0.
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If R is positively graded (R = Ro @ RI @ . . .), then clearly (Z R)o = Z (Ro),
so that the missing piece w = 0 of the theorem has H C (R)o = H C (Ro)  .

Corollary 9.9.2 If R is positively graded and Q c R, then HP,(R) s

HP,(Ro).

Corollary 9.9.3 (Poincare Lemma) Zf R is commutative, positively graded,
and Q c R, then

Proof It suffices to show that the weight w part of the de Rham complex
(a>,k,  d) of 9.8.9 is zero for w # 0. This is a direct summand (by 9.4.4,
exercise 9.4.4) of the chain complex (HH,(R),,  BZ),  which is exact because
the kernel of BZ: HH,(R), -+ HHp+l(R)w  is HC,_l(R),. 0

Example 9.9.4 The tensor algebra T = T(V) of a k-module V may be
graded by setting Z = V@ë.  We saw in 9.1.6 that H Hn(T) = 0 for n # 0, 1.
If Q g k, this immediately yields HC,(T), = 0 for n # 0 and w # 0, and
hence we have HC,(T)  = HC,(k)  for n # 0. If Q p k, the explicit calcu-
lation in 9.8.5 shows that HC,(T), z H,(CW;  V@ì),  which is a group of
exponent w as the cyclic group C, has order w.

Exercise 9.9.1 Given a k-module V we can form the ring R = k @ V with
V2 = 0. If we grade R with RI = V and fix w # 0, show that

HC,(R),  g Hn+l-W(CW;  VaW).

Exercise 9.9.2 Let R be the truncated polynomial ring k[x]/(xm+ë),  and sup-
pose that Q c k. We saw that H Hn (R) E km for all n # 0 in exercise 9.1.4.
Show that HC,(R) = 0 for n odd, while for n even HC,(R) E km+ë.  Com-
pare this approach with that of exercise 9.6.4.

Exercise 9.9.3 (Generating functions) Let k be a field of characteristic zero,
and suppose that R is a positively graded k-algebra with each Ri finite-
dimensional. Show that h(n, w) = dim HH,(R),  is finite and that for every
w#Owehave

dim H&(R), = (-1)î e(-l)ëh(i,  w).
i=O
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Now set h,(t) = C h(n, w)tî,  fw(t) = c dim HC,(R), tî,  and show that

h,(t) = (1 + t)fw(t).

In order to prove Goodwillieís Theorem, we work with the normalized
mixed complex C,(R) of R. First we describe those maps F: RBrn+’  +
C,(R)  which are natural with respect to the graded ring R (and k). For
each sequence of weights w = (wu, . . . , w,) we must give a map FW from

I&, @ . . . 8 &urn to C,(R).  Let T, denote the free k-algebra on elements

X0,ëì, xm, graded so that xi has weight wi. Given Ti E RWi  there is a graded
algebra map TW  + R sending xi to ri; the map c,(T,) + C,(R)  must send
y= F&o@... @x,) to F,(ro@.. 1 @ r,). Thus F,,, is determined by the
element y = y(xu, . f . , x,) of cn(TW) = TW  @ FW @ . . ., that is, by a k-linear
combination of terms Mu @ . . . 8 M,, where the Mj are noncommutative
monomials in the xi, and Mj # 1 for i # 0. In order for y to induce a natural
map FW we must have multilinearity:

hy(xo, . . . , xm)  = y(x0,  . . . ) axj,  . . . , x,)

for all i and all h E k. Changing k if necessary (so that for each j there is a
J. E k such that hi # I), this means there can be at most one occurrence of
each xi in each monomial MO 18 . . . ~3 M,, in y (x0, . . . , x,).

If II p m + 2, then at least two of the monomials Mi must be one in each
term Mo 8 . ’ . 8 M,, of y. This is impossible unless y = 0. If n = m + 1, then
we must have Mo = 1 in each term, and y must be a linear combination of the
monomials 18 x,0 @. . . C3 x,, as 0 runs over all permutations of {0, . . . , m},
An example of such a natural map is B; the universal formula in this case
is given by y = B(xu 8 . . . ~3 x,), where only cyclic permutations are used.
From this we make the following deduction.

Lemma 9.9.5 Any natural map F: R@ìì+’  -+ c,,,+l(R) must satisfy FB =
BF = 0, and induces a map F: C,(R) -+ C,+l(R).

Examples 9.9.6 If m = n, there is a natural map D: C,(R) -+ f?,(R) which
is multiplication by w = c wi on R,,, @ . . . @ R,,. When m = 0, D is the
map from R = Co(R)  to itself sending r E R, to wr. The formula

e(ro @ . . . 63  rm) = (-l)m-l(Drm)ro  18 rl @ . . . @ r,-l

gives a natural map e: C,(R)  --f Cm_1 (R). This map is of interest because
eb + be = 0 (check this!), and also because of its resemblance to the face
map a,, (which is natural on R @w-’  but does not induce a natural map c,,, +

c?l-1,.
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Proof of Theorem 9.9.1 Since D commutes with B and b, it is a map of
mixed complexes and induces an endomorphism of HC,(R) - namely, it is
multiplication by w on HC,(R),. We must show that DS = 0. To do this we
construct a chain contraction Se + SE of DS: Tot, &, + Tot,_2  LX++ where
&, is Connesí double complex for the normalized complex C,(R) and S is

. . .
the penodicity  map LIP4 + L$,_l,,_r. The map e: B,, + LI,+l,, is the map
C, -+ C,_r  given in 9.9.6, and E will be a map L$,, + &,,,+I induced by
natural maps E,: i?, + (?,+I. If we choose E so that D equals

(*I (e+E)(B+b)+(B+b)(e+E)=eB+Be+Eb+bE

G?l+1

-T-E

on C,(R), then S(e + E) will be a chain contraction of DS. Note that the term
eB of (*) does not make sense on &Q, but the term SeB does.

All that remains is to construct E,: C,(R)  + &+1(R),  and we do this by
induction on m, starting with Eo = 0 and El (ro @ rl) = 103  Dq @ ro. Because

(eB + Be)(ro)  = e(1 @D ro) = Dro,

(eB + Be + bEl)(ro @ rl) = e(l @ ro @ rl - 1 @ rl @ ro)

+ B(Drl)ro + bEl(ro @ rl)

= -Drl @ ro + Dro @ t-1

+ 18 

Cl(R).
E,_l, Em_2  constructed; for each w we need to find elements y E Cm+l(TU>
such that

by + E,-lb)(xo  . . .8x,) = D(xo  @. . .@I x,)

in &(T,).  Set z = (D - eB - Be - E,-lb)(no  @I . +. 8 4; by induction
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and  (*),
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bz = (Db + ebB + Bbe - bE,_lb - E,_2b2)(xg  @ . . . @ x,,,)

= (D - eB - Be - bE,,_l - E,_zb)b(xo  @ . . .@ x,)

= 0.

We saw in 9.1.6 that H,(TW, T,) = 0 for m 2 2, so the normalized complex
c,( r,) and hence its summand c,( T,), of weight UJ are exact at m. Thus
there is an element y in c,+l (T,), such that by = z. Since y has weight wi
with respect to each xi, there can be at most one occurrence of each Xi in each
monomial in y(nu, . . . , x,). Hence if we define

E,(ro c3 . . . @ rm)  = y(r0, *. . , rm).

then E, is a natural map from c, (Z?)  to c,+t (R) such that (*) equals D
on c,(R).  This finishes the construction of E and hence the proof of Good-
Willieís Theorem. 0

Remark 9.9.7 The ìweightî map D: R + R is a derivation, and Good-
Willieís Theorem 9.9.1 holds more generally for any derivation acting on a
k-algebra R; see [Gw]. All the basic formulas in the proof-such as the for-
mula (*) for D-were discovered by G. Rinehart 20 years earlier; see sections
9, 10 of ìDifferential forms on general commutative algebras, Trans. AMS 108
(1963),  195-222.

As an application of Goodwillieís Theorem, suppose that I is an ideal in a k-
algebra R. Let Z(R, Z) denote the kernel of the smjection  Z(R) + Z(R/I);
we define the cyclic homology modules HC,(R, Z) to be the cyclic homol-
ogy of the cyclic module Z(R, 2). Since cyclic homology takes short exact
sequences of cyclic modules to long exact sequences, we have a long exact
sequence

. . H&+1(R)  -+ HC,+l(R/I) -+ HC,,(R,  I) --f H&(R)  --f HC,(R/I)..  .

Thus HC,(R, Z) measures the difference between HC,(R) and HC,(R/Z).
We can filter each module Z,R = R@P+’ by the submodules FL generated

by all the Ií0  ~3 . . . ~3 Zip with io + . . . + i, = i. Since the structure maps
ai, q , t preserve this filtration, the Fi are cyclic submodules of ZR. As F,’
is Z(R, I), we have F:/F.+f  = Z(R/Z).

Exercise 9.9.4 If k is a field, show that the graded cyclic vector spaces
@Fi/ ,;+I and Z(grR) are isomorphic, where gr(R) = R/Z @ Z/Z2 @. .. $
p/p+’  @ . . . is the associated graded algebra of Z c R.
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Proposition 9.9.8 Let k be a$eld of characteristic zero. Zf Im+’ = 0, then the
maps Sí:  HC,+2i(R, I) + HC,(R,  I) are zerofor  i >_ m(p + 1) .

Proof By the above exercise, HC*(grR),  2 HC,(F,W/F,W+ë).  Since gr(R)
is graded, the map S is zero on all but the degree zero part of HC,(grR).
Hence S’ = 0 on HC,(F1/Fi+ë).  Since FL+’ = 0 for i 2 m(p + l), the map

S’ factors as

HCp+2i(R,  1) + HCp+2i(Fl/FJ+ë) 5 HC,(F,ë!F;+ë)  = HC,(R,  Z),

which is the zero map. 0

Corollary 9.9.9 If Z is a nilpotent ideal of R, then H P*( R, Z) = 0 and
HP,(R) 2 HP,(R/Z).

Proof The tower (HC*+zi (R, I)] satisfies the trivial Mittag-Leffler condition.
0

Exercise 9.9.5 If Z is a nilpotent ideal of R and k is a field with char(k) = 0,
show that HJR(R)  2 Hd*R(R/Z).  Hint: Study the complex (HH,(R),  BZ).

9.9.1 Homology of DG-Algebras

9.9.10 It is not hard to extend Hochschild and cyclic homology to DG-alge-
bras, that is, graded algebras with a differential d: R, -+ R,_I satisfying the
Leibnitz identity d(ror1)  = (dro)rl  + (- l)líolro(drl);  see 4.5.2. (Here jr01 = j
if ro E Rj.) If we forget the differential, we can consider ZR (9.6.1) as a
graded cyclic module as in Goodwillieís Theorem 9.9.1. If we lay out the
Hochschild complex in the plane with (R @q+l)p in the (p, q) spot, then there
is also a ìhorizontalî differential given by

d(ro @ . . . @ rq) = ~(_l)líO~+~-ë+Ií~-~IrO  @ . . . @ dri @ . . . @ rq.

i=O

Thus the Hochschild complex becomes a double complex C,h (R , d),; we de-
fine the Hochschild homology H HFG (R) to be the homology of Tot@C,h(R),.
If R is positively graded, then Ch(R, d) lies in the first quadrant and there is
a spectral sequence converging to HH,DG(R)  with E& = Hi(HHq(R)J.
Warning: If R is a graded algebra endowed with differential d = 0, then
HHtí(R)  is the sum of the HHq(R),  with p + q = n and not HH,(R).
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In the literature (e.g., in [MacH,  X]) one often considers DG-algebras to
have a differential d: R” + Rî+’ and Rn = 0 for n < 0. If we reindex R”
as R_, this is a negatively graded DG-algebra. It is more natural to convert
C,ì(  R, d), into a cochain double complex in the fourth quadrant and to write
HH&.(R)  for HH!z(R).

Exercise 9.9.6 If R” = k and R’ = 0, construct a convergent fourth quadrant
spectral sequence converging to H HGG  (R) with E;’ = HPH H_, (R).

Exercise 9.9.7 Let (R,, d) be a DG-algebra and M a chain complex that is
also a graded R-module in such a way that the Leibnitz identity holds with
ro E M, r-1 E R. Define HFG (R, M) to be the homology of the total complex
(M @ R@q)p  obtained by taking r-0 E M in 9.9.10. If M and R are positively
graded, show that there is a spectral sequence

Egq = H,hH,(R,  M) =+ HpD+Gq(R,  M).

We now return to the cyclic viewpoint. The chain complexes Zq(R)* =

(R@ëq+ë),  fit together to form a cyclic object Z(R, d) in Ch(k-mod), the
abelian category of chain complexes, provided that we use the sign trick to
insert a sign of (_~)lr~l~lrOl+~~~+l~~,II~ in the formulas for 3, and t. (Check
this!) As in any abelian category, we can form HH, and HC, in Ch(k-mod).
However, since C,h(Z(R, d)) is really a double complex whose total complex
yields H H:ë(R)  it makes good sense to imitate 9.6.7 and define HCfí(R)
as H,Tot@ CC,,Z(R,  d). If R is positively graded, then we can define
HP,Dí(R)  using the product total complex of CC&Z(R,  d). All the major
structural results for ordinary cyclic homology clearly carry over to this DG-
setting.

Proposition 9.9.11 Zf f: (R, d) + (Rí, dí) is a homomorphism ofJEat DG-
algebras such that H,(R) 2 H,(Rí),  then f induces isomorphisms

HH,DG(R)  2 HH,DG(Rí)  a n d  HCfí(R)  2 HCfG(Rí).

Proof As each R@” .IS also flat as a k-module, the chain maps

f @n+l. R@n+l ~ R@ën @ Rí+  (Rí)@n+l

are quasi-isomorphisms for all n. Filtering by rows 5.6.2 yields a convergent
spectral sequence

EAq = Hq(RBP+ë)  =+ HH,D+G,(R).
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BytheComparisonTheorem5.2.12,wehave  HHtí(R,d)g  HHFG(Rí,dí).
The isomorphism on HC,DG follows formally using the 5lemma and the SBI
sequence 9.6.11. 0

Vista 9.9.12 (Free loop spaces) Suppose that X is a fixed simply connected
topological space, and write C*(X) for the DG-algebra of singular chains
on X with coefficients in a field k; the singular cohomology H*(X) of X is
the cohomology of C*(X). Let X’  denote the space of all maps f: I -+ X, I
denoting the interval [O,l];  thefree loop space AX is {f E XI: f(0) = f(1))
and if * E X is fixed, the loop space S2X  is (f E Xí: f(0) = S(1)  = *}.  The
general machinery of the ìEilenberg-Moore spectral sequenceî [Smith] for the
diagram

yields isomorphisms:

Hî(QX)  E HHiG(C*(X),  k) g HH_D,G(C*(X),  k);

Hî(AX)  z HHEG(C*(X))  2 HH_D,G(C*(X)).

We say that a space X is formal (over k) if there are DG-algebra homo-
morphisms C*(X) t R + H*(X) that induce isomorphisms in cohomol-
ogy. Here we regard the graded ring H*(X) as a DG-algebra with d = 0,
either positively graded as a cochain complex or negatively graded as a
chain complex. Proposition 9.9.11 above states that for formal spaces we
may replace C*(X) by H*(X) in the above formulas for Hn(S2X)  and
Hî(AX).

All this has an analogue for cyclic homology, using the fact that the topo-
logical group S’  acts on AX by rotating loops. The equivariant homology

H:ë(AX)  of the Sí-space  AX is defined to be H,(AX X~I ESí), the sin-
gular homology of the topological space AX x so ES’  = {(h, e) E AX x
ESí: k(l) = n(e)). Several authors (see [Gw], for example) have identified

H:ë(hX)  with the cyclic homology HCfí(R,)  of the DG-algebra R, whose
homology is H,(QX).
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9.10 Lie Algebras of Matrices

In this section we fix a field k of characteristic zero and an associative k-
algebra with unit R. Our goal is to relate the homology of the Lie algebra
gK,(R) = Lie(M,(R))  of m x m matrices, described in Chapter 7, to the
cyclic homology of R. This relationship was discovered in 1983 by J.-L. Lo-
day and D. Quillen [LQ], and independently by B. Feigin and B. Tsygan. We
shall follow the exposition in [LQ].

The key to this relationship is the map

H,Lie(g&(R);  k) 3 HC,(M,(R)) 2: H&.(R)

constructed as follows. Recall from 7.7.3 that the homology of a Lie algebra g
can be computed as the homology of the Chevalley-Eilenberg complex A*g =
k 8~~ V,(g), with differential

d(xl A . . . A Xp) = C(-I)ë+i[Xi, Xj]  A X1 A . . . A ii A ’ . . A ij A . . . A up.
iij

On the other hand, we saw in 9.6.10 that the cyclic homology of R may be
computed using the quotient complex C,(R) = C,h (R)/ - of the Hochschild
complex C;(R). Define h: AP+ëgI,(R)  + C,(M,(R)) by

h(xo A . . A xp) = (-l)p c(-l)ìxo ë8 x01 @ . . . @ xap,
(I

where the sum is over all possible permutations cr of { 1, . . . , p). (Exercise:
Why is A well defined?)

Lemma 9.10.1 h is a morphism of chain complexes, and induces maps

L: Hp+lWm(R);  k) + HC,W

Moreover h is compatible with the usual nonunital inclusion 1: M,,,(R) c)

M,+l(R),  l(g) =  ; ;[ 1> in the sense that the following diagram commutes.

A*+ëgI,(R) A C,(M,(R))
trace
- C , ( R )

Lie(l) J b* II

A*+lg[m+l(R) L C,(M,+l(R))  = CAR).
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Proof Commutativity of the right square amounts to the assertion that 1* is
compatible with the trace maps, and was established in exercise 9.5.3. Now set
w = x0 A . . . A xp with xi E glm(R). The formula for h shows that I, =
JL(lXO A . . . A up) = h(m),  which gives commutativity of the left square. It
also shows that

bum) = C-1)”  ~(-l)V(xîoxîl)  @ Xî2  @ . . . @ xvp,

the sum being over all permutations u of {0, 1, . . . , p). Since

w = (-l)iîëlXi  A Xj A X0 A . . . A pi A . . . A ij A . . . Axp

for i < j, it is readily verified (do so!) that h(dw)  = b(hw).  This proves that k
is a morphism of complexes. 0

Primitive Elements 9.10.2 An element x in a coalgebra H (6.7.13) is called
primitive if A(x) = x @ 1 + 1 @ x. The primitive elements form a submodule
Prim(H) of the k-module underlying H. If H is a graded coalgebra and A is a
graded map, the homogeneous components of any primitive element must be
primitive, so Prim(H) is a graded submodule of H.

We saw in exercise 7.3.8 that the homology H = H,(g; k) of any Lie alge-
bra g is a graded coalgebra with coproduct A: H + H @I H induced by the
diagonal g --+ g x g. When g is the Lie algebra gl(R)  = UgI,(R),  we are go-

ing to prove in 9.10.10 that Prim Hi(g; k) E HCi_l(R).
The first step in the proof is to recall from exercise 7.7.6 that any Lie group g

actsonAîgbytheformula[xlA...Ax,,g]=~  XlA.~.A[Xig]A.~.AX,.

This makes the Chevalley-Eilenberg complex A*g into a chain complex of
right g-modules, and g acts trivially on H,(g; k) = H,(A*g),  again by exercise
7.7.6. Applying this to gl,(R), we observe that A*gK,(R) is a chain complex
of modules over g I, (R) and hence over the simple Lie algebra 5 I, = 5 I, (k) of
matrices over k with trace 0 (7.1.3,7X  1). Therefore we may take coinvariants
to form the chain complex Ho(sl,;  A*gK,(R)).

Proposition 9.10.3 Taking coinvariants gives a quasi-isomorphism of com-
plexes

A*gLW) + ffo(sL; A*i$,(R)>.

Proof Weylís Theorem 7.8.11 states that, like every finite-dimensional SK,-
module, AîgI,(k)  is a direct sum of simple modules. As R is a free k-module,
each AngK,  (R) = A"g I, (k) @ R is also a direct sum of simple modules. Write
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Q” for the direct sum of the simple modules on which SK, acts non-trivially,
so that h*glm(R)  = Q* @ H&l,; A*gI,(R))  as an al,-module complex. As
sI, acts trivially on the homology of A*glm(R)  by exercise 7.7.6, the complex
Q* has to be acyclic, proving the proposition. 0

Corollary 9.10.4 Ifm 2 n the maps H,(g[,,,(R);  k) + HC,,_l(R) are split
surjections.

Proof Let eij(r) denote the matrix which is r in the (i, j) spot and zero
elsewhere. Exercise 9.5.4 showed that if we set

w=w(rl,... , m) = e12(rd A e23k2)  A . . . A en-l,n(rn-d  A ed(m>,

then o E hîglm(R)  satisfies trace(;lw) = (-l)ì-ërt  @ . . . @ r,. Moreover

-dw = el3(rlr2)  A.. . f drd A QdW3)  A . . .

+ (-1>n+t e&-&)  A e23(0) A . . . .

Modulo coinvariants this equals -w(b(rt  @ . . . @ r,J). Therefore w defines a
chain complex homomorphism from the translated cyclic complex R@*/ - =
(R@*+ë/  -)[-l]  to H&l,; A*gI,(R)).  As w is split by trace(k), the result
follows upon taking homology. 0

Invariant Theory Calculation 9.10.5 Let C, be the symmetric group of per-
mutations of (1, . . . , n) and (sgn) the l-dimensional X,-module  on which
o E C, acts as multiplication by its signature (-l)a. If C, acts on V@ln  by
permuting coordinates, then AîV  = Ií@”  @k~,,  (sgn). In particular,

Aî&(R)  = (glm(k) @ R)@’  @KZ, (sgn) = (glm(k)ìn  @ Rí?  @KS,, (sgn).

To compute the coinvariants, we pull a rabbit out of the ìhatî of classical in-
variant theory. The action of En on V@’ gives a homomorphism from kC, to
End( V@) = End(V) @ìë;  the Lie algebra g associated (7.1.2) to the associa-
tive algebra End(V) also acts on V@” and the action of C, is g-invariant, so
the image of kC, belongs to the invariant submodule (End(V)ëaín)s  = (g@ëì)s.
The classical invariant theory of [Weyl] asserts that kC, 2 (g@ëì)g  whenever
dim(V) > n. If dim(V) = m, then g Z gl,(k) E k x s[,(k)  and the abelian
Lie algebra k acts trivially on (g@ëì).  By Weylís Theorem (7.8.11),  g@’  is a
direct sum of simple al, (k)-modules, so
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Tensoring with the trivial g-module R@” therefore yields (for m ? n):

ffo@[,;  Aî@,(k))  = ffo(s[,;  (!$p 8 Ran)  @kC, (qn>>

=  (~o(hn;  I$?) ë8  R@ë>  @kC,  (s&!n>

=  (k& ë8  Rgn> @kC,,  (s&y>.

The action of EC,  on kC, in the final term is by conjugation.

Corollary 9.10.6 (Stabilization) For every associative k-algebra R and every
n the following stabilization homomorphisms are isomorphisms:

H&&(R);  k) 2 H,(&+l(R);  k) E ... ET &(g[(R); k).

Proof The invariant theory calculation shows that the first n + 1 terms (resp.
n terms) of the chain complex H&l,; h*glm(R)) are independent of m, as
long as m > n + 1 (resp. m 2 n). This yields a surjection  &(gI,(R);  k) -+
H,(gI,+1 (R); k) and stability for m 2: n + 1. For the more subtle invariant
theory needed to establish stability form = n, we cite [Loday, 10.3.51. 0

Remark 9.10.7 (Loday-Quillen)  It is possible to describe the obstruction to
improving the stability result to m = n - 1. If R is commutative, we have a
naturally split exact sequence

H&II~_~(R);  k) + H&I,(R);  k) A ììR;;/dî;$  + 0.

The right-hand map is the composite of h,: f&(&(R);  k) + H&l(R),  de-
fined in 9.10.1, and the projection HCi(R) + S2klk/dR&i  of 9.8.12. The
proof of this assertion uses slightly more invariant theory and proposition
9.10.9 below; see [LQ, 6.91. If R is not commutative, we only need to replace
nîR;~/dSZ~~~  by a suitable quotient of AîR;  see [Loday, 10.3.3 and 10.3.71

for details.

9.10.8 In order to state our next proposition, we need to introduce some stan-
dard facts about DG-coalgebras, expanding upon the discussion of graded
coalgebras in 6.7.13 and 9.10.2.

If V is any vector space, the exterior algebra A*(V) is a graded coalgebra
with counit  E: I\*(V) + A*(O) = k induced by V -+ 0 and coproduct

A: A*(V) + A*(V x V) E (A*V>  @ (A*V)

induced by the diagonal V -+ V x V. (Check this!) In particular, A*g is a
graded coalgebra for every Lie algebra g. Since g -+ 0 and g + g x g are
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Lie algebra maps, Ho(b;  A*g)  is a coalgebra for every Lie subalgebra h of
g. (Check this!) In particular, H&[,(k);  A*gL,(R))  is a graded coalgebra for
each m.

A differential graded coalgebra (or DG-coalgebra) C is a graded coalgebra
endowed with a differential d making it into a chain complex in such a way
that E: C, + k and A: C + C @ C are morphisms of complexes. For example,
A*g and Ho(s[,(k);  A*gI,(R))  are DG-coalgebras because E and A arise
from Lie algebra homomorphisms. By the Ktinneth formula 3.6.3, A induces
a map

H,(C)  + WC @ C) Z H,(C) C3 H,(C),

making the homology of a DG-coalgebra C again into a graded coalgebra.
Moreover, if x E C, is primitive (9.10.2),  then dx E Cn_l  is primitive, because

Therefore the graded submodule Prim(C) is a chain subcomplex of C.

Proposition 9.10.9  The chain complex L, = Ho(s[(k);  A*gK(R)) is a DG-
coalgebra whose primitive part Prim(  L,) is the translate C,_ 1 (R) = R@ë*/  ëu
of the chain complex for cyclic homology.

Proof Recall from the discussion 9.10.5 on invariant theory that we have

L, 2’ (k% @ Rí?  @kC, (sgn>.

This &-module splits into a direct sum of modules, one for each conjugacy
class of elements of C,. Let U,, be the conjugacy class of the cyclic permuta-
tion t = (12. . . n); we first prove that Prim(L,)  is (kU, @ Rn)  @k&,  (sgn). If
0 E & and r-i E R, then consider the element x = 0 8 (r-1 @ . . . 8 rJ of L,.
We have

A(x) = C(W @ (. . . @ ri (8, . . .>> 8 (oJ 8 (* . .@ rj B . . .)),
I,J

where the sum is over all partitions (I, J) of (1, . . . , n} such that o(Z) = I
and a(J) = J, and where cry (resp. OJ) denotes the restriction of 0 to I (resp.
to J). (Check this!) By inspection, x is primitive if and only if cr admits no
nontrivial partitions (I, J), that is, if and only if o E U,.

Now En acts on U,, by conjugation, the stabilizer of r being the cyclic group
C,, generated by t . Hence U,, is isomorphic to the coset space X,/C, = {C,a)
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and k[C,/C,] = k @kc, kC,. From this we deduce the following sequence of
isomorphisms:

Prim(L,)  S (kU, 8 Rmn) @kC, b@>

because R@*  @kc, (sgn) is the quotient of R@’ by 1 - (- l)ìt.  Note that this
sequence of isomorphism sends the class of

w = edr1)  A e&-2) A . . . A enl(m>  E An&(R)

to (-l)ì-ër-t  @. . . ~3 r,. We leave it as an exercise for the reader to show that
the class of dw E Aî-’ g&(R)  is sent to b(rl 8 . . . @I m). This identifies the
differential d on Prim(L,)  with the differential b of R@*/  - up to a sign. 0

Theorem 9.10.10 (Loday-Quillen,  Feigin-Tsygan) Let k be ajeld of charac-
teristic zerO and R an associative k-algebra. Then

1. The restriction of trace(h) to primitive elements is an isomorphism

Prim Hn(gL(R);  k) E HC,_l(R).

2. H* (81(  R); k) is a graded Hopf algebra, isomorphic to the tensor product

Proof The direct sums @:gl,(R) x gI,(R) --+ gI,+,(R)  sending (x, y) to

yield chain complex homomorphisms

&nn: Ho(st,; A*&(R))  ~3 Ho(st,; A*&(R)) + H&&z+,;  A*&+,(R)).

Because we have taken coinvariants, which allow us to move the indices

of gt,+, around inside ~t~+~+t,  the maps prnn,  p,,,+t,  and IJ~+I,~  are
compatible. Taking the limit as m, n -+ 00 yields an associative product p
on L, = H&I;  A*gt(R)).  This makes L, into a DG-algebra as well as a
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DG-coalgebra. In fact L, is a graded Hopf algebra (6.7.15) because the for-

mula (x,x) @ (y, y) - (x @ y, x CT+ y) in g+,+,(R) x f.&+,(R)  shows that
A: L, + L, @ L, is an algebra map. It follows that H,(g[(R); k) = H,(L,)
is also a Hopf algebra.

The classification of graded-commutative Hopf algebras H* over a field k of
characteristic zero is known [MM]. If Ho = k, then H* = Sym(P,)  C3 A*(P,),
where P, (resp. PO) is the sum of the Prim(Hi)  with i even (resp. i odd). Thus
(1) implies (2). Applying this classification to L*, a simple calculation (exer-
cise!) shows that Prim H,(L,) E H,Prim(L,). But H,Prim(L,) = HC,_l(R)
by Proposition 9.10.9. 0

Exercise 9.10.11 (Bloch, Kassel-Loday)  Use the Hochschild-Serre spectral
sequence (7.5.2) for 51 c 81 to show that H2(512(R);  k) Z HCl(R).
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The Derived Category

There are many formal similarities between homological algebra and algebraic
topology. The Dold-Kan correspondence, for example, provides a dictionary
between positive complexes and simplicial theory. The algebraic notions of
chain homotopy, mapping cones, and mapping cylinders have their historical
origins in simplicial topology.

The derived category D(A) of an abelian category is the algebraic ana-
logue of the homotopy category of topological spaces. D(d) is obtained from
the category Ch(d) of (cochain) complexes in two stages. First one con-
structs a quotient K(d) of Ch(d) by equating chain homotopy equivalent
maps between complexes. Then one ìlocalizesî K(d) by inverting quasi-
isomorphisms via a calculus of fractions. These steps will be explained below
in sections 10.1 and 10.3. The topological analogue is given in section 10.9.

10.1 The Category K(d)

Let A be an abelian category, and consider the category Ch = Ch(d) of
cochain complexes in A. The quotient category K = K(d) of Ch is defined as
follows: The objects of K are cochain complexes (the objects of Ch) and the
morphisms of K are the chain homotopy equivalence classes of maps in Ch.
That is, HomK(A,  B) is the set Homch(A,  B)/ - of equivalence classes of
maps in Ch. We saw in exercise 1.4.5  that K is well defined as a category and
that K is an additive category in such a way that the quotient Ch(d) + K(d)
is an additive functor.

It is useful to consider categories of complexes having special properties. If
C is any full subcategory of Ch(d), let K: denote the full subcategory of K(d)
whose objects are the cochain complexes in C. K: is a ìquotient categoryî of C
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in the sense that

The Derived Category

HomK(A,  B) = HomK(A,  B) = Homch(A, B)/ - = Homc(A, B)/ - .

If C is closed under @I and contains the zero object, then by 1.6.2 both C and
K: are additive categories and C -+ K: is also an additive functor.

We write Kb(A),  K-(d), and K+(d) for the full subcategories of K(d)
corresponding to the full subcategories Chb, Ch-,  and Ch+ of bounded,
bounded above, and bounded below cochain complexes described in section
1.1. These will be useful in section 5 below.

Of course, we could have equally well considered chain complexes in-
stead of cochain complexes when constructing K. However, the historical ori-
gins of derived categories were in Grothendieckís study of sheaf cohomology
[Ha&D], and the choice to use cochains is fixed in the literature.

Having introduced the cast of categories, we turn to their properties.

Lemma 10.1.1 The cohomology H*(C) of a cochain complex C induces a
family of well-defined functors Hi from the category K(d) to A.

Proof As we saw in 1.4.5, the map u*:  Hí(A) + Hí(B)  induced by u: A +
B is independent of the chain homotopy equivalence class of u. 0

Proposition 10.1.2 (Universal property) Let F: Ch(d) + D be any functor
that sends chain homotopy equivalences to isomorphisms. Then F factors
uniquely through K(d).

F
Ch(d) + D

1 73!

K ( d )

Proof Let cyl(B) denote the mapping cylinder of the identity map of B; it
has B” @ Bn+l @ B” in degree n. We saw in exercise 15.4 that the inclusion
a(b) = (0, 0, b) of B into cyl(B) is a chain homotopy equivalence with ho-
mopy inverse B(bí,  b,î b) = bí + b; t% = ide and @? - idcyt(a). By assump-
tion, F(o): F(B) -+ F(cyl(B))  is an isomorphism with inverse F(p). Now
the map (Yí:  B -+ cyl(B) defined by aí(b) = (b, 0,O) has /3a’  = ida, so

F(crí)  = F@)F(,9)F(aí)  = F(a)F(@ë)  = F(a).

Now suppose there is a chain homotopy s between two maps f, g: B + C.
Then y = (f, s, g):cyl(B)  += C is a chain complex map (exercise 15.3).
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Moreover, yo’  = f and ya! = g. Hence in D we have

F(f) = F(Y)F@ë)  = F(y)F(a) = F(g).

It follows that F factors through the quotient K(A) of Ch(A). 0

Exercise 10.1.1 Taking F to be Ch(A) -+ K(A), the proof shows that
aí:  B -+ cyl(B) is a chain homotopy equivalence. Use an involution on cyl(B)
to produce an explicit chain homotopy pa’  - idcyl(n).

Definition 10.1.3 (Triangles in K(A)) Let u: A + B be a morphism in Ch.
Recall from 1.5.2 that the mapping cone of u fits into an exact sequence

O-+B&cone(u)-%A[-l]+O

in Ch. (The degree n part of cone(u) is Aî+l  @ B” and Aî+l  is the degree n
part of A[- 11; see 1.2.8.) The strict triangle on u is the triple (u, V, 6) of maps
in K; this data is usually written in the form

cone(u)

a/ Yv
u

A - B.

Now consider three fixed cochain complexes A, B and C. Suppose we are
given three maps u: A + B, v: B + C, and w: C + A[-1] in K. We say
that (u, v, w) is an exuct triangle on (A, B, C) if it is ìisomorphicî to a strict
triangle (uí, ví,  6) on uí: Aí + Bí in the sense that there is a diagram of chain
complexes,

AU-B& C w\ A [ - 1 ]

f-1 4-g J-h J..fl-11

A í  L B í  L cone(uí)  s\ Aí[-11,

commuting in K (i.e., commuting in Ch up to chain homotopy equivalences)
and such that the maps f, g, h are isomorphisms in K (i.e., chain homotopy
equivalences). If we replace u, v, and w by chain homotopy equivalent maps,
we get the same diagram in K. This allows us to think of (u, v, w) as a triangle
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in the category K. A triangle is usually written as follows:

Corollary 10.1.4 Given an exact triangle (u, v, w) on (A, B, C), the coho-
mology sequence

. . . s Hí(A)  s Hí(B)  s Hî(C)  5 Hí+ë(A)  s . . .
is exact. Here we have identified Hí(A[-  I]) and Hí+ë(A).

Proof For a strict triangle, this is precisely the long exact cohomology se-
quence of 1.5.2. Exactness for any exact triangle follows from this by the def-
inition of a triangle and the fact that each Hi is a functor on K. 0

Example 10.1.5 The endomorphisms 0 and 1 of A fit into the exact triangles

A @ AL-11 0

I( 2 J 2
0

A -A AA A.

Indeed, cone(O) = A @ A[-1] and we saw in exercise 1.5.1 that cone(l) is a
split exact complex, that is, cone( 1) is isomorphic to zero in K.

Example 10.1.6 (Rotation) If (u, v, w) is an exact triangle, then so are its
ìrotates”

”

B + C and
-will

C[+l] d A .

To see this, we may suppose that C = cone(u). In this case, the assertions
amount to saying that the maps cone(v) + A[- l] and B[- l] + cone(J)
are chain homotopy equivalences. The first was verified in exercises 1.5.6
and 1.5.8, and the second assertion follows from the observation that
cone(d) = cyl(-u)[-11.
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Remark 10.1.7 Given a short exact sequence 0 -+ A --% B -% C + 0 of

complexes, there may be no map C * A[--11 making (u, u, w) into an exact
triangle in K(A), even though there is a long exact cohomology sequence
begging to be seen as coming from an exact triangle (but see 10.4.9 below).
This cohomology sequence does arise from the mapping cylinder triangle

cone(u)

WkJ \

A - cyl(u)

and the quasi-isomorphisms @: cyl(u) + B and q: cone(u) -+ C of exer-
cises 1.5.4 and 1.5.8.

Exercise 10.1.2 Regard the abelian groups Z/2 and Z/4 as cochain com-
plexes concentrated in degree zero, and show that the short exact sequence

0 -+ Z/2 --%. z/4 -!+ Z/2 -+ 0 cannot be made into an exact triangle (2, 1,
W) on (2/2,2/4,Z/2)  in the category K(A).

10.2 Triangulated Categories

The notion of triangulated category generalizes the structure that exact trian-
gles give to K(A). One should think of exact triangles as substitutes for short
exact sequences.

Suppose given a category K equipped with an automorphism T. A triangle
on an ordered triple (A, B, C) of objects of K is a triple (u, u, W) of mor-
phisms, where u: A + B, u: B -+ C, and w: C + T(A). A triangle is usually
displayed as follows:

A morphism of triangles is a triple (f, g, h) forming a commutative diagram
in K :

A&BAC:TA

If 18 4-h 1Tf

A í  : B’ : C í  -% TAí.
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Definition 10.2.1 (Verdier) An additive category K is called a triangulated
category if it is equipped with an automorphism T: K + K (called the trans-
lationfunctor) and with a distinguished family of triangles (u, v, w) (called
the exact triangles in K), which are subject to the following four axioms:

(TRl) Every morphism u: A --+ B can be embedded in an exact triangle
(u, II, w). If A = B and C = 0, then the triangle (idA, 0,O) is exact.
If (u, u, w) is a triangle on (A, B, C), isomorphic to an exact triangle
(uí,  ví,  wí) on (Aí, Bí, Cí), then (u, u, w) is also exact.

(TR2) (Rotation). If (u, v, w) is an exact triangle on (A, B, C), then both
its ìrotatesî (v, W, -Tu)  and (-T-ëw,  u, u) are exact triangles on
(B, C, TA) and (T-ëC,  A, B), respectively.

(TR3) (Morphisms). Given two exact triangles

C C’

wb/ Yu and llJí/  7îí

A: B A uI\ B’

with morphisms f: A + Aí, g: B -+ Bí such that gu = uíf,  there exists
a morphism h: C + Cí so that (f, g, h) is a morphism of triangles.

(TR4) (The octahedral axiom). Given objects A, B, C, Aí, Bí, Cí in K, sup-
pose there are three exact triangles: (u, j, i3) on (A, B, Cí); (II, x, i) on
(B, C, Aí); (VU, y, S) on (A, C, Bí). Then there is a fourth exact triangle

(L g, (Tj)i)  on (Cí,  Bí,  Aí)

A’

Vj)iJ ì\g

Cí ---+ B’
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such that in the following octahedron we have (1) the four exact triangles
form four of the faces; (2) the remaining four faces commute (that is, 8 =
Sf: C’ + Bí -+ TA and x = gy: C += B’  + Aí); (3) yv = fj: B + Bí;

and (4) US = ig: Bí + B.

B’

Exercise 10.2.1 If (u, v, w) is an exact triangle, show that the compositions
vu, WV, and (Tu)w are zero in K. Hint: Compare the triangles (idA, 0,O) and
(u, u, w).

Exercise 10.2.2 (5-lemma)  If (f, g, h) is a morphism of exact triangles, and
both f and g are isomorphisms, show that h is also an isomorphism.

Remark 10.2.2 Every exact triaugle is determined up to ismorphism by any
one of its maps. Indeed, (TR3) gives a morphism between any two exact tri-
angles (u, u, w) on (A, B, C) and (u, ví,  TVí)  on (A, B, Cí), and the 5-lemma
shows that it is an isomorphism. In particular, the data of the octahedral axiom
are completely determined by the two maps A 1(\ B A C.

Exegesis 10.2.3 The octahehral axiom (TR4) is sufficiently confusing that it
is worth giving another visualization of this axiom, following [BBD]. Write
the triangles as straight lines (ignoring the morphism C + T(A)), and form
the diagram
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The octahedral axiom states that the three lines through A, B, and C determine
the fourth line through (Cí, Bí, Aí). This visualization omits the identity a =

6.f.

Proposition 10.2.4 K(A) is a triangulated category.

Proof The translation TA = A[-1] is defined in 1.2.8. We have already seen
that axioms (TRl) and (TR2) hold. For (TR3) we may suppose that C =
cone(u) and Cí = cone(uí);  the map h is given by the naturality of the map-
ping cone construction.

It remains to check the octahedral axiom (TR4). For this we may assume
that the given triangles are strict, that is, that Cí = cone(u), Aí = cone(u), and
Bí = cone(vu).  Define f” from (Cí)î = B” @ Aî+l  to (Bí)n  = C” @ Anfl
by fî(b,  a) = (v(b), a), and define g” from (Bí)î = Cn G3 An+l  to (Aí)î =
C” @ Bn+’ by gî(c,  a) = (c, u(a)). Manifestly, these are chain maps, 8 = Sf
and x = gy. Since the degree n part of cone(f) is (Cî @ Aî+ë) G3 ( Bn+’ $
Aef2), there is a natural inclusion y of Aí into cone(f) such that the following
diagram of chain complexes commutes.

f g
C’  + B í  + A’ z cr,_ll

II II b I I

C í  2 Bí --+ cone(f) + Cí[-l]

To see that y is a chain homotopy equivalence, define ~0: cone(f) -+ Aí by
~(c, a,+l, b, an+2) = (c, b + u(a,+l)).  We leave it to the reader to check that
q is a chain map, that py = idA/  and that yp is chain homotopic to the identity
map on cone(f). (Exercise!) This shows that (f, g, (Tj)i) is an exact triangle,
because it is isomorphic to the strict triangle of f. 0

Corollary 10.2.5 Let C be a full subcategory of Ch(A) and K its correspond-
ing quotient category. Suppose that C is an additive category and is closed
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under translation and the formation of mapping cones. Then K is a triangu-
lated category.

In particular; Kb(d), K-(d), and K+(d) are triangulated categories.

Definition 10.2.6 A morphism F: Kí -+ K of triangulated categories is an
additive functor that commutes with the translation functor T and sends exact
triangles to exact triangles. There is a category of triangulated categories and
their morphisms. We say that K' is a triangulated subcategory of K if Kí is a
full subcategory of K, the inclusion is a morphism of triangulated categories,
and if every exact triangle in K is exact in Kí.

For example, Kb, K+, and K- are triangulated subcategories of K(d).
More generally, K is a triangulated subcategory of K in the above corollary.

Definition 10.2.7 Let K be a triangulated category and A an abelian cate-
gory. An additive functor H: K + A is called a (covariant) cohomological
functor if whenever (u, u, w) is an exact triangle on (A, B, C) the long se-
quence

. . . 5 H(TíA)  -$ H(TíB)  -% H(TíC)  % H(Tí+ëA)  2 . . .

is exact in A. We often write Hí(A)  for H(TîA)  and Ho(A) for H(A) be-
cause, as we saw in 10.1.1, the zeroth cohomology Ho: K(d) -+ A is the
eponymous example of a cohomological functor. Here is another important
cohomological functor:

Example 10.2.8  (Horn) If X is an object of a triangulated category K, then
HomK(X, -) is a cohomological functor from K to Ab. To see this, we have
to see that for every exact triangle (u, Y, w) on (A, B, C) that the sequence

HOmK(x,  A )  A HOmK(X,  B )  :  HOmK(X, c)

is exact; exactness elsewhere will follow from (TR2). The composition is zero
since uu = 0. Given g E HOmK(X,  B) such that vg = 0 we apply (TR3) and
(TR2) to

X  =  X-+O+TX

4-f lg 10 3JT.f

AU-BAC:TA

and conclude that there exists an f E HomK(X,  A) so that uf = g.
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Exercise 10.2.3 If K is triangulated, show that the opposite category KîP

is also triangulated. A covariant cohomological functor H from KîP  to A is
sometimes called a contravariant cohomological functor on K. If Y is any
object of K, show that HomK(-, Y) is a contravariant cohomological functor
on K.

Exercise 10.2.4 Let A" be the category of graded objects in A, a morphism
from A = {A,] to B = { Bn)  being a family of morphisms fn: A, + B,. De-
fine TA to be the translated graded object At-l],  and call (u, v, w) an exact
triangle on (A, B, C) if for all IZ the sequence

is exact. Show that axioms (TRl) and (TR2) hold, but that (TR3) fails for
d = Ab. If A is the category of vector spaces over a field, show that A” is
a triangulated category, and that cohomology H*: K(d) + A” is a morphism
of triangulated categories.

Exercise 10.2.5 Let H be a cohomological functor on a triangulated category
K, and let KH denote the full subcategory of K consisting of those objects
A such that Hí(A) = 0 for all i. Show that KH is a triangulated subcategory
of K.

Exercise 10.2.6 (Verdier) Show that every commutative square on the left in
the diagram below can be completed to the diagram on the right, in which all
the rows and columns are exact triangles and all the squares commute, except
the one marked ì-”  which anticommutes. Hint: Use (TRl) to construct every-
thing except the third column, and construct an exact triangle on (A, Bí,  0).
Then use the octahedral axiom to construct exact triangles on (C, D, Bî),
(A,î D, Cí), and finally (Cí, Cî, C).

A>B
i j
+ B - C 5 T ( A )

4 I .ìI L 1 1 TU

A í  + B’ I

.;

--+ Bí + C’ --+ T(Aí)

1 1 1 TlJ

Aî --f  Bî ---+ Cî ---_,  T(Aî)

4 1 1 - b
Ti

T ( A )  + T ( B )  --% T ( C )  2 T2(A)
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The derived category D(d) is defined to be the localization Q-ëK(d)  of
category K(d) at the collection Q of quasi-isomorphisms, in the sense of the
following definition.

Definition 10.3.1 Let S be a collection of morphisms in a category C. A
localization of C with respecl  ë0  S is a category S-ëC,  together with a functor
q:C -v+ S-ëC  such that

1. q(s) is a isomorphism in S-ëC  for every s E S.
2. Any functor F: C + V such that F(s) is an isomorphism for all s E S

factors in a unique way through q. (It follows that S-ëC  is unique up to
equivalence.)

Examples 10.3.2

1. Let S be the collection of chain homotopy equivalences in Ch(d). The
universal property 10.1.2 for Ch(d) -+ K(d) shows that K(d) is the
localization S-'Ch(d).

2. Let Q be the collection of all quasi-isomorphisms in Ch(d). Since Q
contains the S of part (l), it follows that

&'Ch(d)= Q-' (S-'Ch(d))= Q-'K(d)=D(d).

Therefore we could have defined the derived category to be the localization
&ëCh(A).  However, in order to prove that &lCh(d)  exists we must first
prove that Q-'K(d)  exists, by giving an explicit description of the mor-
phisms.

Set-Theoretic Remark 10.3.3 If C is a small category, every localization
S-ëC  of C exists. (Add inverses to the presentation of C by generators and
relations; see [MacH,  11.81.) It is also not hard to see that S-ëC  exists when
the class S is a set. However, when the class S is not a set, the existence of
localizations  is a delicate set-theoretic question.

The standard references [Verd], [HarRD],  [GZ] all ignore these set-theoretic
problems. Some adherents of the Grothendieck school avoid these difficulties
by imagining the existence of a larger universe in which C is small and con-
structing the localization in that universe. Nevertheless, the issue of whether
or not S-ëC  exists in our universe is important to other schools of thought,
and in particular to topologists who need to localize with respect to homology
theories; see [A, III. 141.
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In this section we shall consider a special case in which localizations  S-ëC
may be constructed within our universe, the case in which S is a ìlocally small
multiplicative system.î This is due to the presence of a kind of calculus of
fractions.

In section 10.4 we will see that the multiplicative system Q of quasi-
isomorphisms in K(d) is locally small when A is either mod-R or
Sheaves(X). This will prove that D(d) exists within our universe. We will
also see that if A has enough injectives (resp. projectives), the existence of
Cartan-Eilenberg resolutions 5.7.1 allows us to forget about the set-theoretical
difficulties in asserting that D+(d) exists (resp. that D-(d) exists).

Definition 10.3.4 A collection S of morphisms in a category C is called a
multiplicative system in C if it satisfies the following three self-dual axioms:

1. S is closed under composition (if S, t E S are composable, then st E S)
and contains all identity morphisms (idx E S for all objects X in C).

2. (Ore condition) If t: Z -+ Y is in S, then for every g: X -+ Y in C there
is a commutative diagram ìgs = tf”  in C with s in S.

(The slogan is ìt-ëg  = fs-’ for some f and s.ì)  Moreover, the sym-
metric statement (whose slogan is ìfs-’  = t-ëg  for some t and gî)  is
also valid.

3. (Cancellation) If f, g: X -+ Y are parallel morphisms in C, then the fol-
lowing two conditions are equivalent:

(a) sf = sg for some s E S with source Y.
(b) ft = gt for some t E S with target X.

Prototype 10.3.5 (Localizations  of rings) An associative ring R with unit
may be considered as an additive category R with one object . via R =
Enda( Let S be a subset of R closed under multiplication and containing
1. If R is commutative, or more generally if S is in the center of R, then S is
always a multiplicative system in R; the usual ring of fractions S-ëR  is also
the localization S-ëR  of the category R.

If S is not central, then S is a multiplicative system in R if and only if
S is a ì2-sided denominator setî in R in the sense of [Faith]. The classical
ring of fractions S-ëR  is easy to construct in this case, each element being
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represented as either fs-’  or t-ëg  (f, g E R and s, t E S), and again S-ëR  is
the localization of the category R.

The construction of the ring of fractions SíR  serves as the prototype for
the construction of the localization S-k?.. We call a chain in C of the form

a (left) ìfractionî ifs is in S. Call fs-’  equivalent to X It X2 5 Y just in
case there is a fraction X t X3 --+ Y fitting into a commutative diagram in C:

It is easy to see that this is an equivalence relation. Write Homs(X, Y) for the
family of equivalence classes of such fractions. Unfortunately, there is no a
priori reason for this to be a set, unless S is ìlocally smallî in the following
sense.

Set-Theoretic Considerations 10.3.6 A multiplicative system S is called lo-
cally small (on the left) if for each X there exists a set Sx of morphisms in S,
all having target X, such that for every Xt + X in S there is a map X2 + X1
in C so that the composite X2 + Xt + X is in Sx.

If S is locally small, then Homs(X, Y) is a set for every X and Y. To see

this, we make Sx the objects of a small category, a morphism from X1 & X

toX2--%XbeingamapX2+XtinCsothattisX2+Xt-%X.Thee)re
condition says that by enlarging Sx slightly we can make it a filtered category
(2.6.13). There is a functor Homc(-,  Y) from Sx to Sets sending s to the set
of all fractions fs-ë,  and Homs(X, Y) is the colimit of this functor.

Composition of fractions is defined as follows. To compose X t Xí 5 Y

with Y +-!--  Yí + Z we use the Ore condition to find a diagram
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with s in S; the composite is the class of the fraction X t W + 2 ir
Homs(X, 2). The slogan for the Ore condition, t-ëg  = fs-ë,  is a symbolic
description of composition. It is not hard to see that the equivalence class
of the composite is independent of the choice of Xí and Yí, so that we have
defined a pairing

Homs(X,  Y) x Homs(Y, Z) + Homs(X, Z).

(Check this!) It is clear from the construction that composition is associative
and that X = X = X is a 2-sided identity element. Hence the Homs(X, Y) (3
they are sets) form the morphisms of a category having the same objects as C
it will be our localization SíC.

Gabriel-Zisman ëlíheorem  10.3.7 ([GZ]) Let S be a locally small multiplica.
tive system of morphisms in a category C. Then the category S-ëC  constructec,
above exists and is a localization of C with respect to S. The universal functot

q: C -+ SíC  sends f: X -+ Y to the sequence X = X L Y.

Proof To see that q: C + S-k  is a functor, observe that the compositior

of X = X f\ Y and Y = Y & Z is X = X -% Z since we can choose
t = idx and f = g. Ifs is in S, then q(s) is an isomorphism because the corn.

position of X = X & Y and Y A X = X is X = X = X (take W = X)
Finally, suppose that F: C + 2) is another functor sending S to isomorphisms
Define SíF:  SíC  + D by sending the fraction f s-l to F(f) F(s)-ë. Giver
g and t, the equality gs = tf in C shows that F(g)F(s) = F(t)F(f),  01
F(t-ëg)  = F( f s-l); it follows that SíF  respects composition and is a func-
tor. It is clear that F = (S-l  F) o q and that this factorization is unique. C

Corollary 10.3.8 S-ëC  can be constructed using equivalence classes OJ

ìright fractionsî t-ëg:  X L Yí A Y, provided that S is ìlocally small
on the rightî (the dual notion to locally small, involving maps Y + Yí in S).

Proof Sop  is a multiplicative system in PP. Since Cop + (Sop)-ëCOP  is a

localization, so is its dual C + [(SOP)-l(COP)]OP.  But this is constructed using
the fractions t-ëg. C

Corollary 10.3.9 Two parallel maps f, g: X -+ Y in C become identijed in
SíC  ifand  only if sf = sg for some s: X3 + X in S.
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Exercise 10.3.1

1. If Z is a zero object (resp. an initial object, a terminal object) in C, show
that q(Z) is a zero object (resp. an initial object, a terminal object) in
s-ëc.

2. If the product X x Y exists in C, show that q(X x Y) g q(X) x q(Y) in
s-ëc.

Corollary 10.3.10 Suppose that C has a zero object. Then for every X in C:

q(X) 2 0 in S-ëC  * S contains the zero map X 5 X.

Proof Since q (0) is a zero object in SíC,  q(X) 2 0 if and only if the parallel
maps 0, idx: X -+ X become identified in SíC,  that is, iff 0 = SO = s for
some s . 0

Corollary 10.3.11 IfC is an additive category, then so is SíC,  and q is an
additive functor:

Proof If C is an additive category, we can add fractions from X to Y as
follows. Given fractions fisll and f2sT1, we use the are condition to find

an s: X2 + X in S and f[, fJ: X2 -+ Y so that fi s;’ - f,ë-’  and f2sT1 -

f;s-l; the sum (&’  + f;)s-’ is well defined up to equivalence. (Check this!)

Since q(X x Y) Ez q(X) x q(Y) in S-V (exercise 10.3.1), it follows that
SíC  is an additive category (A.4.1)  and that q is an additive functor. 0

It is often useful to compare the localizations  of subcategories with SíC.
For this we introduce the following definition.

Definition 10.3.12 (Localizing subcategories) Let 13 be a full subcategory of
C, and let S be a locally small multiplicative system in C whose restriction
S fl t3 to B is also a multiplicative system. 23 is called a localizing subcategory
(for S) if it satisfies any of the equivalent conditions of the following lemma.
For legibility, we shall write Se123 for (S fl B)-ëB.

Lemma 10.3.13 The following conditions are equivalent:

1. The natural jimctor S-ët3  + SíC  is fully faithful. That is, it identt$es
S-ëB  with the full subcategory of S-ëC  on the objects of B.
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2. Whenever C + B is a morphism in S with B in B, there is a morphism
Bí + C in C with B’ in I3 such that the composite Bí + B is in S.

3. Whenever B + C is a morphism in S with B in B, there is a morphism
C -+ B’ in C with B’ in t3 such that the composite B + B’ is in S.

Proof (2) implies that the maps Homsnn(B,  Bí) + Homs(B,  Bí) are bijec-
tive for each B and Bí in B (check this!), which is equivalent to (1). Con-

versely, if (1) holds, then the fraction S-IS: B & C & B must be equiva-
lent to B = B = B, which gives (2). The equivalence of (1) and (3) is dual to
this. 0

Corollary 10.3.14 If 23 is a localizing subcategory of C, andfor  every object
C in C there is a morphism C + B in S with B in f3, then SFíB  Z S-ëC.

Suppose in addition that S n 13 consists of isomorphisms. Then

BE s-la E s-k.

Example 10.3.15 Assume D(d) exists. The subcategories Kb(d), K+(d),
and K-(d) of K(d) are localizing for Q (check this). Thus their localizations
exist and are the full subcategories Db(d),  D+(d),  and D-(d) of D(d) whose
objects are the cochain complexes which are bounded, bounded below, and
bounded above, respectively.

Example 10.3.16 Let S be a multiplicative system in a ring, and let C be
the collection of all morphisms A -+ B in mod-R such that S-’ A + S-ëB
is an isomorphism. It is not hard to see that .E is a multiplicative system in
mod-R. The subcategory mod-S-ëR  is localizing, because the natural map
A + S-ëA  is in C for every R-module A. Since C f’ mod-S-ëR  consists of
isomorphisms, we therefore have

mod-S-ëR  E Z-ëmod-R.

Exercise 10.3.2 (Serre subcategories) Let A be an abelian category. An
abelian subcategory U is called a Serre subcategory if it is closed under sub-
objects, quotients, and extensions. Suppose that t3 is a Serre subcategory of A,
and let C be the family of all morphisms f in A with ker(f) and coker(f)
in t?.

1. Show that E is a multiplicative system in A. We write d/t? for the
localization E-ëA  (provided that it exists).

2. Show that q(X) 2 0 in d/f3 if and only if X is in f3.
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3. Assume that t3 is a small category, and show that Z is locally small. This
is one case in which A/t3 = C-ëA  exists. More generally, A/t3 exists
whenever A is well-powered, that is, whenever the family of subobjects
of any object of A is a set; see [Swan, pp.44ffl.

4. Show that A/f3 is an abelian category, and that q: A --+ A/t3  is an exact
functor.

5. Let S be a multiplicative system in a ring R, and let modsR denote
the full subcategory of R-modules A such that S-ëA  E 0. Show that
modsR  is a Serre  subcategory of mod-R. Conclude that mod-S-ëR  2
mod-R/modsR.

10.4 The Derived Category

In this section we show that D(A) is a triangulated category and that D+(A)
is determined by maps between bounded below complexes of injectives. We
also show that D(A) exists within our universe, at least if A is mod-R or
Sheaves(X) .

For this we generalize slightly. Let K be a triangulated category. The system
S arising from a cohomological functor H: K + A is the collection of all
morphisms s in K such that Hí(s) is an isomorphism for all integers i. For
example, the quasi-isomorphisms Q arise from the cohomological functor Ho.

Proposition 10.4.1 If S arises from a cohomological jiinctol; then

I. S is a multiplicative system.
2. S-ëK  is a triangulated category, and K + S-ëK  is a morphism of tri-

angulated categories (in any universe containing SW1 K).

Proof We first show that the system S is multiplicative (10.3.4). Axiom (1)
is trivial. To prove (2), let f: X + Y and s: 2 -+ Y be given. Embed s in an
exact triangle (s, u, S) on (2, Y, C) using (TRl). Complete uf: X -+ C into
an exact triangle (t, uf, v) on (IV, X, C). By axiom (TR3) there is a morphism
g such that

is a morphism of triangles. If H*(s) is a isomorphism, then H*(C) = 0.
Applying this to the long exact sequence of the other triangle, we see that
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H*(t) is also an isomorphism. The symmetric assertion may be proven simi-
larly, or by appeal to KíP  + AîP.

To verify axiom (3),  we consider the difference h = f - g. Given s: Y -+ Y’
in S with sf = sg, embed s in an exact triangle (u, s, S) on (Z, Y, Yí). Note
that H*(Z) = 0. Since HomK(X,  -) is a cohomological functor (by 10.2.8),

HOmK(X,  z) & HomK(X,  Y) & HOmK(X,  Yí)

is exact. Since s(f - g) = 0, there is a g: X -+ Z in K such that f - g = ug.
Embed g in an exact triangle (t, g, w) on (Xí, X, Z). Since gt = 0, (f - g)t =
ugt = 0, whence ft = gt. And since H*(Z) = 0, the long exact sequence for
H shows that H*(Xí)  ?’ H*(X), that is, t E S. The other implication of axiom
(3) is analogous and may be deduced from the above by appeal to KîP  + dîP.

Now suppose that S-ëK  exists. The formula T(fs-ë)  = T(f)T(s)-’  de-
fines a translation functor T on S-ëK.  To show that S-ëK  is triangulated,
we need to define exact triangles. Given usI-ë:  A -+ B, ~2í:  B + C, a n d

WS3-ë:  C t Cí -+ T(A), the Ore condition for S yields morphisms tl: Aí -+ A

and t2: Bí + B in S and uí: Aí -+ Bí, uí:  Bí -+ Cí in C so that us;’ 2 t&t;’
- 1a n d  us2 z s3v  t2’ -I. We say that (us;ë,  us;ë,  wsgí)  is an exact triangle in

S-ëK  just in case (uí, uí,  w) is an exact triangle in K. The verification that
SFíK  is triangulated is left to the reader as an exercise, being straightforward
but lengthy; one uses the fact that Homs(X, Y) may also be calculated using
fractions of the form t-ëg. 0

Corollary 10.4.2 (Universal property) Let F: K + L be a morphism of tri-
angulated categories such that F(s) is an isomorphism for all s in S, where
S arises from a cohomological functol:  Since q: K -+ S-ëK  is a localization,
there is a unique functor Fí: S-ëK  + L such that F = Fí o q. In fact, F’ is a
morphism of triangulated categories.

Corollary 10.4.3 D(d), Db(d),  D+(d) and D-(d) are triangulated cate-
gories (in any universe containing them).

Proposition 10.4.4 Let R be a ring. Then D(d) exists and is a triangulated
category if A is mod-R, or either of

l Presheaves(X),  presheaves of R-modules on a topological space X, or
l Sheaves(X), sheaves of R-modules on a topological space X.

Proof We have to prove that the multiplicative system Q is locally small
(10.3.6). Given a fixed cochain complex of R-modules A, choose an infinite
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cardinal number K larger than the cardinality of the sets underlying the Aí and
R. Call a cochain complex B petite if its underlying sets have cardinality < K;

there is a set of isomorphism classes of petite cochain complexes, hence a set
Sx of isomorphism classes of quasi-isomorphisms Aí -+ A with Aí petite.

Given a quasi-isomorphism B + A, it suffices to show that B contains a
petite subcomplex Bí quasi-isomorphic to A. Since H*(A) has cardinality
< K, there is a petite subcomplex Bo of B such that the map f;: H*(Bo) -+
H*(A) is onto. Since ker(f$) has cardinality < K, we can enlarge Bo to a
petite subcomplex B1  such that ker(f$) vanishes in H*(Bl).  Inductively, we
can construct an increasing sequence of petite subcomplexes B, of B such that
the kernel of H*(B,)  --+ H*(A) vanishes in H*(Bn+l).  But then their union
Bí = U B, is a petite subcomplex of B with

H*(Bí)  2 12 H*(B,J  2’ H*(A).

The proof for presheaves is identical, except that K must bound the number
of open subsets U as well as the cardinality of A(U) for every open subset
U of X. The proof for sheaves is similar, using the following three additional
facts, which may be found in [Hart] or [Gode]: (1) if K bounds card A(U)
for all U and the number of such U, then K also bounds the cardinality of
the stalks A, for x6X (2.3.12); (2) a map B + A is a quasi-isomorphism in
Sheaves(X) iff every map of stalks B, + A, is a quasi-isomorphism; and (3)
for every directed system of sheaves we have H*(le Bn) = 1% H*(B,). 0

Remark 10.4.5 (Gabber) The proof shows that D(A) exists within our uni-
verse for every well-powered abelian category A that satisfies (AB5) and has
a set of generators.

We conclude with a discussion of the derived category D+(d). Assuming
that A has enough injectives and we are willing to always pass to complexes
of injectives, there is no need to leave the homotopy category K+(d). In
particular, D+(d) will exist in our universe even if D(d) may not.

Lemma 10.4.6 Let Y be a bounded below cochain complex of injectives.
Every quasi-isomorphism t: Y + Z of complexes is a split injection in K(d).

Proof The mapping cone cone(t) = T(Y) $ Z is exact (1.5.4),  and there is a
natural map ~0: cone(t) + T(Y). The Comparison Theorem of 2.3.7 (or rather
its proof; see 2.2.6) shows that p is null-homotopic, say, by a chain homotopy
u = (k, s) from T(Y) @ Z to Y. The first coordinate of the equation -y =
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&y, z) = (vd + dv)(y, z) yields the equation

y = (kdy + sty - dky) + (dsz - sdz).

Thus ds = sd (i.e., s is a morphism of complexes) and st = idr + dk - kd,
that is, k is a chain homotopy equivalence st z idr. Hence st = idy in K+(A).

0

Corollary 10.4.7 If I is a bounded below cochain complex of injectives, then

HOW(d)@, 1) g HOmK(d)(X,  1)

for every X. Dually, tf P is a bounded above cochain complex of projectives,
then

HOmD(d)(P,  x) 2 HOmK(d)(P,  x).

Proof We prove the assertion for Y = I, using the notation of the lemma. Ev-

ery right fraction t-ëg:  X &- 2 A Y is equivalent to sg = (st)t-ëg:  X +
Y. Conversely, if two parallel arrows f, g: X + Y in K(d) become identified
in D(d) = Q-ëK(d),  then tf = tg for some quasi-isomorphism t: Y -+ Z by
10.3.9, which implies that f = stf = stg = g in K(d). 0

Exercise 10.4.1 In the situation of the lemma, show that (tk, 1): cone(t) +
Z induces an isomorphism Z G Y @ cone(t) in K(d).

Theorem 10.4.8 Suppose that A has enough injectives. Then D+(d) exists in
our universe because it is equivalent to the full subcategory K+(T) of K+(d)
whose objects are bounded below cochain complexes of injectives

D+(d)zK+(l-).

Dually, ifd has enoughprojectives, then the localization D-(d)  of K-(d)
exists and is equivalent to the full subcategory K-(P) of bounded above
cochain complexes of projectives in K-(d) :

D-(d)rK-(7').

Proof Recall from 5.7.2 that every X in Ch+(d)  has a Cartan-Eilenberg reso-
lution X + I with Tot(Z) in K+(Z); since X is bounded below, this is a quasi-
isomorphism (exercise 5.7.1). If Y -+ X is a quasi-isomorphism, then so is
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Y -+ Tot(Z); by 10.3.13(3),  K+(Z) is a localizing subcategory of K+(d). This
proves that D+(d) g S-ëK+(Z),  and by 10.3.14 it suffices to show that every
quasi-isomorphism in K+(Z) is an isomorphism. Let Y and X be bounded be-
low cochain complexes of injectives and t: Y + X a quasi-isomorphism. By
lemma 10.4.6, there is a map s: X + Y so that st = idr in K+(d). Interchang-
ing the roles of X and Y, s and t, we see that US = idx for some U. Hence t is
an isomorphism in K+(Z) with t-l = s.

Dually, if A has enough projectives, then Aon has enough injectives and
D-(d) g D+(dîp)ë=p  2 K+(PîP)OP  z K-(P). 0

Example 10.4.9 Every short exact sequence 0 + A % B & C + 0 of
cochain complexes fits into an exact triangle in D(d), isomorphic to the strict
triangle on U. Indeed, the quasi-isomorphism y.~: cone(u) -+ C of 1.5.8 allows
us to form the exact triangle (u, V, 6~~ë)  on (A, B, C). This construction
should be contrasted with the observation in 10.1.7 that there may be no simi-
lar exact triangle (u, V, w) in K(d).

Note that the construction of D(d) implies the following two useful criteria.
A chain complex X is isomorphic to 0 in D(d) iff it is exact. A morphism
f: X + Y in Ch(d) becomes the zero map in D(d) iff there is a quasi-
isomorphism s: Y -+ Yí such that sf is null homotopic (chain homotopic to
zero). The following exercise shows the subtlety of being zero.

Exercise 10.4.2 Give examples of maps f, g in Ch(d) such that (1) f =
0 in D(d), but f is not null homotopic, and (2) g induces the zero map

on cohomology, but g # 0 in D(d). Hint: For (2) try X: 0 + Z 5 i2 + 0,

Y:O+ZkZ/3+O,g=(1,2).

Exercise 10.4.3 (KB(d)  and Da(d)) Let B be a Serre subcategory of A, and
let n: A -+ d/a be the quotient map constructed in exercise 10.3.2.

1. Show that H = x Ho: K(d) + A + d/B is a cohomological functor,
so that KH(d) is a triangulated category by exercise 10.2.5. The notation
Ka(d) is often used for KH(A), because of the description in part (2).

2. Show that X is in KB(d)  iff the cohomology Hí(X) is in B for all i.
3. Show that Ka(d) is a localizing subcategory of K(d), and conclude that

its localization Da(d) is a triangulated subcategory of D(d) (10.2.6).
4. Suppose that B has enough injectives and that every injective object of

B is also injective in A. Show that there is an equivalence D+(a) %

D;(d).



390 The Derived Category

Exercise 10.4.4 (Change of Universe) This is a continuation of the previ-
ous exercise. Suppose that our universe is contained in a larger universe U,
and that mod-R and Sheaves(X) are small categories in U. Let MOD-R
and SHEAVES(X) denote the categories of modules and sheaves in U,
respectively. Show that mod-R and Sheaves(X) are Serre subcategories
of MOD-R and SHEAVES(X), respectively. Conclude that D(mod-R) g
Dmod_R(MO&R)  and D(Sheaves(X)) g Dsheaves(x)(SHEAVES(X)).

Exercise 10.4.5 Here is a construction of D(d) when A is mod-R, valid
whenever A has enough projectives and satisfies (AB5). It is based on the
construction of CW spectra in algebraic topology [LMS]. Call a chain complex
C cellular if it is the increasing union of subcomplexes C,,, with CO = 0, such
that each quotient C,,/C+l is a complex of projectives with all differentials
zero. Let Kcell denote the full subcategory of K(d) consisting of cellular
complexes. Show that

1. For every X there is a quasi-isomorphism C + X with C cellular.
2. If C is cellular and X is acyclic, then every map C --+ X is null-

homotopic.
3. If C is cellular and f: X + Y is a quasi-isomorphism, then

f* : HOmK(d)(C,  X> Z HomK(d)(C,  Ií>.

4. (Whiteheadís Theorem) If f: C + D is a quasi-isomorphism of cellular
complexes, then f is a homotopy equivalence, that is, C E D in K(d).

5. Kcelt is a localizing triangulated subcategory of K(d).
6. The natural map is an equivalence: Kcelt E D(d).

Exercise 10.4.6 Let R be a noetherian ring, and let M(R) denote the category
of all finitely generated R-modules. Let Dfs(  R) denote the full subcategory of

D(mod-R) consisting of complexes A whose cohomology modules Hí(A) are
all finitely generated, that is, the category DM(R)(~~~-R)  of exercise 10.4.3.
Show that Dra(R)  is a triangulated category and that there is an equivalence

D-(M(R))  Z D,(R). Hint: M(R) is a Serre subcategory of mod-R (exer-

cise 10.3.2).

10.5 Derived Functors

There is a category of triangulated categories; a morphism F: K -+ Kí of
triangulated categories is a (covariant) additive functor that commutes with the
translation functor T and sends exact triangles to exact triangles. Morphisms
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are sometimes called covuriant &functors;  a morphism KîP  -+ Kí is of course
a contravariant &functor.

For example, suppose given an additive functor F: A + 23 between two
abelian categories. Since F preserves chain homotopy equivalences, it extends
to additive functors Ch(d) -+ Ch(B) and K(d) -+ K(B). Since F commutes
with translation of chain complexes, it even preserves mapping cones and ex-
act triangles. Thus F: K(d) -+ K(B) is a morphism of triangulated categories.

We would like to extend F to a functor D(d) -+ D(D). If F:d + I3 is
exact, this is easy. However, if F is not exact, then the functor K(d) + K(B)
will not preserve quasi-isomorphisms, and this may not be possible. The thing
to expect is that if F is left or right exact, then the derived functors of F will
be needed to extend something like the hyper-derived functors of F.

Our experience in Chapter 5, section 7 tells us that the right hyper-derived
functors RíF  work best if we restrict attention to bounded below cochain
complexes. With this in mind, let K denote K+(d) or any other localizing
triangulated subcategory of K(d), and let D denote the full subcategory of the
derived category D(d) corresponding to K.

Definition 10.51 Let F: K + K(B) be a morphism of triangulated cate-
gories. A (total) right derived functor of F on K is a morphism RF: D +
D(B) of triangulated categories, together with a natural transformation 6 from
q F: K -+ K(B) + D(B) to (RF)q: K -+ D + D(B) which is universal in
the sense that if G: D + D(B) is another morphism equipped with a natural
transformation { : q F =+ Gq, then there exists a unique natural transformation
7]: RF + G so that {A = 7jqA o &4 for every A in D.

This universal property guarantees that if RF exists, then it is unique up to
natural isomorphism, and that if Kí c K, then there is a natural transformation
from the right derived functor RíF on Dí to the restriction of RF to Dí. If there
is a chance of confusion, we will write Rb F, R+ F, RB F, and so on for the
derived functors of F on Kb(d), K+(d), Ka(d), etc.

Similarly, a (total) left derivedfunctor of F is a morphism LF: D + D(B)
together with a natural transformation 4 : (L F)q + q F satisfying the dual uni-
versal property (G factors through n: G =+ LF). Since LF is R(FîVí,  where
FOP:  KîP  -+ K(Z?ëp),  we can translate any statement about RF into a dual
statement about LF.

Exact Functors 10.5.2  If F: A + B is an exact functor, F preserves quasi-
isomorphisms. Hence F extends trivially to F: D(d) --+ D(B). In effect, F is
its own left and derived functor. The following two examples generalize this
observation.
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Example 10.5.3 Let K+(Z) denote the triangulated category of bounded be-
low complexes of injectives. We saw in 10.4.8 that every quasi-isomorphism
in K+(I)  is an isomorphism, so K+(I)  is isomorphic to its derived category

D+(Z).  The functor qFq_ë:  D+(I) 2 K+(z) 5 K+(B)  + D+(a)  satisfies
q F 2 (q Fq-ë)q,  so it is both the left and right total derived functor of F.

Similarly, for the category K-(P) of bounded above cochain complexes of
projectives, we have K-(P) E D-(P). Again, q Fq-’ is both the left and right
derived functor of F.

Definition 10.5.4 Let F: K + K(B) be a morphism of triangulated cate-
gories. A complex X in K is called F-acyclic if F(X) is acyclic, that is, if
Hí(  FX) S 0 for all i. (Compare with 2.4.3.)

Example 10.55 (F-acyclic complexes) Suppose that K is a triangulated
subcategory of K(d) such that every acyclic complex in K is F-acyclic. If
s: X + Y is a quasi-isomorphism in K, then cone(s) and hence F(cone(s))
is acyclic. Since F preserves exact triangles, the cohomology sequence shows
that F(s)* : H*(FX) Z H*(FY), that is, that F(s) is a quasi-isomorphism.
By the universal property of the localization D = Q-ëK  there is a unique
functor Q-ëF  from D to D(B)  such that q F = (Q-’ F)q. Once again, Q-l  F
is both the left and right derived functor of F.

Existence Theorem 10.5.6 Let F: K+(d) + K(a) be a morphism of trian-
gulated categories. If A has enough injectives, then the right derived functor
R+F exists on D+(d), and if I is a bounded below complex of injectives, then

R+F(I)  E qF(Z)

Dually, cf A has enough projectives, then the lef derived functor L-F exists
on D-(d), and if P is a bounded above cochain complex of projectives, then

L-F(P) E qF(P).

Proof Choose an equivalence U:D+(d) 5 K+(Z) inverse to the natural

map T: K+(z) --% D+(d) of 10.4.8, and define RF to be the composite
qFV:

D+(d) 3 K+(z) -5 K+(B) & D+(a).

To construct c we use the natural isomorphism of 10.4.7

Homo+(A)(qX, TUqX)  2 HomK+(A)(X,  UqX).
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Under this isomorphism there is a natural map fx: X -+ UqX in K+(A) cor-
responding to the augmentation r]: qX + T UqX in D+(d). We define 6x to
be the natural transformation qF(fx):qF(X) + qF(UqX) S (qFU)(qX).
It is not hard to see that c has the required universal property, making
(RF, 6) into a right derived functor of F. As usual, the dual assertion that
the composite

D-(d) 5 K-(P) 5 K-(B) 4 D-(B)

is a left derived functor of F follows by passage to Fop. 0

Corollary 10.57  Let F: A -+ l3 be an additive jiinctor between abelian cat-
egories.

I. Zf A has enough injectives, the hyper-derived functors E%ëF(X)  are the
cohomology of R F (X) : RíF(X)  2 HíR+F(X)foraZZi.

2. Zf A has enough projectives, the hyper-derived functors O-i  F (X) are the
cohomology of L F (X) : [Li F(X) Z @L-F(X) for all i.

Remark 10.5.8  The assumption in 5.7.4 that F be left or right exact was
not necessary to define Iw’ F or II-i  F; it was made to retain the connection
with F. Suppose that we consider an object A of A as a complex concen-
trated in degree zero. The assumption that F be left exact is needed to ensure
that the RíF  (A) are the ordinary derived functors RíF  (A) and in particu-
lar that RíF(A)  = F(A). Similarly, the assumption that F be right exact is
needed to ensure that iLi F(A) is the ordinary derived functor Li F(A), and that
LoF(A) = F(A).

Exercise 10.51  Suppose that F: K+(d) -+ K(C) is a morphism of triangu-
lated categories and that t3 is a Serre  subcategory of A. If A has enough in-
jectives, show that the restriction of R+F to D;(d) is the derived functor

Rs F. If in addition f? has enough injectives, which are also injective in A, this

proves that the composition D+(B) + D+(d) 2 D+(C) is the derived func-
tor R+F(B of the restriction F(B  of F to x3, since we saw in exercise 10.4.3
that in this case D+(B) E D;(d).

Generalized Existence Theorem 10.59  ([HartRD, 1.5.11)  Suppose that K’
is a triangulated subcategory of K such that

I. Every X in K has a quasi-isomorphism X + Xí to an object
of Kí .
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2. Every exact complex in Kí is F-acyclic (10.54).

Then Dí 1\ D and RF: D Z D' % D(B) is a right derivedfunctor  of F.

By (1) and 10.3.14, Kí is localizing and Dí % D. Now modify the
proof of the Existence Theorem 10.5.6, using F-acyclic complexes. 0

Definition 10.5.10 Let F: A + I? be an additive functor between abelian cat-
egories. When A has enough injectives, so that the usual derived functors RíF

(of Chapter 2) exist, we say that F has cohomological dimension n if R” F = 0
for all i > n, yet RîF  # 0. Dually, when A has enough projectives, so that the
usual derived functors Li F exist, we say that F has homological dimension II
if Li F = 0 for all i > n, yet L, F # 0.

Exercise 10.52  If F has finite cohomological dimension, show that every
exact complex of F-acyclic objects (2.4.3) is an F-acyclic complex in the
sense of 105.4.

Corollary 10.5.11 Let F: A + t3 be an additive functor If F hasfinite  coho-
mological dimension n, then RF exists on D(d), and its restriction to D+(d)
is R+F. Dually, if F has$nite  homological dimension n, then LF exists on
D(d), and its restriction to D-(d) is L-F.

Proof Let Kí be the full subcategory of K(d) consisting of complexes of F-
acyclic objects in A (2.4.3). We need to show that every complex X has a
quasi-isomorphism X + Xí with Xí a complex of F-acyclic objects. To see
this, choose a Cartan-Eilenberg resolution Xí + I” and let tl be the double
subcomplex of I obtained by taking the good truncation tjn (I Pí)  of each col-
umn (1.2.7). Since each XP + ZP’  is an injective resolution, each rjn (ZPí)  is a
finite resolution of XP by F-acyclic objects. Therefore Xí = Tot(tZ)  is a chain
complex of F-acyclic objects. The bounded spectral sequence HpZP(rZ) =k

HP+q(Xí)  degenerates to yield H*(X) -% H*(Xí),  that is, X + Xí is a
quasi-isomorphism. 0

10.6 The Total Tensor Product

Let R be a ring. In order to avoid notational problems, we shall use the letters
A, B, and so on to denote cochain complexes of R-modules. For each cochain
complex A of right R-modules the total tensor product complex 2.7.1 is a
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functor F(B) = Tot@(A  @R B) from K(R-mod) to K(Ab). Since R-mod has
enough projectives, its derived functor L-F: D-(R-mod)  + D(Ab) exists by
10.5.6.

Definition 10.6.1 The total tensor  product  of A and B is

A G& B = L- Tot@(A  @)R  -)B.

Lemma 10.6.2 If A, Aí, and B are bounded above cochain complexes and
A + Aí is a quasi-isomorphism, then A @I;  B 2 Aí @i B.

Proof We may change B up to quasi-isomorphism to suppose that B is a
complex of flat modules. In this case A 8: B is Tot@(A  ë8~  B) and Aí C3$ B
is Tot@(A’  @R B) by 10.55. Now apply the Comparison Theorem 5.2.12 to
E;ë(A)  -+ Epí(Aí),  where

Ef4(A) = Hq(A) @ëR  BP j HP+q(A 8: B).

The spectral sequences converge when A, Aí, and B are bounded above 5.6.2.
0

Theorem 10.6.3 The total tensor product is a functor

GO;:  D-(mod-R)  x D-(R-mod)  + D-(Ab).

Its cohomology is the hypertor of 5.7.8:

TorF(A,  B) 2 H-ë(A  18: B).

Proof For each fixed B, the functor F(A) = A GO: B from K-(mod-R)  to
D-(Ab) sends quasi-isomorphisms to isomorphisms,  so F factors through the
localization D-(mod-R)  of K-(mod-R).  If P and Q are chain complexes
of flat modules, then by definition the hypertor groups Torf(P, Q) are the
homology of Tot@  P @R Q. Reindexing the chain complexes as cochain com-
plexes, the cochain complex Tot@(  P ë8~  Q) is isomorphic to P 8: Q. 0

Corollary 10.6.4 IfA and B are R-modules, the usual Tor-group Torf(A,  B)
of Chapter 3 is- H-ë(A 8: B), where A and B are considered as cochain
complexes in degree zero.

Exercise 10.6.1 Form the derived functor LTot@(-  @R B) and show that
A g$ B is naturally isomorphic to L- Tot@(-  @R B) A in D(Ab).  This iso-
morphism underlies the fact that hypertor is a balanced functor (2.7.7).
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Exercise 10.6.2 If A is a complex of RI-R bimodules,  and B is a complex
of R-R2  bimodules, A @R B is a double complex of Rl-R2 bimodules. Show
that the total tensor product may be refined to a functor

& : D-(RI-mod-R)  x D-(R-mod-R2)  + D-(RI-mod-R2).

By ìrefineî we mean that the composition to D(Ab) induced by the usual
forgetful functor is the total tensor product in D(Ab). Then show that if R is a
commutative ring, we may refine it to a functor

~23: : D- (R-mod) x D- (R-mod) + D- (R-mod),

and that there is a natural isomorphism A & B 2 B 18: A.

Remark 10.6.5 (see [Ha&D, 11.41) If X is a topological space with a sheaf
Ox of rings, there is a category of Ox-modules [Hart]. This category has
enough flat modules (see [Hart, exercise 111.6.4]),  even though it may not
have enough projectives, and this suffices to construct the total tensor product
& ~$3:~  .F of complexes of C&-modules.

10.61 Ring Homomorphisms and L f *

10.6.6 Let f: R + S be a ring homomorphism. By the Existence Theorem
105.6, the functor f* = - 8.R S from R-modules to S-modules has a left-
derived functor

Lf* = L(- @)R  S) : D-(mod-R)  + D-(mod-S).

The discussion in 5.7.8 shows that the hypertor groups are

TorF(A, S) = lLif*(A)  E H-ë(Lf*A).

If S has finite flat dimension n (4.1.1),  then f* has homological dimen-
sion n, and we may extend the derived functor Lf* using 10.5.11 to Lf*:
D(mod-R)  + D(mod-S).

The forgetful functor f*: mod-S -+ mod-R is exact, so it ìisî its own de-
rived functor f*: D(moc-S)  -+ D(mod-R). The composite f,(Lf*)A is the
total tensor product A & S because, when A is a bounded above complex of
flat modules, both objects of the derived category are represented by A @R S.
We will see in the next section that f* (= Rf,) and Lf* are adjoint functors
in a suitable sense.
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Remark If we pass from rings to schemes, the map f reverses direction, going
from Spec(S) to Spec(R).  This explains the use of the notation f*, which
suggests a covariant functor on Spec(R).  Of course f* is not always exact
when we pass to more general schemes, and one needs to replace f* by Rf,;
see [HartRD, 11.5.51.

Lemma 10.6.7 If f: R + S is a commutative ring homomorphism, there is a
natural isomorphism in D-(mod-S)  for every A, B in D-(mod-R):

Lf*(A) C$ Lf*(B)  -% Lf*(A  & B).

proof Replacing A and B by complexes of flat R-modules, this is just the
natural isomorphism (A 8í~  S) 8s (S @R B) E (A @R B) @R s. 0

Exercise 10.6.3 (finite Tor-dimension) The Tor-dimension of a bounded
complex A of right R-modules is the smallest 12 such that the hypertor
Tory  (A, B) vanish for all modules B when i > n. If A is a module, the Tor-
dimension is just the flat dimension of 4.1.1.

1. Show that A has finite Tor-dimension if and only if there is a quasi-
isomorphism P + A with P a bounded complex of flat R-modules.

2. If A has finite Tor-dimension, show that the derived functor A C$ - on
D-( R-mod) extends to a functor

L(A@R):  D(R-mod) 4 D(Ab).

3. Let f: R -+ S be a ring map, with S of finite flat dimension over R.
Show that the forgetful functor f*: Db(mod-S)  + Db(mod-R)  sends
complexes of finite Tor-dimension over S to complexes of finite Tor-
dimension over R .

10.6.2 The Derived Functors of r and fL

10.6.8 Let X be a topological space, and I the global sections functor
from Sheaves(X) (sheaves of abelian groups) to Ab; see 2.5.4. For sim-
plicity, we shall write D(X), D+(X),  and so on for the derived categories
D(Sbeaves(X)),  D+(Sheaves(X)),  and so on. By 2.3.12 the ca tegory
Sheaves(X) has enough injectives. Therefore r has a right-derived functor
Rfr: D+(X)  + D+(Ab),  and for every sheaf F the usual cohomology func-
tors Hí(X,  3) of 2.5.4 are the groups Hí(R+r(F)).  More generally, if F is



398 The Derived Category

a bounded below complex of sheaves on X, then the hypercohomology groups
of 5.7.10 are given by:

!@(X,  F*)  E HíR+I-(F*).

In algebraic geometry, one usually works with topological spaces that are
noetherian (the closed subspaces satisfy the descending chain condition) and
have finite Krull dimension II (the longest chain of irreducible closed subsets
has length n). Grothendieck proved in [Tohuku, 3.6.51 (see [Hart, 111.2.71) that
for such a space the functors Hí(X,  -) vanish for i > n, that is, that r has
cohomological dimension II. As we have seen in 10.5.11, this permits us to
extend Rfr to a functor

RI: D(X) -+ D(Ab).

Now let f: X + Y be a continuous map of topological spaces. Just as for
r, the direct image sheaf functor f* (2.6.6) has a derived functor

Rf,: D+(X) --+ D+(Y).

If .F is a sheaf on X, its higher direct image sheaves (2.6.6) are the sheaves

Rí&(F)  = HíRf,(F)

When X is noetherian of finite Krull dimension, the functor f* has finite
cohomological dimension because, by [Hart, 111.8.11, Ríf,(.F)  is the sheaf on
Y associated to the presheaf sending U to Hi (f-ë(U), F). Once again, we
can extend Rf, from D+(X) to a functor Rf,: D(X) -+ D(Y).

Rr  is just a special case of Rf,. Indeed, if Y is a point, then Sheaves(Y) =
Ab and I is f*; it follows that RI- is Rf..

10.7 Ext and RHom

Let A and B be cochain complexes. In 2.7.4 we constructed the total Horn
cochain complex Horn.(A) B), and observed that H” Horn.(A) B) is the group
of chain homotopy equivalence classes of morphisms A + B[-n]. That is,

HomK(d)(A,  TîB)  = Hn(Homí(A,  B)).

Both Hom.(A,  -) and Hom.(-,  B) are morphisms of triangulated functors,
from K(d) and K(d)ëp  to K(Ab), respectively. In fact, Horn.  is a bimorphism

Horn. : K(d)ìp  x K(d) + K(Ab).
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(Exercise!) In this section we construct an object RHom(A, B) in the derived
category D(A) and prove that if A and B are bounded below, then

HomD(d)(A, TnB) = Hn(RHom(A,  B)).

Since D+(A) is a full subcategory of D(A), this motivates the following.

Definition 10.7.1 Let A and B be cochain complexes in an abelian category
A. The nth hyperext of A and B is the abelian group

Extî(A,  B) = HOmD(&(A, TîB).

Note that since D(A) is a triangulated category, its Horn-functors ExP(A,  -)
and Extî(-,  B) are cohomological functors, that is, they convert exact trian-
gles into long exact sequences (10.23).  Since K(A) is a triangulated category,
its Horn-functors Hn  Hom,(A,  -) and H” Hom.(-,  B) are also cohomologi-
cal functors, and there are canonical morphisms

HnHomí(A,  B) = HomK(d)(A,  TnB) + HomD(d)(A, TîB)  = Extî(A,  B).

Definition 10.7.2 Suppose that A has enough injectives, so that the derived
functor R+ Hom.(A,  -): D+(A) + D(Ab) exists for every cochain complex
A. We write RHom(A, B) for the object R+Hom.(A,  -)B of D(Ab).

Lemma 10.7.3 Zf A + Aí is a quasi-isomorphism, then RHom(Aí, B) 3
RHom(A, B).

Proof We may change B up to quasi-isomorphism to suppose that B is a
bounded below cochain complex of injectives. But then RHom(Aí, B) Z
Hom.(Aí,  B) is quasi-isomorphic to RHom(A, B) 2~ Hom.(A,  B), because
we saw in 10.4.7 that

H” Hom.(Aí,  B) = HomK(d)(Aí,  TnB)

2 HOtnD(~j(k,  T” B) 2 HOtQ(&ëi,  Tn B)

Y HomK(d)(A,  TnB) = H” Hom.(A,  B). 0

Theorem 10.7.4 If A has enough injectives, then RHom  is a bifunctor

RHom: D(A)ìP  x D+(A) -+ D(Ab).

Dually, if A has enough projectives, then RHom is a bifunctor

RHom:  D-(A)ëP  x D(A) -+ D(Ab).
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In both cases, we have Extn(A, B) &Z Hî(RHom(A,  B)).

Proof The lemma shows that, for each fixed B, the functor F(A) = RHom(A,
B) from K(d)OP  to D(Ab) sends quasi-isomorphisms to isomorphisms, so
F factors through the localization D(d)ëp  of K(d)Op.  Therefore, to com-
pute Hí(RHom(A,  B)) we may suppose that B is a bounded below cochain
complex of injectives. But then by the construction of RHom(A, B) as
Hom.(A,  B) we have

HîRHom(A,  B) = HîHom,(A,  B) = HomK(d)(A, B) = Homn(d)(A,  B). 0

Corollary 10.7.5 If A has enough injectives, or enough projectives, then for
any A and B in A the group  Ext” (A, B) is the usual Ext-group of Chapter 3.

Proof If B + I is an injective resolution, then the usual definition of Extn(A,
B) is H” Hom(A, I) = H” Tot Hom(A, I) g H” RHom(A, B). Similarly, if
P + A is a projective resolution, the usual Extn(A,  B) is Hn  Hom(P, B) =
Hn RHom(A, B). 0

Exercise 10.7.1 (balancing RHom) Suppose that A has both enough injec-
tives and enough projectives. Show that the two ways of defining the functor
RHom:  D-(d)ëp  x D+(d)  + D+(Ab)  are canonically isomorphic.

Exercise 10.7.2 Suppose that A has enough injectives. We say that a bounded
below complex B has injective dimension n if Extí(A,  B) = 0 for all i > n and
all A in A, and Extn(A,  B) # 0 for some A.

1. Show that B has finite injective dimension + there is a quasi-isomorph-
ism B + Z into a bounded complex I of injectives.

2. If B has finite injective dimension, show that RHom(-, B): D(d)Op  +
D(Ab) of 10.7.4 is the derived functor 10.51 of Hom(-, B).

10.7.1 Adjointness  of L f * and f*

We can refine the above construction slightly when A is the category R-mod
of modules over a commutative ring R. For simplicity we shall write D(R),
D+(R), and so on for the derived categories D(R-mod), D+(R-mod),  and
so on. Write Homh(A,  B) for Hom,(A,  B), considered as a complex of R-
modules. If we replace D(Ab) by D(R) in the above construction, we obtain
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an object RHom&A,  B) in D(R) whose image under D(R) + D(Ab) is the
unrefined RHom(A, B) of 10.7.2.

Suppose now that f: R + S is a map of commutative rings. The forget-
ful functor f*: mod-S + mod-R is exact, so it is its own derived functor
f*: D(S) -+ D(R). If A is in D(S), the functor f* RHoms(A,  -): D+(S) --+
D(R) is the right derived functor of f* Homs(A, -) because if I is a complex
of injectives, then f* RHoms(A,  I) = f* Homs(A, I). The universal property
of derived functors yields a natural map:

(t) [: f* RHoms(A,  B) -+ RHomR(f*A, f*R).

Theorem 10.7.6 If f: R + S is a map of commutative rings, then the functor
L f *: D-(R)  -+ D-(S)  i s  l e f t  adjoint to f*:  D+(S)  -+ D+(R).  That is, for A in
D-(R)  and B in D+(S) there is a natural isomorphism

(*> HomD(s)(Lf *A B) 5 HomD(R)(A,  f,B).

The adjunction morphismsare 7]A:  A + f*Lf  *A and&B:Lf  *(f,B)  -+ B, re-
spectively. Moreover, the isomorphism (*) comes from a natural isomorphism

t : f,RHoms(Lf*A,  B) -% RHomR(A,  f,B).

Proof Since f* is exact, f*L f * is the left derived functor of f* f *; the univer-
sal property gives a map VA:  A + L(f, f *)A = f,Lf*A.  Using (1_), this gives
the map

t : f,RHoms(Lf*A,  B) L RHomR(_f,Lf*A,  .W) s RHom&, f*R).

To evaluate this map, we suppose that A is a bounded above complex of
projective R-modules. In this case the map t is the isomorphism

Tot(f,  Homs(A  @R S, B)) Z Tot(HomR(A,  I-IomG,  R)))

= Tot(HomR(A,  f,B)).

Passing to cohomology, t induces the adjoint isomorphism (*). 0

Remark For schemes one needs to be able to localize the above data to form
the Ox-module analogue of RHomR. By 3.3.8 one needs A to be finitely pre-
sented in order to have an isomorphism S-’  HomR(A,  B) G HOms-lR(S-ëA,

S-’ B). Thus one needs to restrict A to a subcategory of D(X) which is locally
the Dg(R)  of exercise 10.4.6; see [HartRD,  11.5.101  for details.
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Exercise 10.7.3 Let X be a topological space. Given two sheaves I, 3 on
X, the sheaf horn is the sheaf ëFlom(&,  3) is the sheaf on X associated to the
presheaf sending U to Hom(E]U,  3]U);  see [Hart, exercise 11.1.151.  Mimic
the construction of RHom to obtain a functor

RíHom:  D(X)ë!’  x D+(X) + D(X).

Now suppose that f: X + Y is a continuous map, and that X is noetherian
of finite Km11 dimension. Generalize (t) for E in D-(X), F in D+(X) to
obtain a natural map in Df (Y) :

C: Rf, VWomxV,  22) + R?-lomdR.fX,  Rf,F).

10.8 Replacing Spectral Sequences

We have seen that the objects RF(A) in the derived category are more flex-
ible than their cohomology groups, the hyper-derived functors RíF(A)  =
HíRF(A).  Of course, if we are interested in the groups themselves, we
can use the spectral sequence El’ = (RJíF)(WA)  + RJí+qF(A)  of 5.7.9.
Things get more complicated when we compose two or more functors, be-
cause then we need spectral sequences to compute the &-terms  of other
spectral sequences.

Example 10.8.1 Consider the problem of comparing the two ways of form-
ing the total tensor product of three bounded below cochain complexes A E
D-(mod-f?),  B E D-(R-mod-S),  and C E D-(S-mod).  Replacing A and C
by complexes of projectives, we immediately see that there is a natural iso-
morphism

(*) A 8; (B @X$  C) z (A & B) @I:  C.

However, it is quite a different matter to try to establish this quasi-isomorph-
ism by studying the two hypertor modules To$ (A, B) and Torf (B, C) !

Cf. [EGA, 111.6.8.31.  Another way to establish the isomorphism (*) is to set
F = TOt(A@R)  and G = Tot(@&).  Since FG % GF, (*) follows immedi-
ately from the following result.

Composition Theorem 10.8.2 Let K c K(d) and Kí c K(B) be localizing
triangulated subcategories, and suppose given two morphisms of triangulated
categories G: K + Kí, F: Kí -+ K(C). Assume that RE RG, and R(FG)
exist, with RF(D) E Dí. Then:
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1. There is a unique natural transformation < = <F,G:  R(FG) =+ RF o
RG, such that the following diagram commutes in D(C) for each A in K.

q F G ( A )  2 (RF)(qGA)

1 CFG 1 EC

R(FG)(qA) 2 @WWWqA)

2. Suppose that there are triangulated subcategories K~J  C K, Kb E Kí sat-
isfying the hypotheses of the Generalized Existence Theorem 10.5.9 for
G and F, and suppose that G sends Ko to K& Then C is an isomorphism

{ : R(FG) E (RF) o (RG).

Proof Part (1) follows from the universal property 10.5.1 of R(FG). For (2)
it suffices to observe that if A is in Ko, then

R(FG)(qA)  = qFG(A)  Z RF(q(GA)) 2 RF(RG(qA)). 0

Corollary 10.8.3 (Grothendieck spectral sequences) Let A, B, and C be
abelian categories such that both A and I3 have enough injectives, and sup-
pose given left exact functors G: A + I3 and F: t3 + C.

If G sends injective objects of A to F-acyclic objects of B, then

< : R+(FG) z (R+F) o (R+G).

If in addition G sends acyclic complexes to F-acyclic complexes, and both
F and G have finite cohomological dimension, then R(FG): D(d) + D(C)
exists, and

<: R(FG) z (RF) o (RG).

In both cases, there is a convergent spectral sequence for all A:

E2pq  = (RpF)(RqG)(A)  =+ RP+q(FG)(A).

If A is an object of A, this is the Grothendieck spectral sequence of 5.8.3.
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Proof The hypercohomology spectral sequence 5.7.9 converging to
(RP+qF)(RG(A))  has E[’ term (RPF)FP(RG(A)) (RPF)(WG(A)).

0

Remark 10.8.4 Conceptually, the composition of functors R(FG) 2 (RF) o
(RG) is much simpler than the original spectral sequence. The reader having
some familiarity with algebraic geometry may wish to glance at [EGA, 111.61,
and especially at the ìsix spectral sequencesî of 111.6.6 or 111.6.7.3, to appreci-
ate the convenience of the derived category.

Exercise 10.8.1 If F, G, H are three consecutive morphisms, show that as
natural transformations from R(FGH) to RF o RG o RH we have

~T,H~~F,GH  =CF,G O<FG,H.

In the rest of this section, we shall enumerate three consequences of the
Composition Theorem 10.8.2, usually replacing a spectral sequence with an
isomorphism in the derived category. We will implicitly use the dual formula-
tion L F o LG 2 L (FG) of the Composition Theorem without comment.

10.8.1 The Projection Formula

10.8.5 Let f: R + S be a ring homomorphism, A a bounded above com-
plex of right R-modules, and B a complex of left S-modules. The func-
tor f*: mod-R + mod-S sends A to A @R S, so it preserves projectives.
Since f*(A) 8s B = (A 8.R S) @s B g A @R f,B, the Composition Theorem
10.8.2 yields

(*)

in D(Ab). If S is commutative, we may regard B as an S-S bimodule and f* B
as an R-S bimodule. As we saw in exercise 10.6.2, this allows us to interpret
(*) as an isomorphism in D(S). From the standpoint of algebraic geometry,
however, it is better to apply f* to obtain the following isomorphism in D(R):

f&f*(A) @k B) = A ~3: (f3).

This is sometimes called the ìprojection formulaî; see [HartRD,  11.561  for the
generalization to schemes. The projection formula underlies the ìBase change
for Torî spectral sequence 5.6.6.
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Exercise 10.8.2 Use the universal property of 8: to construct the natural

map Lf*(A)  @k B + A @k (f*B).

10.8.6 Similarly, if g: S + T is another ring homomorphism, we have
(gS)* E g*f*.  The Composition Theorem 10.8.2 yields a natural isomor-
phism

(Lg*)(Lf*)A  2 L(gf)*A.

This underlies the spectral sequence Torg  (Tort (A, S) , T) =+ Torf,,  (A, T) .

10.8.2 Adjointness of BL and RHom

Theorem 10.8.7 If R is a commutative ring and B is a bounded above com-
plex of R-modules, then @B:  D-(R) + D-(R)  is left adjoint to the functor
RHomR(B,  -): D+(R)  -+ D+(R).  That is, for A in D-(R) and C in D+(R)
there is a natural isomorphism

HomD(R)(A,  RHomdB, C>> Z HOmD(R)(A 63; B, C).

This isomorphism arises by applying El0 to the isomorphism

ct> RHomR(A,  RHomR(B,  C)) 5 RHomR(A  @k B, C)

in Dí(R). The adjunction morphisms are VA: A + RHomR (B, A 63: B) and
E C: RHomR(B,  C) @k B -+ C.

Proof Fix a projective complex A and an injective complex C. The functor
A @I:  - preserves projectives, while the functor HomR(-, C) sends pro-
jectives to injectives. By the Composition Theorem 10.8.2, the two sides
of (t) are both isomorphic to the derived functors of the composite functor
Hom(A, Hom(B,  C)) ZG Hom(A @R B, C). 0

Exercise 10.8.3 Let R be a commutative ring and C a bounded complex of
finite Tor dimension over R (exercise 10.6.3). Show that there is a natural
isomorphism in D(R):

RHomR(A,  B) 63 k C 5 RHomR(A,  B @I  k C).
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Here A is in D(R) and B is in D+(R).  For the scheme version of this result,
see [HartRD,  115.141.

We now consider the effect of a ring homomorphism f: R + S upon
RHom.  We saw in 2.3.10 that HomR(S, -):  mod-R + mod-S preserves in-
jectives. Therefore for every S-module complex A, and every bounded below
R-module complex B, we have

RHoms(A,  RHomR(S,  B)) S RHomR(f,A, B).

This isomorphism underlies the ìBase change for Extî spectral sequence of
exercise 5.6.3.

Exercise 10.8.4 Suppose that S is a flat R-module, so that f * is exact and
Lf* g f*. Suppose that A is quasi-isomorphic to a bounded above complex
of finitely generated projective modules. Show that we have a natural isomor-
phism for every B in D+(R):

Lf* RHomR(A,  B) -+ RHoms(Lf*A,  Lf*B).

Exercise 10.8.5 (LyndonkIochschild-Serre)  Let H be a normal subgroup of
a group G. Show that the functors AH = A QD~H  ?? and AH = HOIIlH(??,  A) of
Chapter 6 have derived functors A @k Z: D ( G - m o d )  +a n d
RHomH@, D ( G - m o d )  + D(G/H-mod)  s u c h  t h a t

A @k Z 2 ( A  @k Z) &=j,H  Z and

RHomo(Z,  A) g RHomo,H(Z,  RHomH(&  A)).

Use these to obtain the LyndotVHochschild-Serre  spectral sequences 6.8.2.

10.8.3 bray Spectral Sequences

10.8.8 Suppose that f: X --f Y is a continuous map of topological spaces. ’
We saw in 5.8.6 that f* p r e s e r v e s  i n j e c t i v e s  a n d  t h a t  t h e  L e r a y  s p e c t r a l
sequence

E;’ = HP(Y; Rqf+F-) j Hp+q(X;  3>
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arose from the fact that P(X,  F) is the composite I(Y, fJ). The Composi-
tion Theorem 10.8.2 promotes this into an isomorphism for every 3 in D+(X):

Rr(X,  3) S RI-(Y, Rf,3).

Of course, if X and Y are noetherian spaces of finite Krull dimension, then this
isomorphism is valid for every 3 in D(X).

We can generalize this by replacing r(Y, -) by g,, where g: Y -+ Z is
another continuous map. For this, we need the following standard identity.

Lemma 10.8.9 (gf),3 = g,(f*F)for every sheaf 3 on X.

Proof By its very definition (2.6.6),  for every open subset U of X we have

(gf)*F(U)  = F((gf)_ëU)

= F(f-ëg-ëU)  = (f*3)KíU)  = g*(f*fl(U). 0

Corollary 10.8.10 For every F in D+(X)  there is a natural isomorphism

R(gf)GI  2 RgdRf&=ë))

in D(Z). If moreover X and Y are noetherian of$nite  Krull dimension, then
this isomorphism holds for every F in D(X).

Exercise 10.8.6 If F is an injective sheaf, the sheaf horn ël-Lom(&,  _F) is r-
acyclic (ìflasqueî) by [Gode, 11.7.3.21.  For any two sheaves & and 3, show
that ?-lomx(&, LF)  E r(X, Hom(&,  a). Then use the Composition Theorem
10.8.2 to conclude that there is a natural isomorphism

RHom(&, 3) S (Rr) o R%om(E,  3)

of bifunctors from D-(X)ìP  x D+(X)  to D(Ab).

10.9 The Topological Derived Category

At the same time (1962-1963) as Verdier was inventing the algebraic notion
of the derived category [Verd], topologists (e.g., D. Puppe) were discovering
that the stable homotopy category D(S) was indeed a triangulated category.
In this last section we show how to construct this structure with a minimum
of topology, mimicking the passage from chain complexes to the homotopy
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category K(Ab) in section 10.1 and the localization from K(Ab) to the derived
category D(Ab). This provides a rich analogy between derived categories and
stable homotopy theory, which has only recently been exploited (see [Th] and
[Rob], for example).

Our first task is to define the category of spectra S. Here is the ìmodem”
(coordinatized) definition, following [LMS].

Definition 10.9.1 A spectrum E is a sequence of based topological spaces E,

and based homeomorphisms a,: E, -% QE,+t. A map of spectra f: E +
F is a sequence of based continuous maps fn: E, + Fn  strictly compatible
with the given structural homeomorphisms. As these maps are closed under
composition, the spectra and their maps form a category S. The sequence of
l-point spaces forms a spectrum *, which is the zero object in S, because
Homs(*,  E) = Homs(E,  *) = {point} for all E. The product E x F of two
spectra is the spectrum whose rrth space is E, x F,,.

Historically, spectra arose from the study of ìinfinite loop spaces;î Eo is an
infinite loop space, because we have described it as the p-fold loop space Eo g
WEp  for all p. The most readable reference for this is part III of Adamsí book
[A], although it is far from optimal on the foundations, which had not yet been
worked out in 1974.

Looping and Delooping 10.9.2 If E is a spectrum, we can form its loop
spectrum RE by setting (Q E)n = Q (E,), the structural maps being the
a(~,,). More subtly, we can form the delooping Q2-’  E by reindexing and
forgetting Eo: (SX’ E)n = E,+l. Clearly QWíE  = Q2-ë!2E  Z E, so f2 is a
automorphism of the category S. When we construct a triangulated structure
on the stable homotopy category, Q2-’  will become our ìtranslation functor.”

Example 10.9.3 (Sphere spectra) There is a standard map from the m-sphere
Sm to the QP” (put Sm at the equator of Smfl and use the longitudes). The
n-sphere spectrum S” is obtained by applying Qi and taking the colimit

(Sî),  = colim a’  Sn+p+i.
i-+00

Of course, to define the negative sphere spectrum Sn we only use i 1 -n.
The zero-th space of the sphere spectrum So is often written as SPS*.  Note
that our notational conventions are such that for all integers it and p we have
QPS” = sn-P.
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Definition 10.9.4 (The stable category) The homotopy groups of a spectrum
E are:

nnE=n,+i(Ei)  forizO,n+i>O.

These groups are independent of the choice of i, because for all m ni+l E, Z
ni(!YZE,).  We say that f : E -+ F is a weak homotopy equivalence if f induces
an isomorphism on homotopy groups. Let E denote the family of all weak
homotopy equivalences in S. The stable homotopy category, or topological
derived category D(S), is the localization %-ëS  of S at @.

Of course, in order to see that the stable category exists within our universe
we need to prove something. Mimicking the procedure of section 1 and sec-
tion 3, we shall first construct a homotopy category K(S) and prove that the
system W of weak homotopy equivalences form a locally small multiplicative
system in K(S) (10.3.6). Then we shall show that the homotopy category of
ìCW spectraî forms a localizing subcategory K(&w) of K(S) (10.3.12),  and
that we may take the topological derived category to be K(Scw).  This paral-
lels theorem 10.4.8, that the category D+(Ab)  is equivalent to the homotopy
category of bounded below complexes of injective abelian groups.

For this program, we need the notion of homotopy in S and the notion
of a CW spectrum, both of which are constructed using prespectra and the
ìspectrificationî functor Q203. Let SX denote the usual based suspension of a
topological space X, and recall that maps SX -+ Y are in l-l correspondence
with maps X -+ QY.

Definition 10.9.5 A prespectrum D is a sequence of based topological spaces
D, and based continuous maps S(D,) + Dn+t, or equivalently, maps D, +

QD,+t. If C and D are prespectra, a function f: C + D is a sequence of based
continuous maps fn: C, + D, which are strictly compatible with the given
structural maps. There is a category P of prespectra and functions, as well as a
forgetful functor S -+ P. A CWprespectrum  is a prespectrum D in which all
the spaces D, are CW complexes and all the structure maps SD,, + Dn+t are
cellular inclusions.

Warning: Terminology has changed considerably over the years, even since
the 1970s. A prespectrum used to be called a ìsuspension spectrum,î and the
present notion of spectrum is slightly stronger than the notion of
ìQ-spectrum,î in which the structural maps were only required to be weak
equivalences. Our use of ìfunctionî agrees with [A], but the category of CW
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prespectra in [A] has more morphisms than just the functions; see [A, p.1401
or [LMS, p.21  for details.

10.9.6 There is a functor 52í?  P -+ S, called ìspectrification.î It sends a
CW prespectrum D to the spectrum SFD whose & space is

(fiZOOD),  = colim sZíDn+i,
i-too

where the colimit is taken with respect to the iterated loops on the maps Dj -+
Q Dj+l. The structure maps (SP D), -+ (fYP D),+I are obtained by shifting
the indices, using the fact that Q commutes with colimits. The effect of 5P
on functions should be clear.

A CW spectrum is a spectrum of the form E = !PD for some CW prespec-
trum D. The full subcategory of S consisting of CW spectra is written as Sew.
Although the topological spaces E, of a CW spectrum are obviously not CW
complexes themselves, they do have the homotopy type of CW complexes.

Exercise 10.9.1 Show that LPE S E in S for every spectrum E.

Topology Exercise 10.9.2 If D is a CW prespectrum, show that the structure
maps D, + QD,,+l are closed embeddings. Use this to show that

Analogy 10.9.7 There is a formal analogy between the theory of spectra and
the theory of (chain complexes of) sheaves. The analogue of a presheaf is a
prespectrum. Just as the forgetful functor from sheaves to presheaves has a
left adjoint (sheafification), the forgetful functor from spectra to prespectra has
Q200  as its left adjoint. The reader is referred to the Appendix of [LMS] for
the extension of ?F’ to general spectra, as well as the verification that a200  is
indeed the left adjoint of the forgetful functor.

Just as many standard operations on sheaves (inverse image, direct sum,
cokernels) are defined by sheafification, many standard operations on spectra
(cylinders, wedges, mapping cones) are defined on spectra by applying fi200  to
the corresponding operation on prespectra. This is not surprising, since both
are right adjoint functors and therefore must preserve coproducts and colimits
by 2.6.10.

Example 10.9.8 (Coproduct) Recall that the coproduct in the category of
based topological spaces is the wedge vaXa, obtained from the disjoint union
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by identifying the basepoints. If (Da}  is a family of prespectra, their wedge
is the prespectrum whose nth space is (~0~)~  = v(D,),; it is the coproduct
in the category of prespectra. (Why?) Since Q200 preserves coproducts, v D, =
S2200[v(  D,),) is the coproduct in the category of spectra.

Example 10.9.9 (Suspension) The suspension SE of a spectrum E is Q200
applied to the prespectrum whose nrh space is SE,, and whose structure maps
are the suspensions of the structure maps SE,, -+ En+l.  Adams proves in
[A, 111.3.71  that the natural maps E, + SX(E,)  induce a weak homotopy
equivalence E -+ QSE,  and hence a weak homotopy equivalence

Definition 10.9.10 (Homotopy category) The cylinder spectrum cyl(E)  of
a spectrum E is obtained by applying LP to the prespectrum (I+  A E), =
[0, l] x E,/[O, l] x {*). Just as in ordinary topology, we say that two maps
of spectra fn, f): E -+ F are homotopic if there is a map h: cyl(E)  + F such
that the fi are the composites E Z {i} x E c-, cyl( E) -+ F. It is not hard to
see that this is an equivalence relation (exercise!).

We write [E, F] for the set of homotopy classes of maps of spectra; these
form the morphisms of the homotopy category K(S) of spectra. The full sub-
category of K(S) consisting of the CW spectra is written as K(Scw).

Exercise 10.9.3 Show that E x F and E v F are also the product and co-
product in K(S).

Proposition 10.9.11 K(S) is an additive category

Proof Since K(S) has a zero object * and a product E x F, we need only
show that it is an Ab-category (Appendix, A.4.1), that is, that every Hom-
set [E, F] has the structure of an abelian group in such a way that composi-
tion distributes over addition. The standard proof in topology that homotopy
classes of maps into any loop space form an abelian group proves this; one
splits cyl(F) into [0, 41 x F/ - and [i, l] x F/ - and concatenates loops.
We leave the verification of this to readers familiar with the standard proof. 0

Corollary 10.9.12 The natural map E v F + E x F is an isomorphism
in K(S).

The role of CW spectra is based primarily upon the two following funda-
mental results.
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Proposition 10.9.13 For each spectrum E there is a natural weak homotopy
equivalence C -+ E, with C a CW spectrum. In particular K(Scw)  is a lo-
calizing subcategory of K(S) in the sense of 10.3.12.

Proof Let Sing(X) denote the singular simplicial set (8.2.4) of a topological
space X, and ]Sing(X)]  + X the natural map. Since Sing(X)]  is a CW com-
plex, the cellular inclusions SISing(E,)]  L, ISing(SE,)]  c, ]Sing(E,+t)/
make ]Sing(E)] into a CW prespectrum and give us a function of prespec-
tra ISing(  E) I + E. Taking adjoints gives a map of spectra C + E, where
C = a200/Sing(E)].  Since n,(Sing(X)I  Z n,(X) for every topological space
X, we have

for all m and i. Since n,(C) Z colimi+oo n,+i (ISing(E,+i)  I by the topology
exercise 10.9.2, it follows that C --+ E is a weak homotopy equivalence. 0

Whiteheadís Theorem 10.9.14

1. If C is a CW spectrum, then for every weak homotopy equivalence
f: E -+ F of spectra (10.9.4) we have f* : [C, E] ?Z [C, F].

2. Every weak homotopy equivalence of CW spectra is a homotopy equiva-
lence (10.9.10),  that is, an isomorphism in K(S).

Proof See [A, pp.149-1501  or [LMS, p.301.  Note that (1) implies (2)  by
setting C = F. 0

Corollary 10.9.15 The stable homotopy category D(S) exists and is equiva-
lent to the homotopy category of CW spectra

D(S) 2 K(Scw).

Proof The generalities on localizing subcategories in section 3 show that
D(S) E W-ëK(Scw).  But by Whiteheadís Theorem we have K(Scw) =
W-ëK(Scw). 0

We are going to show in 10.9.18 that the topological derived category
D(S) E K(Scw)  is a triangulated category in the sense of 10.2.1. For this
we need to define exact triangles. The exact triangles will be the cofibration
sequences, a term that we must now define. In order to avoid explaining a tech-
nical hypothesis (ìcofibrantî) we shall restrict our attention to CW spectra.
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Mapping Cones 10.9.16 Suppose that u: E --, F is a map of spectra. The
sequence of topological mapping cones cone(u,)  = cone(&)  U, F,, form a
prespectrum (why?), and the mapping cone off is defined to be the spectrum
!Xí{cone(f,)).  Applying 52” to the prespectrum functions i,: F,, + cone(&)
and cone(f,)  -+ SE,, give maps of spectra i: F -+ cone(f) and j:cone(f>  +=
SE. The triangle determined by this data is called the Puppe sequence associ-
ated to f:

E  -% F --!-+ c o n e ( u )  & S E .

A cojibration sequence in K(Scw)  is any triangle isomorphic to a Puppe se-

quence. Since * + E 3 E + t is a Puppe sequence, the following ele-
mentary exercise shows that cofibration sequences satisfy axioms (TRl) and
(TR2).

Exercise 10.9.4 (Rotation) Use the fact that SE, is homotopy equivalent to
the cone of i,: F,, + cone( f,,) to show that SE G cone(i). Then show that

F & cone(u )  & S E
-su
- S F

is a cofibration sequence.

We say that a diagram of spectra is homotopy commutative if it commutes
in the homotopy category K(S).

Proposition 10.9.17 Every homotopy commutative square of spectra

E:F

If J-8

E í  5 F’

can be made to commute. That is, there is a homotopy commutative diagram

E: F

II l-2:

E  + cyl(u)

lf JR’

Eí -% F’
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in which the bottom square strictly commutes in S and the map 21 is a homo-
topy equivalence.

Proof Let cyl(uJ  denote the topological mapping cylinder of un (Chapter
1, section 5). The mapping cylinder spectrum cyl(u) is Q200  of the prespec-
trum [cyI(u,J}.  It is homotopy equivalent to F because the homotopy equiv-

alences F,, 5 cyl(u,) are canonical. The map cyl(E)  + Fí expressing the
homotopy commutativity of the square corresponds to a prespectrum function
from (cyl(EJ} to Fí; together with g they define a prespectrum function from
{cyl(u,)) to Fí and hence a spectrum map gí: cyl(u) -+ Fí. The inclusions of
E, into the top of cyl(un) give the middle row after applying fi200.  It is now
a straightforward exercise to check that the diagram homotopy commutes and
that the bottom square commutes. 0

Theorem 10.9.18 K(Scw)  is a triangulated category.

Proof We have already seen that axioms (TRl) and (TR2) hold. For (TR3) we
may suppose that C = cone(u) and Cí = cone(uí)  and that gu = uíf in S; the
map h is given by the naturality of the mapping cone construction.

It remains to check the octahedral axiom (TR4). For this we may assume
that the given triangles are Puppe sequences, that is, that Cí = cone(u), Aí =
cone(u), and Bí = cone(vu).  We shall mimic the proof in 10.2.4 that the
octahedral axiom holds in K(A). Define a prespectrum function (fn) from
{cone(u,)}  to [cone(v,u,)}  by letting fn be the identity on cone(A,)  and u,,
on B,. Define a prespectrum function (gn) from {cone(v,u,>]  to {cone(v,)]
by letting g, be cone(u,):  cone(A,)  + cone(&) and the identity on C. Man-
ifestly, these are prespectrum functions; we define f and g by applying QcO
to {fn} and {gn}. Since it is true at the prespectrum level, 8 is the composite

cone(u) & cone(vu>  L SA and x is the composite C 4 cone(vu)  --%
cone(u). (Check this!)

Since cone(f,)  is a quotient of the disjoint union of cone(cone(A,)),
cone(&), and Cn, the natural maps from cone( &) and C,, to cone&)  induce
an injection cone(v,)  c, cone(&).  As n varies, this forms a function of pre-
spectra. Applying fi2” gives a natural map of spectra y : cone(v) + cone(f)
such that the following diagram of spectra commutes in S:

Cí 2 Bí 5 cone(v)
(ri)i
+ SC’

Cí  -5 B’  -+ cone(f) ---+ SC í .
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To see that y is a homotopy equivalence, define q,,: cone(f,)  + cone(v,)  by
sending cone(&) and C, to themselves via the identity, and composing the
natural retract cone(cone(A,)) -+ cone(0 x A,) with cone(u,):  cone(A,)  +
cone(&). Since the pti are natural, they form a function of prespectra; ap-
plying Q2” gives a map of spectra 60: + c o n e ( v ) .  W e  l e a v e  i t  t o  t h e
reader to check that rpy y(o i s  h o m o t o p i c

(f, g, (Tj)i) is
a cofibration sequence (exact triangle), because it is isomorphic to the Puppe
sequence of f. 0

Geometric Realization 10.9.19 By the Dold-Kan correspondence (8.4. I),
there is a geometric realization functor from Ch(Ab)  to Sew.  Indeed, if A is a
chain complex of abelian groups, then the good truncation tA = tro(A) corre-
sponds to a simplicial abelian group, and its realization (t A 1 is a CW complex.
In the sequence

tA -+ rcone(A)  s\ t(A[-I]),

the map 6 is a Kan fibration (8.2.9, exercise 8.2.5). Since the mapping cone
is contractible (exercise 1.5. l), there is a weak homotopy equivalence 1 t A 1 --+
QltA[-111,  and its adjoint S(tA( + (tA[-l](  is a cellular inclusion. (Check
this!) Thus the sequence of spaces ItA[-n]l  form a CW prespectrum; ap-
plying S22co gives a spectrum. This construction makes it clear that the func-
tor ]r 1: Ch(Ab)  + SCW  sends quasi-isomorphisms to weak equivalences and
sends the translated chain complex A[n]  to PItAl. In particular, it induces a
functor on the localized categories ( t (: D(Ab) + D(S).

Vista 10.9.20 Let HZ denote the geometric realization ) t Zl of the abelian
group Z, regarded as a chain complex concentrated in degree zero. It turns
out that HZ is a ìring spectrumî and that D(Ab)  is equivalent to the stable
category of ìmodule spectraî over HZ. This equivalence takes the total tensor
product @ in D(Ab) to smash products of module spectra over HZ. See
[Rob] and (A. Elmendorf, I. Kriz, and J. P. May, ìEm  Modules Over E, Ring
Spectra,î preprint (1993)}.



Appendix A
Category Theory Language

This Appendix provides a swift summary of some of the basic notions of
category theory used in this book. Many of the terms are defined in Chapters 1
and 2, but we repeat them here for the convenience of the reader.

A.1 Categories

Definition A.l.l A category C consists of the following: a class obj(C) of
objects, a set Homc(A,  B) of morphisms for every ordered pair (A, B) of
objects, an identity morphism idA E Homc(A,  A) for each object A, and a
composition function Homc(  A, B) x Homc(  B, C) + Home (A, C) for every
ordered triple (A, B, C) of objects. We write f: A + B to indicate that f is
a morphism in Homc(A,  B), and we write gf or go f for the composition of
f: A + B with g: B + C. The above data is subject to two axioms:

Associativity  Axiom: (hg)f = h(gf)  for f: A + B, g: B -+ C, h: C -+ D
Unit Axiom: ids of = f = f o idA for f: A + B.

Paradigm A.1.2 The fundamental category to keep in mind is the category
Sets of sets. The objects are sets and the morphisms are (set) functions, that is,
the elements of Homseb(A,  B) are the functions from A to B. Composition of
morphisms is just composition of functions, and idA is the function idA = a
for all a E A. Note that the objects of Sets do not form a set (or else we would
encounter Russellís paradox of a set belonging to itself!); this explains the
pedantic insistence that obj(C) be a class and not a set. Nevertheless, we shall
often use the notation C E C to indicate that C is an object of C.

Examples A.1.3 Another fundamental category is the category Ab of abelian
groups. The objects are abelian groups, and the morphisms are group ho-
momorphisms. Composition is just ordinary composition of homomorphisms.
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The categories Groups of groups (and group maps) and Rings of rings (and
ring maps) are defined similarly.

If R is a ring, R-mod is the category of left R-modules. Here the objects are
left R-modules, the morphisms are R-module homomorphisms, and composi-
tion has its usual meaning. The category mod-R of right R-modules is defined
similarly, and it is the same as R-mod when R is a commutative ring. .

A discrete category is one in which every morphism is an identity mor-
phism. Every set (or class!) may be regarded as a discrete category, since com-
position is forced by discreteness.

Small categories A.1.4 A category C is small if obj(C) is a set (not just a
class). Sets, Ab and R-mod are not small, but a poset or a group may be
thought of as a small category as follows.

A partially ordered set, or poset, is a set P with a reflexive, transitive
antisymmetric relation 5. We regard a poset as a small category as follows.
Given p, q E P the set Homp(p,  q) is the empty set unless p i q. in which
case there is exactly one morphism from p to q (denoted p I q of course).
Composition is given by transitivity and the reflexive axiom (p i p) yields
identity morphisms.

A category with exactly one object * is the same thing as a monoid, that
is, a set M (which will be Hom(*,  *)) equipped with an associative law of
composition and an identity element. In this way we may consider a group as
a category with one object.

The word ìcategoryî is due to Eilenberg and MacLane  (1947) but was
taken from Aristotle and Kant. It is chiefly used as an organizing principle for
familiar notions. It is also useful to have other words to describe familiar types
of morphisms that we encounter in many different categories; here are a few.

A morphism f: B + C is called an isomorphism in C if there is a morphism
g: C -+ B such that gf = idB and fg = idc. The usual proof shows that if
g exists it is unique, and we often write g = f-l. An isomorphism in Sets
is a set bijection; an isomorphism in the category Top of topological spaces
and continuous maps is a homeomorphism; an isomorphism in the category of
smooth manifolds and smooth maps is called a diffeomorphism. In most alge-
braic categories, isomorphism has its usual meaning. In a group (considered as
a category), every morphism is an isomorphism.

A.1.5 A morphism f: B -+ C is called manic in C if for any two distinct
morphisms el, ez: A + B we have fel # f e2; in other words, we can cancel
f on the left. In Sets, Ab, R-mod, . . . , in which objects have an underlying
set (ìconcreteî categories; see A.2.3), the manic  morphisms are precisely the
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morphisms that are set injections (monomorphisms) in the usual sense. If B +
C is manic, we will sometimes say that B is a subobject of C. (Technically a
subobject is an equivalence class of monies, two monies being equivalent if
they factor through each other.)

A morphism f: B -+ C is called epi in C if for any two distinct morphisms
gl, g2: C + D we have glf # gzf;  in other words, we can cancel f on the
right. In Sets, Ab, and R-mod the epi morphisms are precisely the onto maps
(epimorphisms). In other concrete categories such as Rings or Top this fails;
the morphisms whose underlying set map is onto are epi, but there are other
epis.

Exercise A.l.l Show that Z c Q is epi in Rings. Show that Q c R is epi in
the category of Hausdorff topological spaces.

A.l.6 v An initial object (if it exists) in C is an object Z such that for every
C in C there is exactly one morphism from Z to C. A terminal object in C
(if it exists) is an object T such that for every C in C there is exactly one
morphism from C to T. All initial objects must be isomorphic, and all terminal
objects must be isomorphic. For example, in Sets the empty set 4 is the initial
object and any l-point set is a terminal object. An object that is both initial and
terminal is called a zero object. There is no zero object in Sets, but 0 is a zero
object in Ab and in R-mod.

Suppose that C has a zero object 0. Then there is a distinguished element
in each set Homc(B,  C), namely the composite B -+ 0 + C; by abuse we
shall write 0 for this map. A kernel of a morphism f: B + C is a morphism
i: A + B such that fi = 0 and that satisfies the following universal property:
Every morphism e: Aí + B in C such that fe = 0 factors through A as e = ie’
for a unique eí: Aí + A. Every kernel is manic, and any two kernels of f are
isomorphic in an evident sense; we often identify a kernel of f with-the cor-
responding subobject of B. Similarly, a cokemel of f: B + C is a morphism
p: C + D such that pf = 0 and that satisfies the following universal property:
Every morphism g: C + Dí such that gf = 0 factors through D as g = gíp
for a u&q&  gí:  D + 0í.  Every cokemel is an epi, and any two cokemels are
isomorphic. In Ab and R-mod, kernel and cokemel have their usual mean-
ings.

Exercise A.1.2 In Groups, show that monies are just injective set maps, and
kernels are monies whose image is a normal subgroup.

Opposite Category A.1.7 Every category C has an opposite category COP.
The objects of L.9 are the same as the objects in C, but the morphisms (and
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composition) are reversed, so that there is a l-l correspondence f H fî*
between morphisms f: B -+ C in C and morphisms fop: C + B in Co*. If
f is manic,  then fî*  is epi; if f is epi, then fî*  is manic.  Similarly, taking
opposites interchanges kernels and cokemels, as well as initial and terminal
objects. Because of this duality, Co* is also called the dual category of C.

Example A.1.8 If R is a ring (a category with one object), Rî*  is the ring
with the same underlying set, but in which multiplication is reversed. The cat-
egory (Rí*)-mod  of left Rî*-modules  is isomorphic to the category mod-R
of right R-modules. However, (R-mod)ë*  cannot be S-mod for any ring S
(see A.4.7).

Exercise A.1.3 (Pontrjagin duality) Show that the category C of finite abelian
groups is isomorphic to its opposite category Co*,  but that this fails for the
category 7 of torsion abelian groups. We will see in exercise 6.11.4 that To*
is the category of profinite abelian groups.

Products and Coproducts A.1.9 If {Ci:  i E Z} is a set of objects of C, a
product n,,, Ci (if it exists) is an object of C, together with maps nj: n Ci +
Cj (j E I) such that for every A E C, and every family of morphisms oi: A +
Ci (i F I), there is a unique morphism o: A + n Ci in C such that nio = oi
for all i E I. Warning: Any object of C isomorphic to a product is also a
product, SO n Ci is not a well-defined object of C. Of course, if n Ci exists,
then it is unique up to isomorphism. If Z = [ 1,2), then we write Ct x C:!
for n,,, Ci. Many concrete categories (Sets, Groups, Rings, R-mod, . . .
A.2.3) have arbitrary products, but others (e.g., Fields) have no products at
all.

Dually, a coproduct ui~l Ci of a set of objects in C (if it exists) is an
object of C, together with maps lj: Cj -+ u Ci (j E Z) such that for every
family of morphisms oi: Ci + A there is a unique morphism a: u Ci -+ A
such that olj = oj for all j E I. That is, a coproduct in C is a product in Co*.
If Z = { 1,2}, then we write Ct II C2 for uiE, Ci. In Sets, the coproduct is
disjoint union; in Groups, the coproduct is the free product; in R-mod, the
coproduct is direct sum.

Exercise A.1.4 Show that Homc(A,  n Ci) 2 n,,, Homc(A,  Ci) and that
Horn&  Ci, A) S ni,, Homc(Ci, A).

Exercise A.1.5 Let (ai: Ai -+ Ci} be a family of maps in C. Show that

1. If n Ai and n Ci exist, there is a unique map o: n Ai -+ n Ci such that
niol = (Yini for all i. If every (Yi is manic, SO is (11.
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2. If u Ai and u Ci exist, there is a unique map Q: u Ai + u Ci  such that
li(Yi = czli  for all i. If every CZi is an epi, so is a!.

A.2 Functors

By a jiinctor F: C + V from a category C to a category 2) we mean a rule
that associates an object F(C) (or FC or even Fc) of D to every object C of
C, and a morphism F(f): F(Cl)  + F(C2)  in 2) to every morphism f: Ct +
C2 in C. We require F to preserve identity morphisms (F(idc)  = idFc)  and
composition (F (gf) = F(g) F (f)). Note that F induces set maps

Homc(C1, Cd + HomdFCl, FG)

for every Cl, C2 in C. If G: 27 + E is another functor, the composite G F: C +
& is defined in the obvious way: (GF)(C) = G(F(C)) and (GF)(f)  =
G(F(f)).

The identity functor idc: C + C is the rule fixing all objects and morphisms,
that is, idc(C) = C, idc(f)  = f. Clearly, for a functor F: C -+ 27 we have
F o idc = F = idz>  o F. Except for set-theoretic difficulties, we could form a
category CAT whose objects are categories and whose morphisms are func-
tors. Instead, we form Cat, whose objects are small categories; Homcar(C,  ëD)
is the set (!) of all functors from C to ëD,  the identity of C is idc, and composi-
tion is composition of functors.

Horn and Tensor Product A.2.1 Let R be a ring and M a right R-module.
For every left R-module N the tensor product M @R N is an abelian group
and M f8.R  - is a functor from R-mod to Ab. For every right R-module N,
HomR(M,  N) is an abelian group and HomR(M,  -) is a functor from mod-R
to Ab. These  two functors are discussed in Chapter 3.

Forgetful Functors A.2.2 A functor that does nothing more than forget some
of the structure of a category is commonly called a forgetful functor, and
written with a U (for ìunderlyingî). For example, there is a forgetful functor
from R-mod to Ab (forget the R-module structure), one from Ab to Sets
(forget the group structure), and their composite from R-mod to Sets.

Faithful Functors A.2.3 A functor F: C + 2) is calledfaithful  if the set maps
Homc(C,  Cí) + HomD(FC,  FCí) are all injections. That is, if fl and f2 are
distinct maps from C to Cí in C, then F(fl)  # F(f2).  Forgetful functors are
usually faithful functors, and a category C with a faithful functor U: C -+ Sets
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is called a concrete category. In a concrete category, morphisms are com-
pletely determined by their effect on the underlying sets. R-mod and Ab are
examples of concrete categories.

A subcategory Z3 of a category C is a collection of some of the objects
and some of the morphisms, such that the morphisms of B are closed under
composition and include idB for every object B in B. A subcategory is a
category in its own right, and there is an (obvious) inclusionfunctor, which
is faithful by definition.

A subcategory B in which Homn(B, Bí) = Homc(B,  Bí) for every B, Bí in
B is called afull subcategory. We often refer to it as ìthe full subcategory on
the objectsî obj(B), since this information completely determines B.

A functor F: C + V isfull if the maps Homc(C, Cí) -+ HomD(FC,  FCí)
are all surjections. That is, every g: F(C) + F(Cí) in D is of the form g =
F(f) for some f: C -+ Cí. A functor that is both full and faithful is called
fuZZyfaithful.  For example, the inclusion of a full subcategory is fully faithful.
The Yoneda embedding (see A.3.4) is fully faithful. Another example of a
fully faithful functor is ìreflectionî onto a skeletal subcategory, which we now
describe.

Skeletal Subcategories A.2.4 By a skeletal subcategory S of a category C we
mean a full subcategory such that every object of C is isomorphic to exactly
one object of S. For example, the full subcategory of Sets on the cardinal
numbersO=4,1  = {$I,  . . . is skeletal. The category of finitely generated R-
modules is not a small category, but it has a small skeletal subcategory.

If we can select an object FC in S and an isomorphism 8~: C g FC for
each C in C, then F extends to a ìreflectionî functor as follows: if f: B +
C, then F(f) = f3cf 0,ë.  Such a reflection functor is fully faithful. We will
discuss reflections and reflective subcategories more in A.6.3 below. The set-
theoretic issues involved here are discussed in [MacCW,  1.61.

Contravariant Functors A.2.5 The functors we have been discussing are
sometimes called covariant functors to distinguish them from contravariant
functors. A contravariant  functor F: C + D is by definition just a covariant
functor from Cop to 27. That is, it associates an object F(C) of D to every
object C of C, and a morphism F(f): F(C2) + F(cl)  in 27 to every f: Ct +
CT in C. Moreover, F(idc)  = idFC and F reverses composition: F(gf)  =
F(f)F(g).

The most important example in this book will be the contravariant functor
HomR(-, N) from mod-R to Ab associated with a right R-module N. Its de-
rived functors Exti(-, N) are also contravariant (see 2.52). Another example
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is a presheaf on a topological space X; this is by definition a contravariant
functor from the poset of open subspaces of X to the category Ab.

A.3 Natural Transformations

Suppose that F and G are two functors from C to D. A natural transformation
q: F + G is a rule that associates a morphism qc: F(C) + G(C) in D to
every object C of C in such a way that for every morphism f: C + Cí in C
the following diagram commutes:

F(C)  % F(Cí)

d b
G(C) cf\ G(Cí).

This gives a precise meaning to the informal usage, ìthe map nc: F(C) +
G(C) is natural in C.î If each nc is an isomorphism, we say that n is a natural
isomorphism and write n: F Z G.

Examples A.3.1

1. Let T(A) denote the torsion subgroup of an abelian group A. Then T
is a functor from Ab to itself, and the inclusion T(A) c A is a natural
transformation T * idAb.

2. Let h: M --+ Mí be an R-module homomorphism of right modules. For
every left module N there is a natural map h 8 N: M 6%)~ N --+ M’ @R
N, forming a natural transformation M@R  =+ Mí@R.  For every right
module N there is a natural map n~:HornR(Mí,  N) -+ HomR(M,  N)
given by no = fh, forming natural transformation HomR(Mí,  -) =+
HomR(M,  -). These natural transformations give rise to maps of Tor
and Ext groups; see Chapter 3.

3. In Chapter 2, the definitions of S-functor and universal d-functor  will
revolve around natural transformations.

Equivalence A.3.2 We call a functor F: C -+ D an equivalence of categories
if there is a functor G: 2) -+ C and there are natural isomorphisms idc g GF,
idv z FG. For example, the inclusion of a skeletal subcategory is an equiv-
alence (modulo set-theoretic difficulties, which we ignore). The category of
based vector spaces (objects = vector spaces with a fixed basis, morphisms =
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matrices) is equivalent to the usual category of vector spaces by the for1
functor. Equivalence of categories is the useful version of ìisomorphism”
often encountered in practice. As a case in point, the category of based v
spaces is not isomorphic to the category of vector spaces, in which the
choices are not explicitly given.

E /+ kkkn <tie 06~kts of t6e fcmctar  cafegory  A< The morpfirísms  in dL
from F to G are the natural transformations 7: F =+ G, the composition cn
of n with f : G + H is given by (<v)i = <i Q, and the identity morphism of
F is given by (idF)i  = iciF(i).  (Exercise: show that Ar is a category.) We list
several examples of functor categories in Chapter 1, section 7 in connection
with abelian categories; if A is an abelian category, then so is Aí (exercise
A.4.3). Here is one example: If G is a group, then AbG is the category of G-
modules discussed in Chapter 6.

Example A.3.4 The Yoneda embedding is the functor h: I + SetsIoP  given by
letting hi be the functor hi(j) = Homr(j, i). This is a fully faithful functor. If
I is an Ab-category (see A.4.1 below), the Yoneda embedding is sometimes
thought of as a functor from I to AbtoP (which is an abelian category). In
particular, the Yoneda embedding allows us to think of any Ab-category (or
any additive category) as a full subcategory of an abelian category. We discuss
this more in Chapter 1, section 6.

A.4 Abelian Categories

The notion of abelian category extracts the crucial properties of abelian groups
out of Ab, and gives homological algebra much of its power. We refer the
reader to [MacCW]  or Chapter 1, section 3 of this book for more details.

A.4.1 A category A is called an Ab-category if every horn-set HomA(C,  0)
in A is given the structure of an abelian group in such a way that composition
distributes over addition. For example, given a diagram in A of the form

we have h(g + gí)f  = hgf + hgíf in Hom(A, D). Taking A = B = C = D,
we see that each Hom(A, A) is an associative ring. Therefore, an Ab-category
with one object is the same thing as a ring. At the other extreme, R-mod is an
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matrices) is equivalent to the usual category of vector spaces by the forgetful
functor. Equivalence of categories is the useful version of ìisomorphismî most
often encountered in practice. As a case in point, the category of based vector
spaces is not isomorphic to the category of vector spaces, in which the basis
choices are not explicitly given.

Functor Categories A.3.3 Given a category I and a category A, the functors
F: I += A form the objects of thefinctor  category  Aí.  The morphisms in A*
from F to G are the natural transformations 7: F =+ G, the composition 5~
of q with 5: G =+ H is given by (<n)i = {itli, and the identity morphism of
F is given by (idF)i = idF(i).  (Exercise: show that A’  is a category.) We list
several examples of functor categories in Chapter 1, section 7 in connection
with abelian categories; if A is an abelian category, then so is A’  (exercise
A.4.3). Here is one example: If G is a group, then Ab’ is the category of G-
modules discussed in Chapter 6.

Example A.3.4 The Yoneda embedding is the functor h: I + SetstoP  given by
letting hi be the functor hi(j) = Homr(j, i). This is a fully faithful functor. If
I is an Ab-category (see A.4.1 below), the Yoneda embedding is sometimes
thought of as a functor from I to Abîí  (which is an abelian category). In
particular, the Yoneda embedding allows us to think of any Ab-category (or
any additive category) as a full subcategory of an abelian category. We discuss
this more in Chapter 1, section 6.

A.4 Abelian Categories

The notion of abelian category extracts the crucial properties of abelian groups
out of Ab, and gives homological algebra much of its power. We refer the
reader to [MacCW]  or Chapter 1, section 3 of this book for more details.

A.4.1 A category A is called an Ab-category if every horn-set HomA(C,  D)
in A is given the structure of an abelian group in such a way that composition
distributes over addition. For example, given a diagram in A of the form

f ’ h
A-B&C-D

g

we have h(g + gí)f  = hgf + hgíf in Hom(A, D). Taking A = B = C = D,
we see that each Hom(A, A) is an associative ring. Therefore, an Ab-category
with one object is the same thing as a ring. At the other extreme, R-mod is an
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Ab-category for every ring R, because the sum of R-module homomorphisms
is an R-module homomorphism.

We call A an additive category if it is an Ab-category with a zero object
0 and a product A x B for every pair A, B of objects of A. This structure is
enough to make finite products the same as finite coproducts, and it is tradi-
tional to write A @ B for A x B. Again, R-mod is an additive category, but
so is the smaller category on objects {0, R, R2, R3, . . .] with Hom(Rí,  Rm) =
all m x n matrices in R.

Definition A.4.2 An abelian  category is an additive category A such that:

1. (AB 1) Every map in A has a kernel and cokernel,
2. (AB2) Every manic in A is the kernel of its cokemel,  and
3. Every epi in A is the cokemel  of its kernel.

Thus manic = kernel and epi = cokemel in an abelian category. Again,
R-mod is an abelian category (kernel and cokemel have the usual mean-
ings).

Exercise A.4.1 Let A be an Ab-category and f: B -+ C a morphism. Show
that:

1. f is manic + for every nonzero  e: A + B, f e # 0;
2. f is an epi + for every nonzero  g: C -+ D, gf # 0.

Exercise A.4.2 Show that d"P is an abelian category if A is an abelian
category.

Exercise A.4.3 Given a category I and an abelian cateory A, show that the
functor category A' is also an abelian category and that the kernel of 7: B +
C is the functor A, A(i) = ker(qi).

In an abelian category every map f: B -+ C factors as

with m = ker(coker f) manic and e epi. Indeed, m is obviously manic; we
leave the proof that e is epi as an exercise. The subobject im( f) of C is called
the image of f, because in ìconcreteî abelian categories like R-mod (A.2.3)
the image is im( f) = [f(b): b E B) as a subset of C.

A sequence A f_ B &- C of maps in an abelian category is called ex-
act (at B) if ker(g) = im( f ). This implies in particular that the composite
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gf: A + C is zero. Homological algebra might be thought of as the study of
the circumstances when sequences are exact in an abelian category.

A.4.3 The following axioms for an abelian category A were introduced by
Grothendieck in [Tohoku]. Axioms (AB 1) and (AB2) were described above.
The next four are discussed in Chapter 1, section 3; Chapter 2, sections 3
and 6; and in Chapter 3, section 5.

(AB3) For every set (Ai} of objects of A, the coproduct u Ai exists in A.
The coproduct is often called the direct sum and is often written as @Ai.
Rather than say that A satisfies (AB3),  we often say that A is cocomplete
(see A.5.1).

(AB3*)  For every set {Ai} of objects of A, the product n Ai exists in A.
Rather than say that A satisfies (AB3*),  we usually say that A is complete
(see AS.1 below).

Example A.4.4 Ab and R-mod satisfy both (AB3) and (AB3*),  but the
abelian category of finite abelian groups satisfies neither and the abelian cat-
egory of torsion abelian groups satisfies (AB3) but not (AB3*).  For purposes
of homological algebra, it is often enough to assume that n Ai and u Ai exist
for countable sets of objects {Ai]; for example, this suffices to construct the
total complexes of a double complex in 1.2.6 or the functor lim’  of Chapter 3,
section 5.

C

Exercise A.4.4 (Union and intersection) Let { Ai} be a family of subobjects of
an object A. Show that if A is cocomplete, then there is a smallest subobject
c Ai of A containing all of the Ai. Show that if A is complete, then there is a
largest subobject fIAi  of A contained in all the Ai.

(AB4) A is cocomplete, and the direct sum of monies is a manic.
(AB4*)  A is complete, and the product of epis is an epi.

Example A.4.5 Ab and R-mod satisfy both (AB4) and (AB4*).  The abelian
category Sheaves(X) of sheaves of abelian groups on a fixed topological space
X (described in Chapter 1, section 7) is a complete abelian category that does
not satisfy (AB4*).

Exercise A.4.5

1. Let A be a complete abelian category. Show that A satisfies (AB4*)
if and only if products of exact sequences are exact sequences, that is,
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for every family (Ai + Bi + Ci) of exact sequences in A the product
sequence

is also an exact sequence in A.
2. By considering d'p, show that a cocomplete abelian category satisfies

(AB4) if and only if direct sums of exact sequences are exact sequences.

A.4.6 For the last two axioms, we assume familiarity with filtered colimits
and inverse limits (see AS.3 below). These axioms are discussed in Chapter 2,
section 6 and Chapter 3, section 5.

(AB5) A is cocomplete, and filtered colimits of exact sequences are exact.
Equivalently, if [Ai] is a lattice of subobjects of an object A, and B is any
subobject of A, then

x(Ai n B) = B II (c Ai).

(AB5*)  A is complete, and filtered inverse limits of exact sequences are
exact. Equivalently, if (Ai} is a lattice of subobjects of A and B is any
subobject of A, then

n(Ai + B) = B + (flAi).

Examples A.4.7

We show in 2.6.15 that Ab and R-mod satisfy (AB5). However, they
do not satisfy (AB5*),  and this gives rise to the obstruction 1E’  Ai

discussed in Chapter 2, section 7. Hence (R-mod)ìP  cannot be S-mod
for any ring S.
Sheaves(X) satisfies (AB5) but not (AB5*);  see A.4.5.

Exercise A.4.6 Show that (AB5) implies (AB4),  and (AB5*)  implies (AB4*).

Exercise A.4.7 Show that if A # 0, then A cannot satisfy both axiom (AB5)
and axiom (AB5*).  Hint: Consider @Ai + n Ai.

A.5 Limits and Colimits (see Chapter 2, section 6)

AS.1 The limit of a functor F: I + A (if it exists) is an object L of A,
together with maps xi: L -+ Fi (I E I) in A which are ìcompatibleî in the
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sense that for every (Y:  j + i in I the map Xi factors as Fanj:  L -+ Fj + Fi,
and that satisfies a universal property: for every A E A and every system of
ìcompatibleî maps fi: A -+ Fi there is a unique h: A -+ L SO that fi = nib.
This universal property guarantees that any two limits of F are isomorphic.
We write limi,Z  Fi for such a limit. For example, if I is a discrete category,
then limiEZ  Fi = n,,, Fi, SO products are a special kind of limit.

A category A is called complete if lim Fi exists for all functors F: I + A
in which the indexing category I is small. Many familiar categories like Sets,
Ab, R-mod are complete. Completeness of an abelian category agrees with
the notion (AB3*)  introduced in A.4.3 by the following exercise, and will be
crucial in our discussion of lim’  in Chapter 3, section 5.

C

Exercise AS.1  Show that an abelian category is complete iff it satisfies
(AB3*).

Dually, the colimit of F: I + A (if it exists) is an object C = colimiEZ Fi
of A, together with maps li: Fi + C in A that are ìcompatibleî in the sense
that for every (Y:  j + i in Z the map lj factors as li Fa: Fi -+ Fi += C, and that
satisfies a universal property: for every A E A and every system of ìcompati-
bleî maps fi: Fi + A there is a unique y : C + A SO that fi = YLi.  Again, the
universal property guarantees that the colimit is unique up to isomorphism,
and coproducts are a special kind of colimit. Since F: Z -+ A is the same as a
functor FOP: ZîP  -+ dîP,  it is also clear that a colimit in A is the same thing as
a limit in d"P.

A category A is called cocomplete if colim Fi exists for all functors F: Z +
A in which the indexing category Z is small. Many familiar categories like
Sets, Ab, R-mod are also cocomplete. Cocompleteness plays a less visible
role in homological algebra, but we shall discuss it and axiom (AB3) briefly in
Chapter 2, section 6.

Exercise AS.2 Show that an abelian category is cocomplete iff it satisfies
axiom (AB3).

As a Natural Transformation AS.2 There is a diagonal functor A: A -+ A'
that sends A E A to the constant functor: (AA)i = A for all i E I. The compat-
ibility of the maps nj : lim( Fi) + Fj is nothing more than the assertion that n
is a natural transformation from A(lim  Fi) to F. Similarly, the compatibility
of the maps Ij: Fj -+ colim Fi is nothing more than the assertion that 1 is a
natural transformation from F to A(colim Fi). We will see that lim and colim
are adjoint functors to A in exercise A.6.1.
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Filtered Categories and Direct Limits AS.3  A poset I is called  filtered,  or
directed, if every two elements i, j E I have an upper bound k E I (i 5 k and
j 5 k). More generally, a small category I is CalledJiltered if

1. Foreveryi, jEZthereisakEZandarrowsi-+k, j+kinZ.
2. For every two arrows U, V: i + j there is an arrow w: j -+ k such that

wu = WV in Hom(i, k).

This extra generality is to include the following example. Let M be an abelian
monoid  and write Z for the ìtranslationî category whose objects are the el-
ements of M, with Homr(i,  j) = [m E M:mi = j}. Z is a filtered category,
because the upper bound in (1) is k = ij = ji, and in axiom (2) we can take
w = i E Homl(j,  ij).

A jltered  colimit in a category A is just the colimit of a functor A: Z + A
in which Z is a filtered category. We shall give such a colimit the special sym-
bol co>m(Ai),  although (filtered) colimits over directed posets are often called

direct limits and are often written lim Ai. We shall see in Chapter 1, section 6

that filtered colimits in R-mod (and other cocomplete abelian categories) are
well behaved; for example, they are exact and commute with Tor. This pro-
vides an easy proof (3.2.2) that S-ëR  is a flat R-module, using the translation
category of the monoid S.

Example AS.4  Let Z be the (directed) poset of nonnegative integers. A func-
tor A: Z + A is just a sequence A0 + A1 + A2 + . .. of objects in A, and
the direct limit limi,, Ai is our filtered colimit colim Ai. A contravariant

+
functor from Z to A is just a tower . . . + A2 -+ A1 -+ Ao, and the ìinverse
limitî is the filtered limit lim Ai we discuss in Chapter 3, section 5.

t

A.6 Adjoint Functors (see sections 2.3 and 2.6)

A.6.1 A pair of functors L: A + t3 and R: 13 + A are called adjoint  if there
is a set bijection  for all A in A and B in B:

t = TAB: HomB(L(A),  B) 3 HomA(A,  R(B)),

which is ìnaturalî in A and B in the sense that for all f: A + Aí in A and
g: B --+ Bí in 17 the following diagram commutes.
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Homs(L(Aí),  B)  5  HomB(L(A>, B) % Homa(L(A),  B í )

HomA(Aí,  R(B)) 2 Homd(A,  R(B) ) 2 Homd(A,  R(Bí))

That is, t is a natural isomorphism between the functors Homn(L,  -) and
Homd(-,  R) from dìP  x 23 to Sets. We say that L is the left adjoint of R,
and R is the right adjoint of L. We also say that (L, R) is an adjoint pair.

Here is a familiar example of a pair of adjoint functors. Let k be a field and
L: Sets + (k-vector spaces) the functor sending a set X to the vector space
with basis X. (L(X) is the set of formal linear combinations of elements of
X). This is left adjoint to the forgetful functor U, because Homk(L(X),  V) is
the same as Horns&X, U(V)).

We will see many other examples of adjoint functors in Chapter 2, section 6.
The most important for Chapter 3 is the following adjunction between Horn
and tensor product. Let R be a ring and B a left R-module. For every abelian
group C HomAn(B, C) is a right R-module: (fr)(b)  = f(rb). The resulting
functor HomAb(B, -):  Ab -+ mod-R h a s  L(A) = A  @R B as its left adjoint.
(See 2.3.8 and 2.6.2.)

Exercise A.6.1 Fix categories I and A. When every functor F: I + A has a
limit, show that lim: A* + A is a functor. Show that the universal property of
lim Fi is nothing more than the assertion that lim is right adjoint to A. Dually,
show that the universal property of colim Ft is nothing more than the assertion
that colim: A’ -+ A is left adjoint to A.

Theorem A.6.2 An adjoint pair (L , R): A + f3 determines

1. A natural transformation I]: idd + RL (called the unit of the adjunc-
tion), such that the right adjoint of f: L(A) + B is R(f) o VA: A +

R(B).
2. A natural transformation E: L R =+ ida (called the counit  of the adjunc-

tion), such that the left adjoint of g: A + R(B) is&B o L(g): L(A) -+ B.

Moreoven  both of the following composites are the identity:

(*) L(A) 2 LRL(A) % L(A) and R(B) -% RLR(B) Ret! R(B).

Proof The map r]A: A + RL(A) is the element of Hom(A, RL(A)) corre-
sponding to idLA E Hom(L(A), L(A)). The map &g:  LR(B) + B is the el-
ement of Hom(LR(B), B) corresponding to idRB E Hom(R(B), R(B)). The
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rest of the assertions are elementary manipulations using the naturality of t
and are left to the reader as an exercise. The lazy reader may find a proof in
[MacCW, IV. 11. 0

Exercise Ah.2 Suppose given functors L: A + t3, R: t3 -+ A and natural
transformations n: idd + RL, E: L R =k ida such that the composites (*)  are
the identity. Show that (L , R) is an adjoint pair of functions.

Exercise A.6.3 Show that E o (LRe) = E o (ELR)  and that (RLq) o q =
(r] RL) o 9. That is, show that the following diagrams commute:

LRE
LR(LR(B) )  + LR(B)

fl
A- RL(A)

LR(B) E\ B RL(A) 2 RL(RL(A) )

Reflective Subcategories A.6.3 A subcategory f3 of A is called a rejective
subcategory if the inclusion functor 1: B c A has a left adjoint  L: A -+ B; L
is often called the reflection of A onto Z?. If B is a full subcategory, then by
the above exercise B ?E R(B) for all B in B. The ìreflectionî onto a skeletal
subcategory is a reflection in this sense.

Here are two examples of reflective subcategories. Ab is reflective in
Groups; the reflection is the quotient L(G) = G/[G, G] by the commutator
subgroup. In 2.6.5 we will see that for every topological space X the category
of sheaves on X is a reflective subcategory of the category of presheaves on
X; in this case the reflection functor is called ìsheafification.”
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compatible map of spectral sequences, 126
complete category, 428
- abelian category (AB3*), 9,43,55ff,  80,

426ff
Complete Convergence Theorem, 139ff
complete filtration. See filtration.
complete topological group, 82
completely reducible module, 246, 248
complex. See chain complex, simplicial

complex.

of a cochain complex, 3,3 1,32,49,271
cotriple -. See cotriple (co)homology.
de Rham -. See de Rham cohomology.
generalized cohomology theory, 85
of groups, ch.6
H' and derivations, 175,213,230
Hz and extensions. See extensions.
Hochschild -. See Hochschild homology.
of Lie algebras, ch.7
local cohomology, 115ff
of profinite groups, 21 lff
ring structure (cup product), 192,227
sheaf -, 26, 51, 53, 115, 150, 152, 285,

370

complex algebraic variety, 105, 119, 131, 354
Composition Theorem, 402ff
concrete category, 418, 422,425
cone(f):

mapping cone, 10, 18ff, 34,49,59,63,  149,
270,37lff,  387-391,415

mapping cone spectrum, 410,413ff
topological cone, 19-20,24,413ff

congruence subgroup r(N), 205
conjugacy classes < G >, 34Off,  366
conjugation, 183, 190-191.247.340.365
connecting homomorphism a, lOff, 19,24,46,

65,77,265,287ff,  320
Connes, A., 332,344,348
Connesí double complex B. See double

complex.
of a topological space, 5,89,379 Connesí operator B, 344-349,352

triple -. See triple cohomology. Connesí sequence, 336
cohomotopy n*(X), 271,287,295ff,  301 Connesí spectral sequence, 346. See also
coinduced  G-module, 171ff spectral sequence.
coinflation (coinf), 190, 196, 344 constant sheaf. See sheaves.
coinvariants of a G-module, 16Off,  283, 286, Construction Theorem for spectral sequences,

304 132ff
of a g-module, 22lff. 363-367.

cokemel,  1,6ff,  15,26,29,54ff,  81.220.410,
419,425ff

Continuum Hypothesis, 92,98
contour integral, 27
contractible simplicial object, 20, 275ff,  282ff.

collapsing spectral sequence. See spectral
sequence.

293-294,298
contractible space, 20, l29,204ff, 415
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convergence of spectral sequences, 123, 126,
135ff, 395

approaches (abuts to), 126, 141
bounded convergence, 123-125, 132, 135,

143
Classical Convergence Theorem, 132, 135,

137, 139, 142, 157
Complete Convergence Theorem, 139-142,

157
convergent above, 125
weakly converges, 126, 135ff. 140-2, 150,

156
coproduct in a category, 5, 29, 55, 170, 259,

420-428
- in a coalgebra. See coalgebra.
- of spectra. See wedge.

corestriction (car), 189ff, 196, 199
Cortinas, G., 342
cosimplicial objects, 86, 254, 256, 257, 260,

271,281,285,287,301
COtangent  complex [LR/k,  295,297
cotriple I, 279-299
cotriple (co)homology, 286ff.  295.297-298
counit .s of an adjunction, 430. See also adjoint

functors.
- in a coalgebra. See coalgebra.

covering space, 203ff
crossed homomorphisms, 174ff. 306
crossed modules, 187ff
crossed product algebras, 187ff
cross product. See products.
C.S.S.  (complete semisimplicial set), 259
cup product. See products.
CW complex, 19, 21, 24, 84, 204, 257-261,

409,412,415
CW prespectrum, 409, 412. See also

prespectrum.
CW spectrum, 410. See also spectrum.

cycles, 2, 14, 17, 23, 36,6Off, 83, 127, 133ff.
156

cyclic category AC, 33 1 ff
cyclic groups C,,, 140, 162, 167ff. 173, 176

7, 189-193, 197, 205, 304, 33&334,
341-343,347,350,355,366

homology and cohomology of -, 168
cyclic homology HC, ch.9.

negative - HN, 338
of an algebra HC,(R), 334ff
of a cyclic object, 334ff
of DG-algebras, 359ff
of a group, 338ff

of an ideal, 347,358-359
of a mixed complex, 345ff
periodic - HP, 337-338,340, 343,351,

354,355
of a smooth algebra, 337,35  1, 354

cyclic objects, 33Off,  354
- G-sets, 339, 343
-modules, 331,336,338ff
- s e t s ,  331,338ff
ZG, 331,340ff
ZR, 330-333,346,354-360

cylinder cyl(f)  :
mapping cylinder, ZOff,  370ff
topological cylinder, 21,411,414
cylinder spectrum, 4lCL414

A. See simplicial category.
AC. See cyclic category.

a-functor, 391. See also triangulated
categories.

S-functor. See cohomological -, homological
-, universal -.

D,(R/k),  D*(R/k). See Andre-Quillen
homology and cohomology.

D(A), 63,369,379.  See also derived category.

Db(A),  D-(d), D+(d), 384, 388ff,
392407

D(R), 400ff
D(S). See stable homotopy category.
D(X), 397ff,  402,407

Dedekind domain, 90.98
degeneracy maps ni in A, 255,332
degeneracy operators oi, 256, ch.8,330,354
degenerate subcomplex D(A), 266,272,346
delooping of a spectrum, 408
Dennis, R. K., 328
denominator set, 380
de Rham cohomology, 337,349ff.  355,359
- complex, 349

derivation, 174ff, 213, 218, 229ff,  237, 245,
294ff,  306ff,  314-315,358

Der(G), Der(g), 174ff, 179,229-233,294ff,
306ff

derived category D, ch.l0,385
bounded, bounded above/below, 384,386
exists, 386388
topological derived category, 407ff
is triangulated, 385

derived couple, 154ff, 348
derived functors of F, ch.2, ch.10. See also

homology, cohomology.
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derived functors of F (cont.)

hyper-derived [Li F, [WíF.  See hyper-derived
functors.

left - (Li F), 43ff,  50,53,63,68,  143, 147,
157, 161,221,271,391

of lim, 81, 86, 139. See also limí.

right-((RiF),49ff,  53,64,  115, 161, 211,
221,228,271,391

I-left -, 287,293
total left - LF, 391ff
total right - RF, 391ff
are universal &functors, 47, 50, 225,

290
derived series of a Lie group, 219,242,247
descending chain condition, 82
DG-algebra, 112, 134, 181ff, 292, 321, 325,

349,359-361,367
DG-coalgebra,  366,368
diagonal simphcial object, 275ff,  284
differential graded algebra. See DG-algebra.
differentials of a chain complex, 2, ch. 1, 58,

61,83,86,  122, 177,333,345,  360
Diff(P,), 298
in a spectral sequence, 12@127,  130, 133,

140,240,346,348
K%hler  -. See Kahler differentials.

dihedral groups, 177, 183, 191, 197,202
dimensions, ch.4

cohomological -, 226,241, 394, 398,403
embedding - (emb. dim), 105, 110, 11 I
flat - (fd), 91ff,  108,144,396,397
global - (gl. dim), 91ff,  100, 108-l 11,

114,226,241,310
homological -, 92, 394,396
injective - (id), 91ff.  104, 107, 114,400
Krull - (dim), 97, 98, lOSff, 114, 3 17ff,

323,398,402,407
projective - (pd), 91-111, 161, 169, 241
Tor -, 92ff, 397,405
weak -, 92

dimension shifting, 44.47, 71, 80,93,  147ff,
169

direct image sheaf (fJ), 42, 51-54, 152,
396ff,  402,406ff

direct limit. See colimit.
discrete category, 25, 80,418,428
discrete G-module, 210ff
discrete valuation ring, 98, 105
divisible abelian group, 39, 73, 74, 158, 214.

See also injective module.
Dold, A., 21,270

Dold-Kan correspondence, 264,27&276,286,
346,415

domain (integral domain), 68, 106, 116
double chain complex, 7ff, 15, 58ff,  85, 99,

141-l50,276,335,352ff,  359ff.  426
first quadrant -, 8, 60, 63, 12Off,  143ff,

275ff,  298,328,337,359
fourth quadrant -, 62, 142, 143,360
half plane -, 6Off,  l43,145ff, 337
Horn -, 62. See also Horn.
second quadrant -, 62,86,  142, 143,338
tensor product -, 58. See also tensor

product.
total complex of -. See total complex.
Tsyganís - CC**, 333ff,  339,343-348

duality. See also Pontrjagin duality.
dual category. See opposite category.
dual module B*. See Pontrjagin dual.
front-to-back dual simplicial object A(ì),

263,266,275,289

EW terms, 125. See also spectral sequence.
edge map. See spectral sequence.
effaceable functor. See functor.
EG. See BG, path space.
Eilenberg, S., 80,205,238,248,259,277,418
Eilenberg-MacLane  space K(n, n). 257, 264,

268,274
Eilenberg-Moore filtration sequence, 136, 140,

142,338
Eilenberg-Moore spectral sequence, 361
Eilenberg-Zilber Theorem, 88,275ff,  284
elementary matrices En, 203,229, 294
Elmendorf,  A., 415
embedding:

embedding dimension. See dimension.
Freyd-Mitchell Embedding Theorem, 12,

14,25ff,  79,266,276
Yoneda embedding, 28,422,424.  See also

Yoneda Lemma.
enough injectives. See injectives.
enough projectives. See projectives.
enveloping algebra Re, 302ff.  See also

universal enveloping algebra.
epi morphism, 6ff, l3,220,255,419,425ff
equivalence of categories, 270, 423
equivariant homology, 361
espace totale. See Serre fibration.
essentially of finite type, 322,323,326,351

exact couples 153ff 3::
Eulerian idempotents e,’  See idempotents.

9 9
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exact functor, 25,27,  ch.2, ch.3, 115, 116, 144,
152, 16Off,  21 lff, 221,276,391,429.

preserves derived functors, 45,53
exact sequence, 1,3,7, 16, 79,285, 425ff. See

also short exact, long exact sequence.
- of low degree terms. See low degree

terms.

face operators &, 256, ch.8, 277, 330, 354,
356

factor set, 184ff, 213, 311,312
F-acyclic object, 44, 47, 50, 51, 148, ISOff,

162, 282ff,  392ff,  403ff.  See also flat,
projective modules.

Faith, C., 96
exact triangle, 15, ch.10.  See also triangle.
Exalcomm(R,  M), 295,297
exhaustive filtration. See filtration.
Existence Theorem for total derived functors,

393-396,403
exponential map, 27, 205
extensions:

algebra -, 3 11 ff
central -, 198ff. 236,248ff
commutative algebra -. See Exalcomm.
cyclic galois -, 173, 176

group - (and Hí(G)),  182ff, 198ff, 234,
235

fd(A).  See dimension,
f d lemma, 93,94,3  10
Feigin, B., 362,367
fiber. See Serre fibration.

fiber bundles for G, 257
fiber terms (of a spectral sequence), 124
fibrant simplicial set (Kan complex), 262,

263ff.  267,275,285,293
fibration:

G-. See G-fibration.
Kan fibration (of simplicial sets), 262, 263,

265,270,415

Hochschild - (and H2(R)), 3 1 lff, 3 17
Lie algebra - (and H*(g)),  231, 234ff,

241,246,248ff
module - (Extí and H1), 76ff.  232, 241,

246,35  1
of profinite groups, 2 13
of restricted Lie algebras, 238
split -, 76ff, 182ff. 234.3 1 lff
universal -. See universal central

extensions.
exterior algebra complex A*M,  112, 229,

238ff,  292,304,365

Serre -. See Serre fibration.
filtered category, 56ff,  69, 86,207,429

filtered colimit. See colimit.
filtration of a chain complex, 84, 131-143,

155,239,324,346,358
bounded -, 132ff, 135ff
bounded above -, 125, 132, 140
bounded below -, 132-140, 157,239
canonical bounded -, 132-135, 142ff, 266
complete, 132, 135-141
exhaustive, 125, 131, 135ff, 156, 239
Hausdorff, 132, 135ff

exterior algebra a*. See Kiler
differentials.

- of a double complex, 14lff,  335, 348,
360

regular -, 124

external products. See products.
Ext functor Ext>(A,  B), 50-51,63, ch.3,9lff,

106ff. 114-119,  145, 16lff,  172, 221,
225-229,241,246,287,289,295,422,
423

Ext(g, M). See extensions of Lie algebras.

Ext’  and module extensions, 76ff
external product for Ext. 291
hyperext Extî(A*,  B*), 399ff
relative Ext, 288ff.  302ff, 3 11
Yoneda Ext.  79ff, 188

finitely generated algebra, 296, 352
finitely generated module, 25, 70, 73-76, ch.4,

158, 166, 180,296,422
finitely presented module, 7Off,  75,93,98,401
first fundamental exact sequence for nR/k,

297,308,314,360,368
first quadrant double complex.See  double

complex.
%lemma, 13,23,71,75,  123, 273,361,375
Rasque  sheaf, 407
flat base change for Tor, 72, 163, 293, 296,

305,323
f* of a sheaf. See direct image sheaf.
f* of an S-module, 39MO5
j* of an R-module (= @RS),  3967,400-406 1
face maps Ei in A, 255, 332 112, 143ff. 163, 167, 193, 291-293,

- for Andre-Quillen homology, 297
flat dimension. See dimension.
flat modules, 68-74, 87-88, 9lff, 101, 111,
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303-305,308,339,360,363,395,406,
429

finitely presented flat modules are
projective, 71,96

tensor product of -, 303,360
are Tor-acyclic, 44,69

Flat Resolution Lemma, 7 1,293
forgetful functor U, 41,44, 53, 96, 101, 189,

l95,218,223,232ff,  259,280-284,410,
421,424,430

formal space, 361
fourth quadrant double complex. See double

complex.
fractions, 379ff
free groups, 161, 167, 169ff, 199. See also

presentations.
free abelian groups, 66ff,  84,87ff,  169,267

free Lie algebra. See Lie algebra.
free loop space. See loop space.
free modules, 33.90.98-103,  109, 162, 169ff.

177, 189,221-226,229,235238ff,  260,
278,294,297,318,324,338-344.

free module cotriple, 281, 284, 286
free product (coproduct) of groups, 170, 269
free ring (free algebra), 222, 223, 285,

293-294,356ff
Freudenthal, H., 205
Freyd, J. P, 25
Freyd-Mitchell Embedding Theorem. See

Embedding.
Frobenius algebra, 96ff
front-to-back duality. See dual.
full subcategory (full functor), 25,422425
function between prespectra, 409ff
functor, 14,421

additive. See additive functors.
adjoint. See adjoint functors.
- category. See functor category.
coeffaceable, 49

a-functor, 391
derived. See derived functor.
effaceable, 28,49,213
exact functor. See exact functor.
faithful, 42 1
forgetful. See forgetful functor.
fully faithful, 12,25,383,422
hyper-derived. See hyper-derived functor.
left balanced, 64
left exact, 25,27-32.49-53,  83, 115, 149,

ISOff,  160,221,290
right balanced, 64

right exact, 25, 27, 3Off,  43ff, 52ff,  71,
147-151, 157, 161.221.290

functor category, 25ff,  43,54ff, 8Off,  160,288,
424430

fundamental sequences for GR/k,  297,
308-309,314,360,361,368

G(A). See grade.
Gabber, O., 387
Gabriel, P., 29, 382
Gabriel-Zisman Theorem, 382
Galois extension of fields, 173, 175ff, 186-7,

206ff.  214
Fundamental Theorem of Galois Theory,

207,210
Galois group. See Galois extension.
Garland, H., 253
General Change of Rings Theorem, 99
general linear group. See GL,, gt,.
generating functions, 355
geometric realization 1x1,  257-261, 264, 267,

415
adjoint to singular simplicial set, 261

geometrically regular algebra, 3 17
Gersten, S., 294
Gerstenhaber, M., 323
G-fibration, 263,265,270,343
g-invariant bilinear form, 243ff.  250ff
gt, Lie algebra, 217,229,233,244-248,  362ff
GL,(A),  182, 186,203,294
global dimension gl. dim(R). See dimension.
Global Dimension Theorem, 91, 94, 114, 226,

241,311
global sections functor F, 51, 54, 115, 150,

152,285,397,407
G-module, 160, ch.6,278-282,339,343,424
g-module, 219, ch.7
Godement resolution. See resolution.
Goodwillie, T., 354, 361
Goodwillieís Theorem, 354359
Gorenstein ring, 97ff, 107-l 11
Grade 0 Lemma, 109, 110
grade G(A) of a module, lOSff, 116ff
graded abelian group or module, 25.29, 127,

145, 158,218
graded algebra, 65, 112, 135, 223,32lff,  349,

354-359
associated -, 226, 358
differential -. See DG-algebra.
graded-commutative -, 112, 181-2, 192ff,

227,292,32lff,  349,368
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graded coalgebra. See coalgebra. homologism, 3
graph, 3V4 homology:
Grothendieck, A., 30, 80, 82, 150, 370, 379,

398,426
of a chain complex, lff, 31, 32, 49, 87ff,

12Off.  266,271
Grothendieck spectral sequence. See spectral

sequence.
group ring kG, Ch.6,223,301,338ff
Guccione, J., 342
Gysin sequence, 131, 197,336,344

half plane double complex. See double
complex.

Hartshorne, R., 119
Hasse invariants, 215
Hausdorff topological space (or group), 97,

l35,208ff, 419

cotriple -. See cotriple (co)homology.
cyclic -. See cyclic homology.
generalized homology theory, 2 1, 85
of a group, ch.6,257,260,282,338ff
Hochschild -. See Hochschild homology.
of a Lie algebra, ch.7.362ff
simplicial -, 4,260,267,277
singular -, 4-5, 88, 158,260,267,361
Universal Coefficient Theorem, 88

homotopism, 17
homotopy. See chain homotopy, homotopy

equivalence.
Hausdorff filtration. See filtration.
hereditary ring, 90,98
higher direct image sheaf functors (R'  f*),  53,

397ff.  402,406ff
Hilbert, D., 176

homotopy category of chain complexes in
A. See K(A)).

homotopy category of spectra K(S), 409,
4llff

Hilbert basis theorem, 322
Hilbert-Samuel function h(n), 317

-polynomial H(n), 317
Hilbert space, 97
Hilbertís Syzygy Theorem, 102, 114
Hilbertís Theorem 90, 173, 175ff, 213ff
Hochschild, G., 195,302,313,322,351
Hochschild chain complex C,h, 299,300, 319,

323,328,333,  ch.9

homotopy classes of maps [E, F], 41 lff
homotopy commutative diagram, 4 13
homotopy lifting property. See Serre

fibration.

Hochschild extension. See extension.
Hochschild homology (and cohomology), 299,

300, 333, ch.9

simplicial homotopy from f to g, 268ff,
273-277,339,341

homotopy equivalence, 261
chain -, 17-23, 35ff.  40, 63,65,  147,284,

290.296.319.360,  ch.10
simplicial -, 204, 270, 273, 296-297, 339,

341

Hochschild-Kostant-Rosenberg Theorem,
322ff.  351

Hochschild-Serre. See spectral sequence.
Hodge decomposition:

in cyclic homology, 352ff
in Hochschild homology, 299, 323ff,  353

Horn double complex, 62ff,  90, 398ff
Horn functor, 3.5.27,  34,4Off,  5 lff, 62ff,  115,

118, 16lff,  377, 382, 42lff, 429ff. See
also Ext.

weak - of spectra, 409ff
homotopy groups n*(X), 128, 129, 158, 188,

204,263ff,  271,409
of a simplicial object, 265ff.  271, 276,

283-286.293

as a g-module, 226,244
in derived categories. See hyperext.
is left exact, 27-28, 52
sheaf Horn ëHorn. See sheaf Horn.

homogeneous space, 205
homological &functor, 3Off,  43, 45ff, 113,

146, 189, 195,265,276,423
homological dimension. See dimension.

of a simplicial set, 263ff,  271, 276ff
of a spectrum, 409ff

Hopf, H., 198,205
Hopf algebra, 194, 2267,  3 19, 367ff
Hopfís Theorem, 198,200,234
Horseshoe Lemma, 36,37,45,46,99,  146
H-space, 159
Hurewicz homomorphism, 129,267
hyperbolic plane, 205
hypercohomology, 150, 166,354,398,404
hyper-derived functors O_,F  and R*F,

147-151, 166,391-395,402ff
hyperext Extî(A*,  B*), 399ff
hyperhomology, 145ff, 157, 166, 206, 309,

339
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hyper-derived functors (L, F and [w* F (cont.)
hypertorTor, 148ff. l67,395ff, 402

infinite loop spce,
inflation ap ($rf),

b!

!

08
89ff, 196,211,214,234

initial 0 t, 55383,419

ì~ZZ$s~;$$)$;$,,,

I 399ff.  405,409-  i’  *
7. 9 9

*
%nough  injbctives, 38ff, d9-52,  79, &ff,

116, 149, ISOff, 211, QZ$f,  271480,
387-388,ë3!?9403  .  *

injective dimension. Seeídimension.
injective resLolutibn.  See resolution.
modules, 38ff. 5p. 69-10,73ff, ch.4
preserved by right adjoInt  to exact functor,

41,96, 116,153,196,211,213,233,406
inner automorphism, 177,231
inner derivations, 229ff,  245
integral closure of an integral domain, 117
internal product for Tor. See products.
invariant subgroup of a G-module, 16Off,  304
invariant subgroup of a g-module, 22lff, 226,

364
invariant theory, 364ff

inverse image sheaf (f-ëQ),  53ff.  58,410
inverse limit. See limits.
Jacobian criterion, Jacobian matrix, 3 18
Jacobiís identity, 216ff
Jacobson radical J(R), 103, 104,314

K(d) homotopy category, 15, 18,63, ch.10

Kb(d), K*(d), 370.384.388-395
K(S). See homotopy category of spectra.
Kac-Moody Lie algebra, 25 1
Kiler  differentials nR/k,  294ff,  307ff,  314,

318,336,365
exterior algebra ailk,  321& 349ff
- are projective if R is smooth, 295, 318,

323
k-split. See split exact complex.

Kan, D., 262,270
Kan complex, 262. See also fibrant simplicial

set.
Kan condition, 262, 263
Kan extension, 259
Kan fibration. See fibration of simplicial

sets.
Kant, I., 418
Karoubi, M., 339
Karoubiís Theorem for HC(G),  339ff
Kassel, C., 343,345,368
kernel, l-2,6ff, 15,55ff,  81,220,419,425ff
Killing, W., 247
Killing form, 243ff,  247,250ff
Kostant, D., 322.35 1
Koszul, J., 120,239
Koszul complex, 11 l-l 19,240,254,260
Koszul resolution, 69, 114,229,292,304
Kriz, I., 415
Km11  dimension dim(R). See dimension.
Krullís Theorem in Galois Theory, 207ff
K-theory, 85,203,293-4
Kummer sequence, 186
KiJnneth  Formula, 87ff,  144,277,284

for complexes, 88, 164ff, 227, 319
for Koszul complexes, 113, 118
spectral sequence, 143

l-decomposition, 324,326
A*M.  See exterior algebra.
AX See loop space, brutal and free.
Lf*, 396397,40&401,404-406
LF. See derived functors.
Laurent polynomials, 161,250,337,341
left adjoint. See adjoint functors.
left exact functor. See functor.
left resolution, 34
Leibnitz rule, 112, 127, 134, 174, 181, 218,

229,321,359,360
Leray, J., 120, 127
Leray-Serre spectral sequence. See spectral

sequence.
Levi, E. E., 247
Levi factor, 246ff
Leviís Theorem, 246,248
Lie, S., 216,247
Lie algebra, ch.7, 362ff

abelian -, 217-221,227,229,234ff,  243,
364

Affine (Kac-Moody) -, 250ff
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Lie algebra (conr.)
free - (see presentations), 218ff,  221-224,

233-238.248
Lie(A) for associative algebras A, 217, 220,

223-227,244,362
nilpotent -, 219,233
perfect -, 248ff
product of -, 219.248.250
reductive -, 248
restricted -. See restricted Lie algebra.
semisimple -, 242-248.250.253
simple -, 242-244,25Off,  363
simply connected -, 249ff
solvable -, 2 19,242
solvable radical 8.242-247

Lie bracket, 216.220-224
Lie group, 131, 158,205,216,247
lifting property, 33, 34ff, 78,281, 290,

318
lim’ functor, 74, 8Off.  136ff, 153, 338, 343,

426ff
limits, 55ff.  427ff. 430

direct limits. See colimits.
inverse limits, 55, SOff,  126, 137, 153,

207ff.  340,343,427,429
local coefficients, 128
local cohomology, 115ff
localization of a category, 379-386,389,395,

408,415
-of a ring. See multiplicatively closed set.

Localization Theorems:
for Horn and Ext. 75ff,  163
for Tor, 73,293,305
of regular rings, 111
of smooth algebras, 3 14,3 16

localizing subcategory, 29, 383ff.  389, 391,
394,402,409,412

locally small multiplicative system, 381-386,
409

local field, 215
local ring, 73,76,97&  102-l 11,297
Loday,  J.-L., 333,352,362,365,367,368
logarithm, 27
long exact sequences, lOff, 3Off,  45ff,  81, 113,

115, 128, 130, 148ff. 158, 168,213,265,
290,301,334,358

loop space QX, 129-130,361,4OSff,  411
brutal loop space AA, 270,273-274
free loop space AX, 361
infinite loop space, 408
- of spectra, 408,410

low degree terms (from a spectral sequence),’
121, 129,151, 196, l8,214,233ff

lower central series of a Lie algebra, 219
Lyndon,R.,  195 I. a

map of spectra, 408ff
mapping cone of f. See c
mapping cylinder cyl (f).\

ne. ‘
ee cylinder.

mapping lemma for spec& sequences, 123,
125, 126 . ; \

Maschkeís Theorem, 95,342
Massey,:W.,  $53 1 ’ i
matrices, 1,4, 70:  217,  318, 327-330, 364,

424,425 . + :
ma ëx  LieaJgebras,ë217.ëSeeíQlso  et,, at,,

Fe c. . .

matftx ring*&iA), 33rP5,  176, 187,2;7,
245,309ff:  327ff,  336,362

maximal ideal, 73,76,97,  102-J 11;318,323
May, J. P.,.415
Mayer-Vietoris sequence, 115, 119
Milnor, J., 84, 85
Mitchell, B., 25, 29, 86
Mittag-Lcffler condition, 82ff,  140

trivial -, 82ff,  117, 139,359
mixed complex, 344ff

normalized -, 346ff.  352,356ff
trivial -, 349,352

module spectra, 415
monad (= triple), 279
manic morphism, 6ff, 13, 28,49,57,  220, 255,

418ff,  425ff
monoid, 418
Moore, J., 270
Moore complex NA, 265. See also chain

complex.
Morita equivalent rings, 326ff

Morita invariance, 328ff,  336
morphism, 417

of chain complexes, Zff,  ch.2, 72, 75, 277,
330,362ff

of S-functors, 32,48,  189, 194ff, 226, 234,
278

of spectral sequences, 122-125, 134, 135,
155,346

of triangulated categories, 377,385,39Off,
402
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multiplicatively closed set, 69, 75ff.  111, 293,
305,307,380,384

multiplicative structure. See spectral sequence.
multiplicative system, 38Off,  385

V. See shuffle product.
II, (strictly upper triangular matrices), 217,

219.233.235
Nagata, M., 111
Nakayamaís Lemma, 102-109,3 14,3  17
natural transformation, 25, 3 lff, 46ff,  54, 254,

homology.
Neshitt, E., 96

269,279,286,39lff,  423ff,  428,430
negative cyclic homology. See cyclic

nilpotent Lie algebra. See Lie algebra.
noetherian ring, 25, 75ff, ch.4, 296ff,  317,

322ff
noetherian topological space, 398,402,407
Noetherís equations, 176
Noetherís Theorem, 174, 176
nonabelian homological algebra, 265, 293
nonassociative algebra, 216
nondegenerate elements of a simplicial set,

257tf
nonzerodivisor, 32,68,  lOO114
Normal Basis Theorem, 173
normalized chain complex. See chain complex.
norm element of a finite group, 162ff, 167,

173, 176, 180,333,344,347
norm of a field extension, 176, 214
null homotopic, 17, 19-21, 63, 180, 267, 277,

387-389

Q203  functor, 408ff
Q-spectrum, 409
fix. See loop space, K%hler  differentials.
objects of a category, 417
obstruction to being split, 77
octahedral axiom, 374ff,  414
opposite category, 26ff,  40, 43, 50, 55, 57,

149, 152, 254, 279, 280, 287, 332, 378,
382,386,391,419428

opposite ring, 302, 327,420
0re condition, 380ff
orthogonal Lie algebra cm, 2 17
Osofsky, B., 92
outer automorphism, 177

n*(X). See homotopy groups.
n*(X). See cohomotopy.

p-adic integers. See f,.
path connected topological space, 90
path space PA, l29,269ff, 273,333,339,343
@(A). See dimension.
pd lemma, 93,310
perfect group, 199ff, 248
perfect Lie algebra, 248ff
periodic cyclic homology. See cyclic

homology.

p-torsion subgroup pA of A, 3 1,66ff,  342
Poincare, H., 1

petite complex, 387
PGL,  (projective linear group), 182, 186
p& (semisimple but not simple), 244
p-group, 25, 159

Poincare-Birkhoff-Witt  Theorem, 225ff,  239
Poincare lemma, 355

polyhedron, 127,258,261
polynomial ring, lOlff,  114, 193, 221, 223,

226,240,285ff,  294297,304,313,315,
317,337

Laurent -. See Laurent polynomials.
truncated -, 304,337,355,358,397,418

Pontrjagin dual B* of B, 39, 69ff,  73, 199,
209.

Pontrjagin duality, 209,420
posets (partially ordered sets), 26, 56, 80, 86,

139, 152,207,418
directed poset, 429. See also filtered

category.
of open sets in X, 26, 53,423
of open subgroups, 209,212

power series ring, 100, 105
(p, q)-shuffles.  See shuffle product, shuffle

element.
presentations for groups, 198,203, 294, 307
- for algebras, 223,224,285
-for Lie algebras, 233,235ff,  248

preserves injectives. See injective.
preserves projectives. See projective.
preserving derived functors. See exact functor.
presheaves, 26ff, 42,53,387,402,410,423

Presheaves(X),  26ff, 53,55,386,431
prespectrum, 409ff

CW prespectrum, 409,410,415
prime ideal, 73,76,  lOSff, 111, 115,317
primitive elements in a coalgebra, 363ff
principal congruence group P(N), 205
principal derivations, 174ff, 179,213, 306
principal G-fibration. See G-fibration.
principal ideal domain, 39, 69,90,  98
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products:
in a category, 5,55,383,420,425428.  See

also cocomplete category.
cross product in cohomology, 165ff. 192,

221
cup product in cohomology, 192ff, 227,277
direct product of groups, 164, 192ff, 201ff
external -, 36, 64ff, 112-114, 227,

291-292,319ff
Hochschild -, 3 19ff
internal -, 65, 114,319-323
- of Lie algebras, 227,243,246,248,250,

253
- of rings, 292,302,3 10,3 16
- of simplicial objects, 261, 277
-ofspectra,408,411
- of topological spaces, 89,408

profinite:
cohomology, 21 lff
completion, 209
groups, 206,208ff.  420
sets, 208
topology, 207ff

projection formula, 404ff
projective:
- abelian groups are free, 33,66,73
chain complex of -, 34,392ff,  401,405
enough projectives, 33ff,  43,47,51-58,79,

145ff, 151,211,221-224,274,276,380,
388-396

- lifting property. See lifting property.
- modules, 33ff, 50, 68, 71, 77, 89, 90,

ch.4, 167, 173, 189,281,303,31Off,  318,
323,327ff

- objects, 29,33ff,  40,44ff, 51, 162,224,
274,277,288

- preserved (by left adjoint to exact
functor), 41,233,276,404ff

-resolutions. See resolutions.
I -projective, 281ff,  29Off,  296
projective dimension. See dimension.

projective linear group.See PGL,, pgt,.
projective representation. See representa-

tions.
projective special linear groups. See PSL,,

pat,.
projective n-space, 13 1,205
proper group action, 203ff
PSL, (projective special linear group), 199,

202
psi, is a simple Lie algebra, 244

pullback, 29,78ff,  86, 182, 185,201,313,343
punctured spectrum of a ring, 116
Puppe, D., 21,407
Puppc sequence, 413ff
pushout, 54,77ff

quasi-Frobenius ring, 96ff
quasi-isomorphism, 3, 15-21, 59, 63, 99,

146ff, 275,346,360,363,  ch.10
quatemion algebra W, 176,215
Quillen, D., 295,333,362,365,367
quotient category, 18, 29, 369, 384,411
quotient complex, 6, 20, 22, 178, 266, 335,

362

reductive Lie algebra, 248,364
reflection functor; reflective subcategory, 29,

422,43  1
regular filtration of a complex, 124
regular rings, lOSff, 317ff.  322ff

finite global dimension, 110
geometrically regular algebra, 3 17
smooth over a field, 317
von Neumann regular rings, 97ff
regular sequence (A-sequence), 105-l 14,

119,240,291,304,318,323
regular spectral sequence, 126
relations. See presentations.
relative Ext. See Ext.
relative Tor. See Tor.
relatively flat module, 292
representations, 164,202,243

projective representation, 182, 186
resolutions:

bar. See bar resolution.
canonical, l77,235,275,282ff
Cartan-Eilenberg -, 145ff. See also

resolution.
of a chain complex. See hyperhomology.
Chevalley-Eilenberg -. See Chevalley-

Eilenberg complex.
F-acyclic, 44,47,50,51,71,  148,283, 285,

392
flat, 71, 87, 91ff.  144, 303
free, 67, 75, 76, 114, 164169, 178, 193,

204,222,284,287
Godement, 285
injective, 32,40,42,5Off, 63,73ff, 85,91ff,

149,151,394
k-split, 289ff,  298,304
Koszul -. See Koszul resolution.
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resolutions (cont.)

left, 34,44
non-projective, 68
periodic, 67,74,  167, 178,304,333
projective, 34, ch.2, ch.3,91-100, 109, 111,

143ff, 162ff, 172, 191ff, 239,241,303,
397

right, 40
simplicial, 274ff,  283ff,  296, 333
simplicial polynomial - of a ring, 296ff
truncated, 99
_L -projective, 282,289ff,  302

restricted Lie algebra, 227,232, 238
- cohomology, 261.232.238
- extensions, 232,238
- modules, 227,232
universal enveloping algebra u(g), 227

restriction map (res), 174, 185, 189-196, 211,
214,234

Rf,, 53,396-398,402,406ff.  See also f*.
RF. See derived functor.
RHom and hyperext, 63,398ff,  405ff
Riemann surface, 205
right adjoint. See adjoint functors.
right exact functor. See functor.
right resolution, 40
Rinehart, G., 358
Rings  (category of rings), 418ff
ring spectrum, 415
R-mod, xiv, 1,25,418
Rosenberg, A., 322,351
rotation of triangles. See triangles.
Russellís paradox, 417

S’  (circle), 131,205,331,361
5î.  See sphere, sphere spectrum.
SA (category of simplicial objects in A), 254,

271ff
satellite functors, 32
saturated. See multiplicative system.
SBI sequence, 335-338, 342-348,352,354,

361
Schack, S. D., 323
Scheja, G., 114
schemes, 354,396,401,406
Schur, I., 182, 186, 199
Schurís Lemma on simple modules, 244
Schur multiplier, 199,203
Schur-Zassenhaus  Theorem, 186
Second fundamental sequence for nR/k, 309,

314,318

section of an extension, 77, 182, 185, 187
section of a sheaf. See global section.
semidirect product:

of groups, 176, 182ff, 197
of Lie algebras, 231-234,237,247,248

semisimple rings, 95ff,  110,309,314,342
- Lie algebra. See Lie algebra.

semi-simplicial objects, 258ff,  273,278
sequence. See exact -, Koszul -, regular -.
separable algebras, 309ff,  316,336,342
separable closure KS of a field, 207ff,  213,214
separable field extension, 207,308-309,316ff
separably generated field extension, 315ff
Serre fibration 127ff. 188,204ff
Serre, J.-P., 117, 128, 195
Serre subcategory, 38&5,389-390,393
Sets (category of sets), 260, 281-285, 293,

332,417424,428,430
set-theoretic problems, 183, 379-382, 422,

423. See also universes.
Shapiroís Lemma, 162, 169, 171ff, 195, 206,

282
sheafification, 27,53,55,410,431
sheaves on a space X, 25, 26ff,  42, 51, 53ff,

115, 152, 285, 354, 387, 396, 398,
406-410

Sheaves(X) (category of sheaves on X), 26,
42, 51-55, 58, 80, 115, 152, 285, 380,
386,390,397ff,  426-431

constant sheaf, 26,51,54
of CM functions, 26
of continuous functions, 26,27
direct image -. See direct image sheaf.
enough injective sheaves, 42.80
inverse image -. See inverse image sheaf.
sheaf Horn  Worn, 402,407
skyscraper sheaf, 42,5 1,54,285
stalk of a sheaf, 42,54, 285, 387

short exact sequence, 27-31,45,49,76,  130,
212

of complexes, 7, lOff, 19,23ff,  45,87,334
of cyclic objects, 334
of Lie algebras, 217ff,  232,234
of towers of modules, Slff, 137ff

shuffle elements sP4. 324-5
shuffle product V, l81,278,284,291,319ff,

324,350

signature idempotent E,, = etí,  324ff,  350,
353,364. See also idempotent.

sign trick, 8, 10, 58, 62, 99, 146, 193, 275,
321,328,333,359,360
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simple algebras. See Brauer group, Lie
algebras.

simplex (simplices), 4, 254, 256ff,  268
simplicial category A, 255ff, 269,27lff,  331ff
simplicial complex, 256-258. See also chain

complex.
combinatorial -, 258,261,262
geometric -, 4,5,  19,256,258,261

simplicial homology. See homology.
- of a cotriple, 286ff

simplicial homotopy. See homotopy.
simplicial objects, ch.8, 295, 301, 329-344,

415
aspherical -. See aspherical.
augmented -, 274,278ff,  286ff. 295,298
constant -, 254,270,289
simplicial identities, 256, 275

simplicial resolution, 274. See also resolution.
simplicial set, 257-267, 270, 275, 293

fibrant -. See fibrant simplicial set.
singular -, 26Off,  264,412

simply connected Lie algebra, 249ff
simply connected topological space, 128ff,

158,204,247,361
singular chain complex. See chain complex.
singular simplicial set S(X). See simplicial set.
skeletal subcategory, 422.423.431
SL,, (special linear group), 199,202-205
al,,, 217,229,241-248,363ff
small category, 12, 25, 29, 43, 80, 379ff.  418,

421,422,428
smash products of spectra, 415
smooth algebra, 296, 313ff,  322-326, 337,

350ff
smooth algebraic variety, 105
smooth manifold. See manifold.
Snake Lemma, llff, 31,38,68,70,81,156
SO,, 131,205
solvable radical. See Lie algebras.
Spec(R),  115,397
special linear group. See SL,.
special linear Lie algebra. See SC,.

spectra in topology, 408ff
CW spectra, 390,409,4lOff,  415

spectral sequences, 8, 9, 83, 100, 122, ch.5,
402ff

Bockstein -, 158ff
bounded -, 123ff, 132, 135, 159
bounded below -, 125ff, 132, 135
bounded convergence, 123, 135. See also

convergence.

collapsing at Eí,  124, 136, 143ff, 151, 197,
206,239,298ff,  335,342,35 1,394

Connesí -, 346,348ff
converging -, 123ff. 126, 135ff. 239. See

also convergence.

degenerates (= collapses at R2)

E* terms, l21,124,128ff,  142ff,  196
Em terms, 122-127, 135, 137, 140, 156,

158
edge maps, 124, 128, 151, 196,234,335
Eilenberg-Moore -, 36 1
first quadrant -, 120-127, 132, 135, 144,

145, 15lff,  195,232,266,276,296,308,
335,359ff

Grothendieck -, 139, 15Off.  195ff, 233,
403ff

half plane -, 125, 143
Hochschild-Serre  - (for Lie algebras),

232-236,342,368
hyperhomology -, 148ff, 157, 1667,206,

402ff
Ktinneth -, 143
Leray -, 152,406ff
Leray-Serre  - (for Serre fibrations), 127ff.

132,206
LyndorUHochschild-Serre  - (for groups),

190, 195ff, 211,214,232,342,406
multiplicative structure, 127, 134

-of a double complex, 14lff,  298, 394
- of an exact couple, 155ff. See also
exact couples.

regular -, 125-126, 139ff, 157
ìsix spectral sequencesî of EGA III, 404
with 2 columns, 121, 124
with 2 rows, 124

spectrification functor, 410. See also G2w
functor.

spectrum. See spectra.
sphere Sî,  130-131,205,406
sphere spectrum Sî, 408
Spin group Spin,, 202
split complex, l&19,24
split exact complex (or sequence), 2, 16ff,  34,

45, 87ff, 113, 114, 164ff, 178, 227, 275,
289,299,301,314,318,352

k-split complex, 289ff,  298, 3 11
split extensions. See extensions.
splitting field, 207,309
stabilization homomorphisms, 365
stable homotopy category D(S), 407415
Stallings, J., 176
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standard complex, 239. See also Chevalley- 157, 161ff. 172,221,225,228,277,287,
Eilenberg complex. 289,295,303,342,395ff,  404,423,429

Steinberg group St,, 203,294 external and internal products for Tor. See
Starch, U., 114 products.
strict triangle on a map u, 371ff
strictly upper triangular matrices. See n,.
Structure Theorem of semisimple Lie algebras,

243
subcomplex, 6, 19ff, 83
suspension spectrum, 409
suspension SX of a space X, 24,409

-SE of a spectrum E, 411ff
Swan, R., 170,269,294
symmetric algebra Sym(M),  285-286,297ff,

368

hypertor Tor. See hypertor.
relative Tor, 288ff,  302ff,  323

torsion group, 25, 31,66ff, 73, 74, 158, 209,
213,420,423,426

torsionfree abelian group, 25,67,69,74,  158
is flat, 67,69

torsionfree group, 205
total complex (Tot), 8,9,  15, 100, ch.5,276ff,

335,345ff  426

symmetric group C,,, 286,324ff.  353,364ff
syzygy, 47,93ff, 99ff,  109

direct sum - Tot@,  8, 9, 58ff, 141-149,
l93,284,328,359ff,  394ff

product - Totn, 8, 9, 6Off.  85ff.  141ff.
149,337-348,352,357,360

total degree of a double complex, 122, 132,
154

t,,, (upper triangular Lie algebra), 217, 219,
235

total Horn. See Horn total complex, hyperext,
RHom.

tangent space of a Lie group, 2 16
Tate cohomology, 168ff, 173
tensor algebra T(M), 223,228,254,261,285,

303,337,347,355ff,  412,418,42Off
tensor product, 52, 145, 300, 354,421. See

also Tar.

totally disconnected space, 208ff
total space(see  Serre fibration)

total tensor product BL, 395ff,  402,415
total tensor product chain complex. See

tensor product.

adjoint to Horn, 52ff.  405,430
of chain complexes, 58ff,  65, 88ff, 111,

143ff, 165277,284
of simplicial modules, 277, 319
total tensor product (in derived category),

394ff,  415

tower of abelian groups or modules, SOff,
117ff. 133, 136, 140, 152,337,429.  See
ako  lim’

terminal object, 5,298,383,419
tetrahedron, 4
Thomason, R., 408
3x3Lemma,ll
Top (category of topological spaces), 418-419
topological derived category. See stable

homotopy category.
topological group, 82, 209
topological space X, 4-5, 17, 19ff.  26ff. 42,

51, 53, 84, 88ff.  115, 127ff, 150, 152,
158, 203-208, 257ff,  260, 262, 319,
396-402,406,408ff, 423

presheaves on -. See presheaves.
sheaves on -. See sheaves.

Tor-dimension. See dimension.
Tor-dimension Theorem, 92,94
Tor functor, 32,36,5x,  56.58, ch.3,92ff, 104,

108, 110, 114, 128, 143-144, 148-149,

double tower, 139, 153
trace, l73,217,229,243ff
trace map in homology, 328ff.  336,362ff
transcendence basis of a field, 3 15
transfer maps, 174, 194ff
transitivity of smoothness, 314,315,322
- for Andre-Quillen homology, 297

translate C[n] of a complex, 9, 10, 59,63,  83,
99, 113, 147, 270,273-274,  346,348,
352,364,366,  ch.10

of a double complex, 60, 335, 337, 346,
348,353

translation. See translate, triangulated category.
translation functor T, 374ff,  386,390,408
triangles, 15,374ff.  412

exact triangles, 153ff,  371,374ff,  390,392,
399,412ff

in D(d), 386,389
in K(d), 371ff,  385
rotation of -, 372,374,413

triangulated category K, 15,374, ch.10
morphisms between -. See morphisms.
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triangulated category K (cont.) Vigue-Poirrier, M., 323
triangulated subcategory, 377, 378, 389- Villamayor, O., 3 11, 342

390,402ff von Neumann, J., 97
triple T, 279ff von Neumann regular rings, 97ff
triple cohomology, 286ff
trivial G-module, 16Off,  278
trivial g-module, 216ff,  229
trivial mixed complex, 349ff
trivial module functor, 160-  16 1,220-22  1
truncated polynomials. See polynomial ring.
truncations (good truncation SC and brutal

truncation crC)

Walker, E., 96
Wang sequence, 130ff
weak dimension. See dimension.
weak homotopy equivalence. See homotopy

equivalence.

of a complex, 9, 99, 270, 274, 349,415
of a double complex, 60, 85, 337

Tsenís theorem, 214
Tsygan, B., 333,362,367
Tsyganís double complex CC,,, 333. See also

double complex.

Unique Factorization Domain, 11 I
unit 17 of adjunction, 430. See also adjoint

functors.

weakly effaceable functor, 28ff
Wedderbumís Theorem, 95, 187,309
Wedderburnís Principal Theorem, 3 14
wedge of spectra (E v F), 410ff
weight, 354ff
well-powered category, 385, 387
Weyl, H., 247
Weylís Theorem, 246ff,  363,364
Whitehead, J. H. C., 188,247, 313
Whiteheadís Lemmas, 245ff,  250, 252
Whiteheadís Theorem, 390,4  12
Whitney, H., 277

universal central extension, 198ff, 248ff,  294
Universal Coefficient Theorems, 83, 87ff. 89,

128, 144, 164, 196,296,307
with supports, 115

universal S-functor, 32ff, 43, 47-5 1, 67, 81,
86, 118, 189, 194, 212, 271, 276, 278,
288,290,423

Yoneda embedding, 25,28,29,261,422,424
Yoneda Ext groups, 79ff, 188
Yoneda Lemma, 28,52,308,309
Yoneda, N., 79

2, (p-adic  integers), 74, 82, 85, 207ff,  215,
universal enveloping algebra U(g), 223ff,

238ff
343

of a restricted Lie algebra u(g), 227
universes, 379-380, 385,409
upper trianguiar matrices. See tm.

van der Waerden, B. L., 247
vector fields on a Lie group, 216
vector spaces over a field, lff, 15, 25, 74, 83,

97, 103, 173, 227, 241, 244, 311, 318,
358,423,430

iZ,,cc  (the divisible p-group), 39,74,  85
Z(C) (cycles in a chain complex), 3
ZG, ZR. See cyclic objects.
Zassenhaus, H., 186
Zelinsky, D., 311
zerodivisors, 105ff. See also nonzerodivisors.
zero object, 5,370,383,408,411,419,425
Zilber, J., 259, 277
Zisman, M., 382
Zomís Lemma, 39

Verdier, J.-L., 374,378,407


