CAMBRIDGE STUDIES IN
ADVANCED MATHEMATICS 38

EDITORIAL BOARD
D. J. H. GARLING, T. TOM DIECK, 1? WALTERS

AN INTRODUCTION TO
HOMOLOGICAL ALGEBRA



Already published

1
2
3
4
5
6
7

8
9

10
11
12
13
14

15
16

17
18

19
20
22
24
25
26

27
28
29
30
3l
32

33
34
35

36
37
38
39
40

W. M. L. Holcombe Algebraic automata theory

K. Petersen Ergodic theory

P. T. Johnstone  Stone spaces

W. H. Schikhof  Ultrametric calculus

J-P. Kahane Some random series offunctions, 2nd edition

H. Cohn Introduction to the construction of class fields

J. Lambek and P. J. Scott  Introduction to higher-order categorical
logic

H. Matsumura Commutative ring theory

C. B. Thomas Characteristic classes and the cohomology of finite
groups

M. Aschbacher Finite group theory

J. L. Alperin  Local representation theory

P. Koosis The logarithmic integral |

A. Pietsch  Eigenvalues and s-numbers

S. J. Patterson An introduction to the theory of the Riemann
zeta-function

H. J. Baues Algebraic homotopy

V. S. Varadargjan Introduction to harmonic analysis on semisimple Lie
groups

W. Dicks and M. Dunwoody  Groups acting on graphs

L. J. Corwin and F. P. Greenleaf Representations of nilpotent Lie
groups and their applications

R. Fritsch and R. Piccinini  Cellular structures in topology

H. Klingen Introductory lectures on Siegel modular forms

M. J. Collins Representations and characters of finite groups

H. Kunita Stochastic flows and stochastic differential equations

P. Wojtaszczyk  Banach spaces for analysts

J. E. Gilbert and M. A. M. Murray  Clifford algebras and Dirac
operators in harmonic analysis

A. Frohlich and M. J. Taylor Algebraic number theory

K. Goebel and W. A. Kirk  Topics in metric fixed point theory

J. F. Humphreys Reflection groups and Coxeter groups

D. J. Benson Representations and cohomology |

D. J. Benson Representations and cohomology 11

C. Allday and V. Puppe Cohomological methods in transformation
groups

C. Soule, et d. Lectures on-Arakelov geometry

A. Ambrosetti and G. Prodi A primer-of nonlinear analysis

J. Palis and F. Takens  Hyperbolicity, stability and chaos at homoclinic
bifurcations

L. Batten and A. Beutelspacher The the&y of finite linear spaces
Y. Meyer Wavelets and Operators

C. Weibel  An introduction to homological algebra

W. Bruns and J. Herzog Cohen-Macaulay rings

S. Martin  Schur algebras and representation theory



AN INTRODUCTION TO
HOMOLOGICAL ALGEBRA

CHARLES A. WEIBEL

Department of Mathematics
Rutgers University

BB CAMBRIDGE
:t; UNIVERSITY PRESS



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3 166, Austraia

© Cambridge University Press 1994
First published 1994

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data
Weibel, Charles A., 1952~
An introduction to homological algebra / Charles A. Weibel.
p. cm.— (Cambridge studies in advanced mathematics ; 38)
Includes bibliographical references and index.
ISBN 0-521-43500-5
1. Algebra, Homological. 1. Title. Il. Series.
QA169.W45 1994
512°.55-dc20 93-15649
CIp

A catalog record for this book is available from the British Library.

ISBN 0-521-43500-5 hardback



To my wife, Laurel Van Leer, whose support is invauable,
and to my children, Chad and Aubrey, without whom
this book would have been completed much sooner.



Acknowledgments

| wish to express my appreciation to several people for their help in the for-
mation of this book. My viewpoint on the subject comes from S. MacLane,
S. Eilenberg, J. Moore, and R. Swan. The notes for the 1985 course were
taken by John Lowell, and many topics were suggested by W. Vasconcelos.
L. Roberts and W. Vasconcel os used early versions in courses they taught; they
helped improve the exposition. Useful suggestions were also made by L. Al-
fonso, G. Cortifias, R. Fairman, J.-L. Loday, J. P. May, R. McCarthy, S. Morey,
R. Thomason, M. Vigué, R. Wilson, and the referees. Much of the typing was
done by A. Boullé and L. Magretto.



Contents

Introduction

1 Chain Complexes

11
12
13
14
15
16

Complexes of R-Modules
Operations on Chain Complexes
Long Exact Sequences

Chain Homotopies

Mapping Cones and Cylinders
More on Abelian Categories

2 Derived Functors
2 .1 §-Functors
2.2 Projective Resolutions

2.3 Injective Resolutions

2.4  Left Derived Functors
25 Right Derived Functors
2.6  Adjoint Functors and Left/Right Exactness
2.1 Balancing Tor and Ext
3 Tor and Ext
31  Tor for Abelian Groups
3.2 Tor and Flatness
3.3  Extfor Nice Rings
34 Ext and Extensions

Vii

Xi

10
15
18
25

30
30
33
38
43
49
51
58

66
66
68
73
76



vill

35
3.6

Contents

Derived Functors of the Inverse Limit
Universal Coefficient Theorems

4 Homological Dimension

4.1
4.2
4.3
4.4
4.5
4.6

Dimensions

Rings of Small Dimension
Change of Rings Theorems
Loca Rings

Koszul Complexes

Loca Cohomology

5 Spectral Sequences

5.1
5.2
5.3
5.4
55
5.6
5.7
5.8
5.9

Introduction

Terminology

The Leray-Serre Spectral Sequence
Spectral Sequence of a Filtration
Convergence

Spectral Sequences of a Double Complex
Hyperhomol ogy

Grothendieck Spectral Sequences

Exact Couples

6 Group Homology and Cohomology

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Definitions and First Properties

Cyclic and Free Groups

Shapirois Lemma

Crossed Homomorphisms and H'

The Bar Resolution

Factor Sets and H>

Restriction, Corestriction, Inflation, and Transfer
The Spectral Sequence

Universal Central Extensions

Covering Spaces in Topology

Gaois Cohomology and Profinite Groups

80
87

91
91
95
99
104
111
115

120
120
122
127
131
135
141
145
150
153

160
160
167
171
174
177
182
189
195
198
203
206



Contents

7 Lie Algebra Homology and Cohomology

7.1
7.2
7.3
7.4
75
7.6
7.7
7.8
7.9

Lie Algebras

g-Modules

Universal Enveloping Algebras

H' and H,

The Hochschild-Serre Spectral Sequence
H? and Extensions

The Chevalley-Eilenberg Complex
Semisimple Lie Algebras

Universal Central Extensions

8 Simpliciad Methods in Homological Algebra

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Simplicial Objects

Operations on Simplicia Objects
Simplicia Homotopy Groups

The Dold-Kan Correspondence

The Eilenberg-Zilber Theorem

Canonical Resolutions

Cotriple Homology

Andre-Quillen Homology and Cohomology

9 Hochschild and Cyclic Homology

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

Hochschild Homology and Cohomology of Algebras
Derivations, Differentials, and Separable Algebras
H?, Extensions, and Smooth Algebras

Hochschild Products

Morita Invariance

Cyclic Homology

Group Rings

Mixed Complexes

Graded Algebras

Lie Algebras of Matrices

216
216
219
223
228
232
234
238
242
248

254
254
259
263
270
275
278
286
294

300
300
306
311
319
326
330
338
344
354
362



X Contents

10 The Derived Category 369
101 The Category K(d) 369
10.2 Triangulated Categories 373
10.3  Localization and the Calculus of Fractions 379
104  The Derived Category 385
10.5 Derived Functors 390
10.6 The Total Tensor Product 394
10.7 Ext and RHom 398
10.8 Replacing Spectral Sequences 402
10.9 The Topological Derived Category 407

A Category Theory Language 417
A.l  Categories 417
A.2  Functors 421
A.3  Natural Transformations 423
A.4  Abelian Categories 424
A5  Limits and Colimits 427
A.6  Adjoint Functors 429
References 432

Index 435



Introduction

Homological agebra is a tool used to prove nonconstructive existence theo-
rems in algebra (and in agebraic topology). It also provides obstructions to
carrying out various kinds of constructions, when the obstructions are zero,
the construction is possible. Finaly, it is detailed enough so that actua cal-
culations may be performed in important cases. The following simple ques-
tion (taken from Chapter 3) illustrates these points: Given a subgroup A of an
abelian group B and an integer n, when is nA the intersection of A and nB?
Since the cyclic group Z/n is not flat, this is not always the case. The obstruc-
tion is the group Tor(B/A,Z/n), which explicitly is {x € B/A : nx = O}.

This book intends to paint a portrait of the landscape of homologica alge-
brain broad brushstrokes. In addition to the icanonsi of the subject (Ext, Tor,
cohomology of groups, and spectral sequences), the reader will find introduc-
tions to several other subjects: sheaves, limi, local cohomology, hypercoho-
mology, profinite groups, the classifying space of a group, Affine Lie age-
bras, the Dold-Kan correspondence with simplicial modules, triple cohomol-
ogy, Hochschild and cyclic homology, and the derived category. The historical
connections with topology, regular loca rings, and semisimple Lie algebras
are also described.

After a lengthy gestation period (1890-1940), the birth of homologica a-
gebra might be said to have taken place at the beginning of World War 11 with
the crystallization of the notions of homology and cohomology of a topolog-
ical space. As people (primarily Eilenberg) reslized that the same formalism
could be applied to algebraic systems, the subject exploded outward, touching
amost every area of algebra. This phase of development reached maturity in
1956 with the publication of Cartan and Eilenbergis book [CE] and with the
emergence of the central notions of derived functors, projective modules, and
injective modules.

Xi



Xii Introduction

Until 1970, amost every mathematician learned the subject from Cartan-
Eilenberg [CE]. The canonical list of subjects (Ext, Tor, etc.) came from this
book..As the subject gained in popularity, other books gradually appeared on
the subject: MacLane’s 1963 book [MacH], Hilton and Stammbachis 1971
book [HS], Rotman’s 1970 notes, later expanded into the book [Rot], and
Bourbakiis 1980 monograph [BX] come to mind. All these books covered the
canonical list of subjects, but each had its own specia emphasis.

In the meantime, homological agebra continued to evolve. In the period
1955-1975, the subject received another major impetus, borrowing topolog-
ical ideas. The Dold-Kan correspondence alowed the introduction of simpli-
cial methods, 1im' appeared in the cohomology of classifying spaces, spec-
tral sequences assumed a centra role in calculations, sheaf cohomology be-
came part of the foundations of algebraic geometry, and the derived category
emerged as the forma analogue of the topologistsi homotopy category.

Largely due to the influence of Grothendieck, homological agebra became
increasingly dependent on the central notions of abelian category and derived
functor. The cohomology of sheaves, the Grothendieck spectral sequence, lo-
cal cohomology, and the derived category all owe their existence to these no-
tions. Other topics, such as Galois cohomology, were profoundly influenced.

Unfortunately, many of these later developments are not easily found by
students needing homological algebra as a tool. The effect is a technological
barrier between casual users and experts at homological agebra. This book is
an attempt to break down that barrier by providing an introduction to homo-
logical algebra as it exists today.

This book is aimed at a second- or third-year graduate student. Based on the
notes from a course | taught at Rutgers University in 1985, parts of it were
used in 1990-92 in courses taught at Rutgers and Queensi University (the
latter by L. Roberts). After Chapter 2, the teacher may pick and choose topics
according to interest and time constraints (as was done in the above courses),

As prerequisites, | have assumed only an introductory graduate algebra
course, based on a text such as Jacobsonis Basic Algebra | [BAI]. This means
some familiarity with the basic notions of category theory (category, functor,
natural transformation), a working knowledge of the category Ab of abelian
groups, and some familiarity with the category R-mod (resp. mod-R) of left
(resp. right) modules over an associative ring R. The notions of abelian cat-
egory (section 1.2), adjoint functor (section 2.3) and limits (section 2.6) are
introduced in the text as they arise, and al the category theory introduced in
this book is summarized in the Appendix. Several of the motivating exam-
ples assume an introductory graduate course in agebraic topology but may
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be skipped over by the reader willing to accept that such a motivation exists.
An exception is the last section (section 10.9), which requires some familiarity
with point-set topology.

Many of the modern applications of homological agebra are to agebraic
geometry. Inasmuch as | have not assumed any familiarity with schemes or
algebraic geometry, the reader will find a discussion of sheaves of abelian
groups, but no mention of sheaves of Ox-modules. To include it would have
destroyed the flow of the subject; the interested reader may find this material
in [Hart].

Chapter 1 introduces chain complexes and the basic operations one can
make on them. We follow the indexing and sign conventions of Bourbaki
[BX], except that we introduce two total complexes for a double complex: the
algebraistsi direct sum total complex and the topologistsi product total com-
plex. We aso generalize complexes to abelian categories in order to facilitate
the presentation of Chapter 2, and aso in order to accommodate chain com-
plexes of sheaves.

Chapter 2 introduces derived functors via projective modules, injective
modules, and §-functors, following [Tohoku]. In addition to Tor and Ext, this
allows us to define sheaf cohomology (section 2.5). Our use of the acyclic
assembly lemma in section 2.7 to balance Tor and Ext is new.

Chapter 3 covers the canonical material on Tor and Ext. In addition, we dis-
cuss the derived functor limi of the inverse limit of modules (section 3.5), the
Kiinneth Formulas (section 3.6), and their applications to algebraic topology.

Chapter 4 covers the basic homological developments in ring theory. Our
discussion of globa dimension (leading to commutative regular local rings)
follows [KapCR] and [Rot]. Our material on Koszul complexes follows [BX],
and of course the material on local cohomology is distilled from [GLC].

Spectral sequences are introduced in Chapter 5, early enough to be able to
utilize this fundamental tool in the rest of the book. (A common problem with
learning homological algebra from other textbooks is that spectral sequences
are often ignored until the last chapter and so are not used in the textbook
itself.) Our basic construction follows [CE]. The motivational section 5.3 on
the Leray-Serre spectral sequence in topology follows [MacH] very closely.
(I first learned about spectral sequences from discussions with MacLane and
this section of his book.) Our discussion of convergence covers several results
not in the standard literature but widely used by topologists, and is based on
unpublished notes of M. Boardman.

In Chapter 6 we finaly get around to the homology and cohomology of
groups. The material in this chapter is taken from [Brown], [MacH], and [Rot].
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We use the Lyndon/Hochschild-Serre spectral sequence to do calculations in
section 6.8, and introduce the classifying space BG in section 6.10. The ma
terial on universal central extensions (section 6.9) is based on [Milnor] and
[Suz]. The materia on Galois cohomology (and the Brauer group) comes from
[BAII], [Serre], and [ShatZ].

Chapter 7 concerns the homology and cohomology of Lie agebras. As
Lie agebras arenit part of our prerequisites, the first few sections review the
subject, following [JLA] and [Humph]. Most of our material comes from the
1948 Chevalley-Eilenberg paper [ChE] and from [CE], athough the emphasis,
and our discussion of universal central extensions and Affine Lie agebras,
comes from discussions with R. Wilson and [Wil].

Chapter 8 introduces simplicial methods, which have long been a vital part
of the homology toolkit of agebraic topologists. The key result is the Dold-
Kan theorem, which identifies smplicial modules and positive chain com-
plexes of modules. Applied to adjoint functors, simplicial methods give rise
to a host of canonica resolutions (section 8.6), such as the bar resolution, the
Godement resolution of a sheaf [Gode], and the triple cohomology resolutions
[BB]. Our discussion in section 8.7 of relative Tor and Ext groups parallels
that of [MacH], and our short foray into Andre-Quillen homology comes from
[Q] and [Barr].

Chapter 9 discusses Hochschild and cyclic homology of k-agebras. Al-
though part of the discussion is ancient and is taken from [MacH], most is new.
The materia on differentials and smooth algebras comes from [EGA, 1V] and
[Mat]. The development of cyclic homology is rather new, and textbooks on it
{[Loday[,[HK]) are just now appearing. Much of this material is based on the
articles [LQ], [Connes], and [Gw].

Chapter 10 is devoted to the derived category of an abelian category. The
development here is based upon [Verd] and [HartRD]. The material on the
topologistsi stable homotopy in section 10.9 is based on [A] and [LMS].

Paris, February 1993



1
Chain Complexes

1.1 Complexes of R-Modules

Homological agebrais a tool used in severa branches of mathematics: alge-
braic topology, group theory, commutative ring theory, and algebraic geometry
come to mind. It arose in the late 1800s in the following manner. Let f and g
be matrices whose product is zero. If g.v = 0 for some column vector v, say,
of length n, we cannot aways write v = f - u. This falure is measured by the
defect

d =n— rank(f) — rank(g).
In modern language, f and g represent linear maps

f g
U —V — W

with gf =0, and d is the dimension of the homology module
H = ker(g)/f(U).

In the first part of this century, Poincaré and other algebraic topologists
utilized these concepts in their attempts to describe in-dimensional holest in
simplicial complexes. Gradually people noticed that ivector spacel could be
replaced by iR-modulel for any ring R.

This being said, we fix an associative ring R and begin again in the category
mod-R of right R-modules. Given an R-module homomorphism f: A — B,
one is immediately led to study the kernel ker(f), cokernel coker(f), and
image im( f) of f. Given another map g: B — C, we can form the sequence
*) ! ¢

A— B — C.
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We say that such a sequence is exact (at B) if ker(g) =im(f). This implies
in particular that the composite gf: A — Cis zero, and finaly brings our
attention to sequences (x) such that gf = 0.

Definition 1.1.1 A chain complex C. of R-modules is a family {Cp},ez of
R-modules, together with R-module maps d = d,:C, — Cr—1 such that each
composite d o d: C,~— C,—2 is zero. The maps d, are caled the differentials
of C.. The kernd of d, is the module of n-cycles of C, denoted Z, = Z,,(C).
The image of d,,+1:Cpi+1— Cn is the module of n-boundaries of C,, denoted
B, = B,(C). Because d o d =0, we have

0SB, CZ,CCy

for al n. The n'* homology module of C. is the subquotient H,(C) = Z,/B»
of C,. Because the dot in C_ is annoying, we will often write C for C..

Exercise 1.1.1 Set C,=Z/8forn>0and C,=0for n<0;for n>0
let d, send x(mod 8) to 4x(mod 8). Show that C. is a chain complex of
Z/8-modules and compute its homology modules.

There is a category Ch(mod-R) of chain complexes of (right) R-modules.
The objects are, of course, chain complexes. A morphism u: C.— D isa
chain complex map, that is, a family of R-module homomorphisms u,:C, —
D,, commuting with d in the sense that u,_1d,, = d,—1u,. That is, such that
the following diagram commutes

d d
- —> Dyy1 - Dy — Dy —>

Exercise 1.1.2 Show that a morphism u:C.— D_of chain complexes sends
boundaries to boundaries and cycles to cycles, hence maps H,(C)— H, (D.).
Prove that each H, is a functor from Ch(mod-R) to mod-R.

Exercise 1.1.3 (Split exact sequences of vector spaces) Choose vector spaces
{Bn, Hy}nez over a field, and set C,, = B, ® H,® B,_1. Show that the
projection-inclusions C,— B,_1¢cC,—1 make {C,} into a chain complex,
and that every chain complex of vector spaces is isomorphic to a complex of
this form.
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Exercise 1.1.4 Show that {Homg(A, C,)} forms a chain complex of abelian
groups for every R-module A and every R-module chain complex C. Taking
A=2Z,, show that if H,(Homg(Z,, C)) =0, then H,(C) = 0. Is the converse
true?

Definition 1.1.2 A morphism C — D_of chain complexes is caled a quasi-
isomorphism (Bourbaki uses homologism) if the maps H,,(C ) — H,(D)) are
all isomorphisms.

Exercise 1.1.5 Show that the following are equivaent for every C. :

1. C isexact, that is, exact a every Cy.

2. C isacyclic, that is, H,(C) =0 for dl n.

3. The map 0 — C, is a quasi-isomorphism, where “0” is the complex of
zero modules and zero maps.

The following variant notation is obtained by reindexing with superscripts:
C"=C_,. A cochain complex C- of R-modules is a family {Ci} of R-
modules, together with maps d": C" — C"*! such that d o d = 0. Z"(C") =
ker(d") is the module of n-cocycles, B*(C*) = im(d"~})C C" is the mod-
ule of n-coboundaries, and the subquatient H"(C") = Z"/B" of C" isthe n'h
cohomology module of C:. Morphisms and quasi-isomorphisms of cochain
complexes are defined exactly as for chain complexes.

A chain complex C. is caled bounded if dmogst al the C, are zero; if
C,=0unlessa<n <bh, we say that the complex has amplitude in [a b]. A
complex C. isbounded above (resp. bounded below) if thereisabound b (resp.
a) such that C, =0 for al n>Db (resp. n < a). The bounded (resp. bounded
above, resp. bounded below) chain complexes form full subcategories of Ch
= Ch(R-mod) that are denoted Chy, Ch_ and Ch., respectively. The sub-
category Chsq of non-negative complexes C_ (C, = 0 for dl n < 0) will be
important in Chapter 8.

Similarly, a cochain complex C-is called bounded above if the chain com-
plex C. (C, = C™) is bounded below, that is, if C” =0 for al large n; C
is bounded below if C is bounded above, and bounded if C. is bounded.
The categories of bounded (resp. bounded above, resp. bounded below, resp.
non-negative) cochain complexes are denoted Ch?,Ch~,Ch*, and Ch=°,
respectively.

Exercise 1.1.6 (Homology of a graph) Let I" be a finite graph with V vertices
(v1,--,vy) and E edges (ey, . .., eg). If weorient the edges, we can form the
incidence matrix of the graph. Thisisa V x E matrix whose (ij) entry is +1
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if the edge e; starts at v;, — 1if ¢; ends at v;, and O otherwise. Let Cy be the
free R-module on the vertices, C; the free R-module on the edges, C,=0
if n#£0, 1, and d: C;— Cy be the incidence matrix. If T is connected (i.e,
we can get from vg to every other vertex by tracing a path with edges), show
that Hy(C) and H;(C) are free R-modules of dimensions 1 and V —~E - 1
respectively. (The number V — E — 1 isthe number of circuits of the graph.)
Hint: Choose basis {vg, v1— v, -, vy — vg} for Cp, and use a path from vy
to v; to find an element of C; mapping to v; — vy.

Application 1.1.3 (Simplicid homology) Here is a topologica application
we shall discuss more in Chapter 8. Let K be a geometric simplicia complex,
such as a triangulated polyhedron, and let Ki (O <k < n) denote the set of
k-dimensional simplices of K. Each k-simplex has k + 1 faces, which are
ordered if the set Ky of vertices is ordered (do so!), so we obtain k + 1 set
maps 9;: Ky — Kx—1 (0 <i < k). The simplicial chain complex of K with
coefficients in R is the chain complex C , formed as follows. Let Cy, be the free
R-module on the set Ky; set Cx = 0 unless 0 <k < n. The set maps 9; yidd
k + 1 module maps Cy, — Ci_1, which we dso call 9;; their aternating sum
d =Y(~1)"9; is the map C; — Cx_1 in the chain complex C.. To see that C.
is a chain complex, we need to prove the algebraic assertion that d o d = 0.
This trandates into the geometric fact that each (k — 2)-dimensional simplex
contained in a fixed k-simplex o of K lies on exactly two faces of o. The
homology of the chain complex Cis called the simplicial homology of K with
coefficients in R. This simplicial approach to homology was used in the first
part of this century, before the advent of singular homology.

Exercise 1.1.7 (Tetrahedron) The tetrahedron T is a surface with 4 ver-
tices, 6 edges, and 4 2-dimensional faces. Thus its homology is the homol-
ogy of a chain complex 0 — R* - R® — R* — 0. Write down the matrices
in this complex and verify computationaly that H,(T)= Hy(T)=R and
H(T)=0.

Application 1.1.4 (Singular homology) Let X be a topologica space, and
let Sk = Sk(X) be the free R-module on the set of continuous maps from
the standard k-smplex A to X. Restriction to the i*% face of A (0 <i<K)
transforms a map Ax— X into amap Ay_;— X, and induces an R-module
homomorphism 9; from S to Sx—,. The dternating sums d = Z(—l)" d; (from
Sk to Sx_1) assemble to form a chain complex

d d d
> S5 — 51— S — 0,
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called the singular chain complex of X. Then* homology module of S.(X) is
called the n** singular homology of X (with coefficients in R) and is written
H,(X;R). If X is a geometric simplicial complex, then the obvious inclusion
C,(X) = S.(X) is a quasi-isomorphism, so the simplicial and singular homol-
ogy modules of X are isomorphic. The interested reader may find details in
any standard book on algebraic topology.

1.2 Operations on Chain Complexes

The main point of this section will be that chain complexes form an abelian
category. First we need to recall what an abelian category is. A reference for
these definitions is[MacCW].

A category A is caled an Ab-category if every horn-set Hom 4(A, B) in
A is given the structure of an abelian group in such a way that composition
distributes over addition. In particular, given a diagram in A of the form

) g h
A—B—=C—D
g

we have h(g + g') f = hgf + hgif in Hom(A, D). The category Chis an Ab-
category because we can add chain maps degreewiseg; if {f,} and {g,} are chain
maps from C to D, their sum is the family of maps { f, + gxn}.

An additive functor F: B — A between Ab-categories B and d is a functor
such that each Homg(B’, B) — Hom 4(F B’, FB) is a group homomorphism.

An additive category is an Ab-category A with a zero object (i.e., an ob-
ject that is initia and terminal) and a product A x B for every pair A, B of
objects in .A. This structure is enough to make finite products the same as fi-
nite coproducts. The zero object in Ch is the complex “0” of zero modules
and maps. Given a family {A,} of complexes of R-modules, the product TTA,
and coproduct (direct sum) @A, exist in Ch and are defined degreewise: the
differentials are the maps

l_[da : 1—[ Aot,n —> I—I Aa,n—l and Pdy: @aAa,n i @aAa,n—l’
o o
respectively. These suffice to make Ch into an additive category.
Exercise 1.2.1 Show that direct sum and direct product commute with ho-

mology, that is, that @ H,(Aq) = Hy(®Ay) and TTH,(Ay) = Hy(ITA,) for
aln.
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Here are some important constructions on chain complexes. A chain com-
plex B is called a subcomplex of C if each B, is a submodule of C, and the
differential on B is the restriction of the differential on C, that is, when the
inclusions i,: B, C, congtitute a chain map B — C. In this case we can
assemble the quotient modules C,,/ B, into a chain complex

d d d
<o > Cpy1/Bpy1 —> Cu/By —> Cy—1/Bp—1 —>

denoted C/B and called the quotient complex. If f: B — Cis a chain map, the
kernels {ker(f,)} assemble to form a subcomplex of B denoted ker(f), and
the cokemels {coker(f,)} assemble to form a quotient complex of C denoted
coker(f).

Definition 1.2.1 In any additive category A, akernel of a morphism f: B —
C is defined to be a map i: A — B such that fi = 0 and that is universal with
respect to this property. Dualy, a cokernel of fisamap e C — D, which
is universal with respect to having ef = 0.In A, a map i: A — B is monic
if ig=0impliesg = 0 for every map g: Ai - A, andamape C —Dis
an epi if he = 0 implies h =0 for every map h: D — Di. (The definition of
monic and epi in a non-abelian category is dightly different; see A.1 in the
Appendix.) It is easy to see that every kernel is monic and that every cokernel
isan epi (exercise!).

Exercise 1.2.2 In the additive category A = R-mod, show that:

i. The notions of kernels, monics, and monomorphisms are the same.
2. The notions of cokemels, epis, and epimorphisms are also the same.

Exercise 1.2.3 Suppose that A = Ch and f is a chain map. Show that the
complex ker( ) isakernel of f and that coker( ) isacokernel of £ .

Definition 1.2.2 An abelian category is an additive category A such that

1. every map in A has akernel and cokernel.
2. every monic in A is the kernel of its cokernel.
3. every epi in A is the cokernel of its kernel.

The prototype abelian category is the category mod-R of R-modules. In
any abelian category the image im(f) of amap - B — Cis the subobject
ker(coker ) of C; in the category of R-modules, im(f)={F(b) :beB).
Every map f factors as
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L4 m
B — im(f)— C
with e an epimorphism and m amonomorphism. A sequence

f g
A — B — C
of mapsin A is called exact (at B) if ker(g) =im(f).

A subcategory B of A is called an abelian subcategory if it is abelian, and
an exact sequence in Bisaso exact in A.

If A isany abelian category, we can repest the discussion of section 1.1
to define chain complexes and chain maps in d-just replace mod-R by Al
These form an additive category Ch(d), and homology becomes a functor
from this category to A. In the sequel we will merely write Ch for Ch(d)
when A is understood.

Theorem 1.2.3 The category Ch = Ch(.A) of chain complexes is an abelian
category.

Proof Condition 1 was exercise 1.2.3 above. If f:B — Cisachain map, |
clam that f ismonic iff each B,, — C, ismonic, that is, B isisomorphic to a
subcomplex of C. This follows from the fact that the composite ker(f)— C
is zero, so0 if f ismonic, then ker(f) = 0. So if f ismonic, it is isomorphic to
the kernel of C — C/B. Similarly, f isan epi iff each B, — C, isan epi, that
is, C is isomorphic to the cokernel of the chain map ker( f)— B.. <

Exercise 1.2.4 Show that a sequence 0 — A, — B, — C.— 0 of chain com-
plexes is exact in Ch just in case each sequence 0 — A,, - B,—C,— 0 s
exactin A.

Clearly we can iterate this construction and talk about chain complexes of
chain complexes; these are usually called double complexes.

Example 1.2.4 A double complex (or bicomplex) in A isafamily {Cp 4} of
objects of A, together with maps

d":Cpy— Cpo1y and d":Cpy— Cp g

such that d"od"=d?o di =dd" + d"a" = 0. It is useful to picture the
bicomplex C_asalattice
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! ! !

at d"
o Cp—l,q—H <« Cp,q+] «— Cpil,ptl «— ---

@ @ @

d" d"
Cp—l,q < Cp,q < Cpriq «— -

dv| d’} dv]

a* at
‘ Cp-14-1 < Cpg-1 «— Cpt1,g-1 «— - - -

! ! !

in which the maps d" go horizontally, the maps di go verticaly, and each
square anticommutes. Each row C,4 and each column C,, is a chain complex.
We say that a double complex C is bounded if C has only finitely many
nonzero terms along each diagond line p + g = n, for example, if C is con-
centrated in the first quadrant of the plane (a first quadrant double complex).

Sign Trick 1.2.5 Because of the anticommutivity, the maps dT are not maps
in Ch, but chain maps f,, from Cy, to Cy 4— can be defined by introducing
+ signs:

frq = (—l)l’d;j,q: Cpg—>Cpg-1.

Using this sign trick, we can identify the category of double complexes with
the category Ch(Ch) of chain complexes in the abelian category Ch.

Total Complexes 1.2.6 To see why the anticommutative condition d’d” +
d"d? = 0 is useful, define the total complexes Tot(C) = Toti(C) and Tot@(C)
by
Toti(C), = [[Cprq and Tot@(C), = P Cpa-
ptgq=n pt+q=n
The formula d = d” + dT defines maps (check this!)
d : Tot"(C), — Tot"(C),_; and d: Toti(C), — Tot®(C),_1

such that d o d = 0, making TotT(C) and Tot@(C) into chain complexes. Note
that Tot@(C) = TotT(C) if C is bounded, and especialy if C is a first quadrant
double complex. The difference between TotT(C) and Tot@(C) will become
apparent in Chapter 5 when we discuss spectral sequences.
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Remark TotT(C) and Tot@(C) do not exist in al abelian categories, they
donit exist when A is the category of dl finite abelian groups. We say that
an abelian category is complete if al infinite direct products exist (and so
TotT exists) and that it is cocomplete if all infinite direct sums exist (and so
Tot® exists). Both these axioms hold in R-mod and in the category of chain
complexes of R-modules.

Exercise 1.2.5 Give an elementary proof that Tot(C) is acyclic whenever C
is a bounded double complex with exact rows (or exact columns). We will see
later that this result follows from the Acyclic Assembly Lemma 2.7.3. It adso
follows from a spectral sequence argument (see Definition 5.6.2 and exercise
5.6.4).

Exercise 1.2.6 Give examples of (1) a second quadrant double complex C
with exact columns such that TotT(C) is acyclic but Tot@(C) is not; (2) a
second quadrant double complex C with exact rows such that Tot@(C) is
acyclic but TotT(C) is not; and (3) a double complex (in the entire plane) for
which every row and every column is exact, yet neither TotT(C) nor Tot@(C)
is acyclic.

Truncations 1.2.7 If Cis a chain complex and n is an integer, we let v-,C
denote the subcomplex of C defined by

0 ifi <n
(T>0C)i=1 Z, if i =n
C; ifi >n.

Clearly H;(t>,C)=0fori<n and H;(r>,C) = Hi(C) for i > n. The com-
plex 7-,C is caled the (good) truncation of C below n, and the quotient
complex 7.,C =C/(t>,C) is cdled the (good) truncation of C above n;
H;(t-4,C) is Hi(C) for i <nand O for i >n.

Some less useful variants are the brutal truncations o.,C and 0>,C =
C/(6,C). By definition, (6.,C);isC;ifi<nand 0if i >n. These have
the advantage of being easier to describe but the disadvantage of introducing
the homology group H,(c>,C) = C,/B,.

Translation 1.2.8 Shifting indices, or trandation, is another useful operation
we can perform on chain and cochain complexes. If C is a complex and p an
integer, we form a new complex C|p] asfollows:

Clpln = Cutp (resp.ClpI"=C""P)
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with differential (—1)Pd. We cal C[p] the p* translate of C. The way to
remember the shift is that the degree 0 part of C[p]is C,. The sign convention
is designed to simplify notation later on. Note that trandation shifts homology:

Hy(CLp]) = Hp4p(C)  (resp. H*(CLp]) = H"P(C)).

We make trandation into a functor by shifting indices on chain maps. That is,
if f:C— D isachan map, then f[p] is the chain map given by the formula

flpln = fotp (resp. flpl* = f"7P).

Exercise 1.2.7 If C is a complex, show that there are exact sequences of
complexes:

0 —> Z(C) — ¢ -5 B(O)[-1] —> O:

0 — H(C) — C/B(C) —d> ZO)[-1] — HO)|[-1] — 0.

Exercise 1.2.8 (Mapping cone) Let f: B — C be a morphism of chain com-
plexes. Form a double chain complex D out of f by thinking of ¥ as a chain
complex in Ch and using the sign trick, putting B [—1] in the row ¢ = 1 and
Cin therow g = 0. Thinking of C and B[—1] as double complexes in the
obvious way, show that there is a short exact sequence of double complexes

)
0—C-— D — B[-1]— O

The total complex of D is cone(f"), the mapping cone (see section 1.5) of
amap f', which differs from f only by some £ signs and is isomorphic
to f.

1.3 Long Exact Sequences

It is time to unvell the feature that makes chain complexes so special from a
computational viewpoint: the existence of long exact sequences.

Theorem 1.3.1 Let 0 — A. —f>B_—g——>C‘—> 0 be a short exact sequence of
chain complexes. Then there are natural maps a: H,(C) — H,_1 (A), called
connecting homomorphisms, such that

a K]
s Hop1 (C) -5 Ho(A) -5 Hy(B) 55 Hy(©) -5 Hooy(a) >

is an exact sequence.
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Similarly, if 0 —>A-—f>B~—g-—>C-—> 0 is a short exact sequence of

cochain complexes, there are natural maps 3: H*(C)— H"*! (A) and a long
exact sequence

A a2 By L MY S HNC) S HPY(4) LS

Exercise 1.3.1 Let0 —-A — B — C — 0 be a short exact sequence of com-
plexes. Show that if two of the three complexes A, B, C are exact, then so is
the third.

Exercise 1.3.2 (3 x 3 lemma) Suppose given a commutative diagram

0 0 0

! ! !
0 — A — B — C — 0
! ! !

00— A — B — C — 0

1 ! !

00— AT — B" —5 " — 0

! 1 !

0 0 0
in an abelian category, such that every column is exact. Show the following:

1. If the bottom two rows are exact, so is the top row.

2. If the top two rows are exact, so is the bottom row.

3. If the top and bottom rows are exact, and the composite A — C is zero,
the middle row is also exact.

Hint: Show the remaining row is a complex, and apply exercise 1.3.1.

The key tool in constructing the connecting homomorphism 3 is our next
result, the Snake Lemma. We will not print the proof in these notes, because
it is best done visualy. In fact, a clear proof is given by Jill Clayburgh at the
beginning of the movie Ir’s My Turn (Rastar-Martin Elfand Studios, 1980). As
an exercise in idiagram chasingi of elements, the student should find a proof
(but privately-keep the proof to yourself!).

Snake Lemma 1.3.2 Consider a commutative diagram of R-modules of the
form
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Al — BIi —(C'— 0
£l gl n

0 — A N B — C.
If the rows are exact, there is an exact sequence
ker(f) — ker(g) — ker(h) —a—> coker(f) — coker(g) — coker(h)
with d defined by the formula
) = i—‘g;p—‘(c’), ci eker(h).
Moreover, if Al — B is monic, then so is ker(f) — ker(g), and if B — C is

onto, then so is coker( f) — coker(g).
¥ R

Etymology The term snake comes from the following visua mnemonic:

ker(f) — ker(g) —> ker(h) -- -- -.

. =~~~ * coker(f) —> coker(g) —> coker(h).

Remark The Snake Lemma aso holds in an arbitrary abelian category C. To
see this, let A be the smallest abelian subcategory of C containing the ob-
jects and morphisms of the diagram. Since d has a set of objects, the Freyd-
Mitchell Embedding Theorem (see 1.6.1) gives an exact, fully faithful embed-
ding of .4 into R-mod for some ring R. Since 3 exists in R-mod, it exists in
A and hence in C. Similarly, exactness in R-mod implies exactness in .4 and
hencein C,
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Exercise 1.3.3 (5-Lemma) In any commutative diagram
Ai — Bi — Ci —D'—> FE’
al% bl%’ cl dl% el

A——» B — C — D — E

IR

with exact rows in any abelian category, show that if a, b, d, and e are isomor-
phisms, then ¢ is also an isomorphism. More precisely, show that if b and d
are monic and a is an epi, then ¢ is monic. Dually, show that if b and d are
epis and e is monic, then c is an epi.

We now proceed to the construction of the connecting homomorphism a of
Theorem 1.3.1 associated to a short exact sequence

0>A—->B—->C—-0

of chain complexes. From the Snake Lemma and the diagram

0 0 0

! ! !

0 — ZyA — Z,B — Z,C

! ! !

0 — A, — B, — C, — 0
d] dl al

0 — A, — B,y —> Ch.1 — O

! ! !

Ap_| By Cn—l
— —_

— 0
dA, dB, dCy
! ! !
0 0 0

we see that the rows are exact in the commutative diagram

An By Cn
— —
dAn+l dBn—H dcn+l

dj d} dl

f g
0 - Z,1(A) — Zy_1(b) — Zy—1(O).
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The kernel of the left vertica is H,,(A), and its cokernel is H,_1 (A). Therefore
the Snake Lemma yields an exact sequence

Ha(A) -5 Hu(B) %> Hy(C) —5> Hao1(A) — Hy 1(B) = Ho1(C).
The long exact sequence 1.3.1 is obtained by pasting these sequences together.

Addendum 1.3.3 When one computes with modules, it is useful to be able to
push elements around. By decoding the above proof, we obtain the following
formula for the connecting homomorphism: Let z € H,,(C), and represent it by
acycle c € C,,. Lift the cycle to b € B,, and apply d. The element db of B,
actually belongs to the submodule Z,_; (A) and represents d(z) € H,_1(A).

We shall now explain what we mean by the naturaity of 3. Thereis a
category S whose objects are short exact sequences of chain complexes (say,
in an abelian category C). Commutative diagrams

00— A — B — C — 0

*) 1 ! i

00— Al —» Bi — Ci — 0

give the morphismsin & (from the top row to the bottom row). Similarly, there
is a category £ of long exact sequencesin C.

Proposition 1.3.4 The long exact sequence is a functor from S to £. That is,
for every short exact sequence there is a long exact sequence, and for every
map () of short exact sequences there is a commutative ladder diagram

~8_> H,(A) — H,(B) — H,(C) 2 Hp_1(A)—>
! ! ! !

a a
. —> H, (A — H,(B)) — H,(C") — H,_1(A)— . . . .

Proof All we have to do is establish the ladder diagram. Since each H,isa
functor, the left two sguares commute. Using the Embedding Theorem 1.6.1,
we may assume C = mod-R in order to prove that the right square commutes.
Given z € H,(C), represented by ¢ € C,,, itsimage zi € H,(C’) is represented
by the image of c. If b € B, lifts ¢, itsimage in B}, lifts ci. Therefore by 1.3.3
8 (zi) e H,_; (AT) is represented by the image of db, that is, by theimage of a
representative of a(z), so 9(z’) is the image of a(z). <
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Remark 1.3.5 The data of the long exact sequence is sometimes organized
into the mnemonic shape

H(A) —>  H«(B)

AN e
H,.(C)

This is called an exact triangle for obvious reasons. This mnemonic shape
is responsible for the term itriangulated category,T which we will discuss in
Chapter 10. The category K of chain equivalence classes of complexes and
maps (see exercise 1.4.5 in the next section) is an example of a triangulated
category.

Exercise 1.3.4 Consider the boundaries-cycles exact sequence 0 — Z —
C — B(- 1) — 0 associated to a chain complex C (exercise 1.2.7). Show that
the corresponding long exact sequence of homology breaks up into short exact
sequences.

Exercise 1.3.5 Let f be a morphism of chain complexes. Show that if ker(f)
and coker( f) are acyclic, then f is a quasi-isomorphism. |s the converse true?

Exercise 1.3.6 Let0—- A — B — C — 0 be a short exact sequence of dou-

ble complexes of modules. Show that there is a short exact sequence of total

complexes, and conclude that if Tot(C) is acyclic, then Tot(A) — Tot(B) isa
quasi-isomorphism.

1.4 Chain Homotopies

The idess in this section and the next are motivated by homotopy theory in
topology. We begin with a discussion of a special case of historical impor-
tance. If C is any chain complex of vector spaces over a field, we can always
choose vector space decompositions:

Ch=2,0 B,/,, B,,,;Cn/zn =d(Cp) = By—1;
Z,=B,®H,, H,~Z,/B, = H,(C).

Therefore we can form the compositions

Ch—> Zy > By = Br,:+1 C Chti
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to get splitting maps s,: Cy, — Cp+1, SUch that d = dsd. The compositions ds
and sd are projections from C, onto B, and B, respectively, so the sum ds +
sd is an endomorphism of C, whose kernel H,, is isomorphic to the homology
H,(C). The kernel (and cokemel!) of ds + sd is the trivial homology complex
H,(C). Evidently both chain maps H,(C) — C and C — H.(C) are quasi-
isomorphisms. Moreover, C is an exact sequence if and only if ds + sd is the
identity map.

Over an arbitrary ring R, it is not aways possible to split chain complexes
like this, so we give a name to this notion.

Definition 1.4.1 A complex C is called split if there are maps $,:C,,— Cpt1
such that d = dsd. The maps s, are called the splitting maps. If in addition C
is acyclic (exact as a sequence), we say that C is split exact.

Example 1.4.2 Lee R=7 or Z/4, and let C be the complex
RN 77 LNy )Ry /SN

This complex is acyclic but not split exact. There is no map s such that ds + sd
is the identity map, nor is there any direct sum decomposition C,=Z,® B,,.

Exercise 1.4.1 The previous example shows that even an acyclic chain com-
plex of free R-modules need not be split exact.

1. Show that acyclic bounded below chain complexes of free R-modules
are dways split exact.

2. Show that an acyclic chain complex of finitely generated free abelian
groups is always split exact, even when it is not bounded below.

Exercise 1.4.2 Let C be a chain complex, with boundaries B, and cycles Z,
in C,. Show that C is split if and only if there are R-module decompositions
Ch=Z,®B),and Z,= B,® H,. Show that C is split exact iff H, = 0.

Now suppose that we are given two chain complexes C and D, together
with randomly chosen maps s,:C,, — Dy, 1. Lét f, be the map from C, to D,
defined by the formula f, =dp+18n + Su—1dn .

d d
Chy1 — Cp —> Cyy

s’ 1l s/

Dyt — D, — Dy
d d
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Dropping the subscripts for clarity, we compute
df =d{ds + sd) = dsd = (ds + sd)d = f d.
Thus f =ds + sd is a chain map from C to D.

Definition 1.4.3 We say that a chain map f: C — D isnull homotopic if
there are maps s,:Cp,— Dy41 such that f =ds + sd. The maps {s,} are
caled achain contraction of f.

Exercise 1.4.3 Show that C is a split exact chain complex if and only if the
identity map on C is null homotopic.

The chain contraction construction gives us an easy way to proliferate chain
maps:. if g:C — D is any chain map, so is g + (sd + ds) for any choice of
maps s,. However, g + (sd + ds) is not very different from g, in a sense that
we shall now explain.

Definition 1.4.4 We say that two chain maps f and g from C to D are chain
homotopic if their difference f — g is null homotopic, that is, if

f—g=sd+ds.

The maps (s} are called a chain homotopy from f to g. Finaly, we say that
f: ¢ - Disachain homotopy equivalence (Bourbaki uses homotopism) if
there is a map g: D — C such that gf and fg are chain homotopic to the
respective identity maps of C and D.

Remark This terminology comes from topology via the following observa
tion. A map f between two topologica spaces X and Y induces a map
fe: S(X) = SY) between the corresponding singular chain complexes. It
turns out that if f is topologically null homotopic (resp. a homotopy equiv-
alence), then the chain map f, is null homotopic (resp. a chain homotopy
equivalence), and if two maps f and g are topologicaly homotopic, then f.
and g, are chain homotopic.

Lemma 1.45 I'F F: C— D is null homotopic, then every map fi: Hy(C)—>
H,(D) is zero. If f and g are chain homotopic, then they induce the same
maps H,(C) — H,(D).

Proof It is enough to prove the first assertion, so suppose that f = ds + sd.
Every edement of H,(C) is represented by an n-cycle x. But then f(x) =
d(sx). That is, f(x) is an n-boundary in D. As such, f(x) represents 0 in
H, (D). <
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Exercise 1.4.4 Consider the homology H,(C) of C as a chain complex with
zero differentials. Show that if the complex C is plit, then there is a chain
homotopy equivalence between C and H,(C). Give an example in which the
converse fails.

Exercise 1.4.5 In this exercise we shall show that the chain homotopy classes
of maps form a quotient category K of the category Ch of all chain complexes.
The homology functors H, on Ch will factor through the quotient functor
Ch - K.

1. Show that chain homotopy equivalence is an equivalence relation on
the set of all chain maps from C to D. Let Homg(C, D) denote the
equivalence classes of such maps. Show that Homk (C, D) is an abelian
group.

2. Let f and g be chain homotopic maps from C to D. If u:B — C and
v: D — E are chain maps, show that vf ¥ and vgu are chain homotopic.
Deduce that there is a category K whose objects are chain complexes and
whose morphisms are given in (1).

3. Let fo, f1, go, and g; be chain maps from C to D such that f; is chain
homotopic to g; (i = 1, 2). Show that fo + f; is chain homotopic to
go + g1. Deduce that K is an additive category, and that Ch — K is an
additive functor.

4. IsK anabelian category? Explain.

1.5 Mapping Cones and Cylinders

15.1 Let f:B — C be amap of chain complexes. The mapping cone of
f is the chain complex cone(f) whose degree n part is B,—1® C,. In order
to match other sign conventions, the differential in cone(f) is given by the
formula

d(b,c) = (~d(b),d(c)— (B)), (hEBu_i,c€ C,).
That is, the differentia is given by the matrix
B, — B, >

—-dg 0 | _
[—f +dc]' ® N ©

Ch — G6-1
4
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Here is the dua notion for a map f:B-— C- of cochain complexes. The
mapping cone, cone(f), is a cochain complex whose degree n part is B" '@
C". The differentia is given by the same formula as above with the same signs.

Exercise 1.51 Let cone(C) denote the mapping cone of the identity map id¢
of C; it has C,—1® C,, in degree n. Show that cone(C) is split exact, with
s(b, ¢) = (-c, 0) defining the splitting map.

Exercise 1.52 Let f: C— D be a map of complexes. Show that f is null
homotopic if and only if f extendsto a map (—s, f): cone(C) — D.

1.52 Any map f,: H,(B) - H,(C) can be fit into a long exact sequence
of homology groups by use of the following device. There is a short exact
sequence

0 — C — cone(f) > B[-1] — 0

of chain complexes, where the left map sends c to (O, ¢), and the right map
sends (b, ¢) to —b. Recdling (1.2.8) that H,,1(B[—1]) = H,(B), the homoal-
ogy long exact sequence (with connecting homomorphism 3) becomes

> Hupi(cone(f)) =% Hy(B) — Ha(C) — Hy(cone(f)) —> Hy_1(B) —o-- .

The following lemma shows that 9 = f, fitting fi into a long exact sequence.
Lemma 1.5.3 The map 3 in the above sequence is fi.

Proof If b € B, is a cycle, the element (-b, 0) in the cone complex lifts b via
6. Applying the differential we get (db, fb) = (0, fb). This shows that

alb] = [fb] = fulb]. <&

Corollary 1.5.4 A map f: B — C is a quasi-isomorphism if and only if the
mapping cone complex cone(f) is exact. This device reduces questions about
quasi-isomorphisms to the study of split complexes.

Topological Remark Let K be a simplicia complex (or more generaly a cell
complex). The topological cone CK of K is obtained by adding a new vertex
sto K and iconing offT the simplices (cells) to get a new (n +1)-simplex
for every old n-simplex of K. (See Figure 1.1.) The simplicial (cellular) chain
complex C.(s) of the one-point space {s}isR in degree O and zero elsewhere.
C,(s) is a subcomplex of the simplicia (cellular) chain complex C (CK) of
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CK CK

cone Cf

K //,,/,/./, /// -

Figure 1.1. The topological cone C K and mapping cone Cf.

the topological cone C K. The quotient C. (C K)/C (s) is the chain complex
cone(C_K) of the identity map of C,(K). The algebraic fact that cone{C K) is
split exact (null homotopic) reflects the fact that the topological cone CK is
contractible.

More generdly, if f:K—Lis a simplicial map (or a cellular map), the
topological mapping cone Cf of f is obtained by glueing CK and L together,
identifying the subcomplex K of CK with itsimage in L (Figure 1.1). This is
a cellular complex, which is simplicial if f is an inclusion of simplicia com-
plexes. Write C (Cf) for the cellular chain complex of the topological map-
ping cone Cf. The quotient chain complex C.(Cf)/C.(s) may be identified
with cone( f.), the mapping cone of the chain map f,: C,(K) = C.(L).

1.5.5 A rdated congtruction is that of the mapping cylinder cyl(f) of achain
complex map f: B.— C.. The degree n part of cyl( f) is B,® B,—1®Cy, and
the differential is

d(b, bi, ¢) = (d(b) + bi, -d(bi), d(c) — f (bi)).

That is. the differentia is given by the matrix

B, —* B,
dg idg 0 @ / / @
0 -dg O By —— B,
0 f dc @ N ®

+
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The cylinder is a chain complex because

d% dpg — dp 0
=10 d o :1 0.

0 fds-dcf d&

Exercise 1.5.3 Let cyl(C) denote the mapping cylinder of the identity map
idc of C; it has C, & Cr_1® C, in degree n. Show that two chain maps
f»9: C— D are chain homotopic if and only if they extend to a map (f, s, g):
cyl(C) — D.

Lemma 1.5.6 The subcomplex of elements (0, O, c) is isomorphic to C, and
the corresponding inclusion a:C — cyl(f) is a quasi-isomorphism.

Proof The quotient cyl(f)/a(C) is the mapping cone of —idg, SO it isnull-
homotopic (exercise 1.5.1). The lemma now follows from the long exact ho-
mology sequence for

0O — C N cyl(f) — cone(—idg) — O. %

Exercise 1.5.4 Show that B(b, bi, c) = f(b) + ¢ defines a chain map from
cyl(f) to C such that Ba =id¢. Then show that the formula s(b, bi, ¢) =
(0, b, 0) defines a chain homotopy from the identity of cyl( f) to ¢8. Conclude
that « isin fact a chain homotopy equivalence between C and cyl( f).

Topological Remark Let X be a cellular complex and let | denote the interval
[0,1]. The space I x X is the topological cylinder of X. It is aso a cell com-
plex; every n-cell e” in X gives rise to three cells in Z x X: the two n-cdlls,
Oxe"and 1x e, and the (n + 1)-cell (0, 1) x €”. If C.(X) is the celular
chain complex of X, then the cellular chain complex C (I x X) of I x X may
be identified with cyl(id¢ x), the mapping cylinder chain complex of the iden-
tity map on C.(X).

More generdly, if f: X — Y is a cellular map, then the topological map-
ping cylinder cyl( f) is obtained by glueing Z x X and Y together, identifying
0 x X with the image of X under f (see Figure 1.2). This is aso a cellular
complex, whose cellular chain complex C_(cyl( f)) may be identified with the
mapping cylinder of the chain map C (X) — C.(Y).

The congtructions in this section are the agebraic anaogues of the usual
topological constructions 7 x X >~ X, ¢yl(f)~ Y, and so forth which were
used by Dold and Puppe to get long exact sequences for any generalized ho-
mology theory on topological spaces.
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7 1xX

IxX Cyl(h

Figure1.2. Thetopologica cylinder of X and mapping cylinder cyl(f)

Here is how to use mapping cylinders to fit f, into a long exact sequence
of homology groups. The subcomplex of elements (b, 0,0) incyl(f) isiso-
morphic to B, and the quotient cyl(f)/B is the mapping cone of f. The

composite B —>cyl(f)—i> C is the map f, where 8 is the equivalence of
exercise 1.5.4,s0 on homology f«: H(B) — H(C) factors through H(B) —
H{(cyl(f)). Therefore we may construct a commutative diagram of chain com-
plexes with exact rows:

C
£ T8

0 — B — cyl(f) — cone(f) —0
Te ||
8
0 — C — cone(f) — B[-1] — O.
The homology long exact sequences fit into the following diagram:
— 7 HB) > HI() — Hcone(f) —> Hoi(B) -

EEATN H |

—  Hpq(B[-1) - H,(C)  — Hu(cone(f)) S H,(B[-1]) -

Lemma 1.5.7 This diagram is commutative, with exact rows.

Proof It suffices to show that the right square (with —d and §) commutes.
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Let (b, ¢) be an n-cycle in cone(f), so d(b) = 0 and f(b) = d(c). Lift it to
(O, b, ¢) incyl(f) and apply the differential:

d(0,b,¢) = (0 + b, —db, dc — fb) = (b, 0, 0).

Therefore 9 maps the class of (b, c) to the class of b = —§(b,¢) in H,_(B).
<

1.58 The cone and cylinder constructions provide a natura way to fit the
homology of every chain map f: B — C into some long exact sequence (see
15.2 and 15.7). To show that the long exact sequence is well defined, we need
to show that the usua long exact homology sequence attached to any short
exact sequence of complexes

0—>B—f—>C——g—>D——>O

agrees both with the long exact sequence attached to f and with the long exact
sequence attached to g.

We first consider the map f. There is a chain map ¢: cone(f) — D defined
by the formula ¢ (b, ¢) = g(c). It fits into a commutative diagram with exact
rows:

8
0 — C — cone(f) — B[-1] — O
Le ||
0 — B — cyl(f) — cone(f) — 0

I 18 Ly

0 — B —f> C —g> D — 0.
Since B is a quasi-isomorphism, it follows from the S-lemma and 1.3.4 that ¢
is a quasi-isomorphism as well. The following exercise shows that ¢ need not
be a chain homotopy equivalence.

Exercise 1.5.5 Suppose that the B and C of 1.5.8 are modules, considered
as chain complexes concentrated in degree zero. Then cone(f) is the complex

0—-B = C — 0. Show that ¢ is a chain homotopy equivalence iff f:B C
Cisagplit injection.

To continue, the naturality of the connecting homomorphism a provides us
with a natural isomorphism of long exact sequences:
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L HyB) —>  Hyeyl(f)) —> Hu(cone(f)) —— Hy_{(B) —

L I |

L HaB) —  Hi(O) —>  HoD)  —> Hya(B) —> -

Exercise 1.56 Show that the composite
—8x
H,(D) = Hy(cone(f)) — Hn(B[—1]) = Hp—1(B)
is the connecting homomorphism o in the homology long exact sequence for

0—-B—->C—>D—0.

Exercise 1.5.7 Show that there is a quasi-isomorphism B[-1] — cone(Q)
dua to ¢. Then dudize the preceding exercise, by showing that the com-
posite

Hy(D) —> Hy1(B) —> Hy(cone(g))
is the usual map induced by the inclusion of D in cone(g).

Exercise 1.5.8 Given a map f:B — C of complexes, let v denote the in-
cluson of C into cone(f). Show that there is a chain homotopy equivalence
cone(v) — B[ —1]. This equivalence is the agebraic analogue of the topolog-
ical fact that for any map f: K — L of (topological) cell complexes the cone
of the incluson L ¢ Cf is homotopy equivaent to the suspension of K.

Exercise 1.59 Let f: B— C be a morphism of chain complexes. Show that

the natural maps ker(f) [ —1]—B> cone(f) —ﬁ>coker( f) give rise to a long
exact sequence:

- Hyoy(ker(f)) —%> Hy(cone(f) L Hy(coker(f)) ~5> Huoatker(£)- .

Exercise 1.5.10 Let C and Ci be split complexes, with splitting maps s, si.
If f:C— Ci is a morphism, show that o (c, ci) = (--s(c), s’(c') =" fs(c))
defines a splitting of cone(f) if and only if the map fi: Hi(C) — H,(C') is
zero.
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1.6 More on Abelian Categories

We have dready seen that R-mod is an abelian category for every associative
ring R. In this section we expand our repertoire of abelian categories to include
functor categories and sheaves. We also introduce the notions of left exact and
right exact functors, which will form the heart of the next chapter. We give the
Y oneda embedding of an additive category, which is exact and fully faithful,
and use it to sketch a proof of the following result, which has already been
used. Recall that a category is called small if its class of objectsisin fact a set.

Freyd-Mitchell Embedding Theorem 1.6.1 (1964) If A is a small abelian
category, then there is a ring R and an exact, fully faithful functor from

A into R-mod, which embeds A as a full subcategory in the sense that -
Hom 4(M, N) = Homg(M, N).

We begin to prepare for this result by introducing some examples of abelian
categories. The following criterion, whose proof we leave to the reader, is
frequently useful:

Lemma 1.6.2 Let C C A be a full subcategory of an abelian category A .

1. C is additive <& 0€C, and C is closed under &.
2. Cis abelian and C C A is exact < C is additive, and C is closed under
ker and coker.

Examples 1.6.3

1. Inside R-mod, the finitely generated R-modules form an additive cate-
gory, which is abelian if and only if R is noetherian.

2. Inside Ab, the torsionfree groups form an additive category, while the
p-groups form an abelian category. (A is a p-group if (Va & A) some
p"a=0.) Finite p-groups also form an abelian category. The category
(Z/p)-mod of vector spaces over the field Z/p is aso a full subcategory
of Ab.

Functor Categories 1.6.4 Let C be any category, A an abelian category.
The functor category A€ isthe abelian category whose objects are functors
F.C— A. Themapsin AC are natural transformations. Here are some rele-
vant examples:

1. If C is the discrete category of integers, Ab contains the abelian cate-
gory of graded abelian groups as a full subcategory.
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2. If C is the poset category of integers (--- —>n — (n+ 1) — ---) then
the abelian category Ch(.A) of cochain complexes is a full subcategory
of AC.

3. If R is a ring considered as a one-object category, then R—mod is the full
subcategory of all additive functors in AbX,

4. Let X be a topological space, and U/ the poset of open subsets of X. A
contravariant functor F from U to A such that F (?) = {0} is called a
presheaf on X with values in A, and the presheaves are the objects of |
the abelian category AU” = Presheaves(X).

A typical example of a presheaf with values in R—meod is given by o) =
{continuous functions f:U — R}. If U C V the maps cov)— Co%U) are
given by restricting the domain of a function from V to U. In fact, C Ois a
sheaf:

Definition 1.6.5 (Sheaves) A sheaf on X (with values in A) is a presheaf F
satisfying the

Sheaf Axiom. Let {U;} be an open covering of an open subset U of X.

If {f; € F(U;)} are such that each fi and f; agree in F(U; N U;), then

there is a unique f € F(U) that maps to every f; under F(U) — F(Us).
Note that the uniqueness of f is equivalent to the assertion that if f e F(U)
vanishes in every F(U;), then f =0. In fancy (element-free) language, the
sheaf axiom states that for every covering {U;} of every open U the following
sequence is exact:

0 F(W) — [[Fwn = [ Fwinu).

i<j

Exercise 1.6.1 Let M be a smooth manifold. For each open U in M, let
C>®(M) be the set of smooth functions from U to R. Show that C*(M) is
a sheaf on M.

Exercise 1.6.2 (Constant sheaves) Let A be any abelian group. For every
open subset U of X, let A(U) denote the set of continuous maps from U to
the discrete topological space A. Show that A is a sheaf on X.

The category Sheaves(X) of sheaves forms an abelian category contained in
Presheaves(X), but it is not an abelian subcategory; cokernels in Sheaves(X)
are different from cokernels in Presheaves(X). This difference gives rise to
sheaf cohomology (Chapter 2, section 2.6). The following example lies at the
heart of the subject. For any space X, let O (resp. (O*) be the sheaf such that
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OU) (resp. O*(U)) is the group of continuous maps from U into € (resp.
C*). Then there is a short exact sequence of sheaves:

022055 0 0.

When X is the space C*, this sequence is not exact in Presheaves(X) because
the exponential map from C = O(X) to O*(X) is not onto; the cokernel is
Z=H'(X,7), generated by the globa unit I/z. In effect there is no global
logarithm function on X, and the contour integra 5 56 f(2) dz gives the
image of f(z) in the cokernel.

Definition 1.6.6 Let F: A — B be an additive functor between abelian cat-
egories. Fis called left exact (resp. right exact) if for every short exact se-
quence 0 - A—-B —- C—0in A, the sequence 0 — F(A) - F(B) —
F(C) (resp. F(A) — F(B) — F(C) — 0) isexact in B. F is cdled exact if
it is both left and right exact, that is, if it preserves exact sequences. A con-
travariant functor F is called left exact (resp. right exact, resp. exact) if the
corresponding covariant functor Fi: A% — Bisleft exact (resp....).

Example 1.6.7 The inclusion of Sheaves(X) into Presheaves(X) is a left
exact functor. There is aso an exact functor Presheaves(X) — Sheaves(X),
called ishedfification.T (See 2.6.5; the shedfification functor is left adjoint to
the inclusion.)

Exercise 1.6.3 Show that the above definitions are equivalent to the follow-
ing, which are often given as the definitions. (See [Rot], for example.)) A (co-
variant) functor F is left exact (resp. right exact) if exactness of the sequence

0>A—>B—>C (rep. A>B—>C—0)
implies exactness of the sequence

0> FA —FB — FC (resp. FA — FB — FC — 0).

Proposition 1.6.8 Let .4 be an abelian category. Then Hom 4(M, -) is a left

exact functor from A to Ab for every M in A.  That is, given an exact sequence

0—-A N B—%C—0in A, the following sequence of abelian groups is

also exact:

0 — Hom(M, A) Hom(M, B) Hom(M, C).
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Proof If «a e Hom(M, A) then f,a = f 0 a if this is zero, then ¢ must be
zero since f ismonic. Hence fy ismonic. Since g 0 f = 0, we have g« fx(@) =
g0 foua=0, 30 g«fsx= 0. It remains to show that if € Hom(M, B) is such
that g«8=g 08 is zero, then = f o« for some . Butif go g = 0, then
B(M)C f(A), so B factors through A. <

Corollary 1.6.9 Hom 4(—, M) is a left exact contravariant functor.
Proof Hom4(A, M) = Hom 4o»(M, A). <

Yoneda Embedding 1.6.10 Every additive category .4 can be embedded in
the abelian category Ab“A” by the functor # sending A to A4 = Hom 4(—, A).
Since each Hom 4(M, —) is left exact, h is a left exact functor. Since the
functors h 4 are left exact, the Y oneda embedding actually lands in the abelian
subcategory £ of all left exact contravariant functors from .4 to Ab whenever
A isan abelian category.

Yoneda Lemma 1.6.11 The Yoneda embedding h reflects exactness. That is,

a sequence A =B LN Cin A is exact, provided that for every M in A the
following sequence is exact:

Hom 4(M, A) -*% Hom (M, B) 2 Homa(M, C).

Proof Taking M = A, we see that Ba = B*«*(idy) = 0. Taking M = ker(8),

we see that the inclusion ¢: ker(8) — B satisfies g*(¢) = Bt = 0. Hence there

is a o € Hom(M, A) with 1= a*(0) = a0, so that ker(8) = im(¢) € im(«).
<&

We now sketch a proof of the Freyd-Mitchell Embedding Theorem 1.6.1;
details may be found in [Freyd] or [Swan, pp. 14-22]. Consider the failure of
the Y onedaembedding h: A — Ab*” to be exact: if 0 ~A—>B —>C — 0
isexactinAandMe d, then definetheabelian group W(M) by exactness of

0 — Hom4(M, A) - Hom 4(M, B) - Hom4(M, C) - W(M) — 0.
In general W(M) # 0, and there is a short exact sequence of functors:
(x) O0—>hyg—>hg—>hec—>W-—-0.

W is an example of a weakly effaceable functor, that is, a functor such that
fordl M e A and x € W(M) there is asurjection P — M in A SO that the
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map W(M) — W(P) sends x to zero. (To see this, take P to be the pullback
M x¢ B, where M — C represents x, and note that P — C factors through
B.) Next (see loc. cit.), one proves:

Proposition 1.6.12 If A is small, the subcategory W of weakly effaceable
functors is a localizing subcategory of AbA” whose quotient category is C.
That is, there is an exact ireflectionT functor R from Ab4” to C such that
R(L) = L for every left exact L and R(W) == 0 iff W is weakly effaceable.

Remark Cokemels in £ are different from cokemels in AbA”, so the inclu-
sion £ AbA” is not exact, merely left exact. To see this, apply the reflection
R to (x). Since R(h4) = h4 and R(W) =2 0, we see that

O0—> hg—>hg—>hc—0

is an exact sequence in C, but not in Ab4” .

Corollary 1.6.13 The Yoneda embedding h: A — L is exact and fully faith-
ful.

Finally, one observes that the category C has arbitrary coproducts and has
a faithfully projective object P. By a result of Gabriel and Mitchell [Freyd,
p.106], £ is equivdent to the category R-mod of modules over the ring
R = Homg( P, P). This finishes the proof of the Embedding Theorem.

Example 1.6.14 The abelian category of graded R-modules may be thought
of as the full subcategory of (] ];.z R)-modules of the form @;czM;. The
abelian category of chain complexes of R-modules may be embedded in
S-mod, where

S=([[RId)/@ =0, {dr =rd)rcr, (dei =ei-1d}ien).
ieZ

Here e;:[]R — R —[[Risthe i’ coordinate projection.
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Derived Functors

2.1 5-Functors

The right context in which to view derived functors, according to Groth-

endieck [Tohoku], is that of §-functors between two abelian categories A
and B.

Definition 2.1.1 A (covariant) homological (resp. cohomological) §-functor
between A and B is a collection of additive functors T,: . A — B (resp.
T": A — B)forrn> 0, together with morphisms
0n: Tn(C) = Tn-1(A)
(resp. 8":T"(C)—T"*! (A))
defined for each short exact sequence 0 - A—>B—>C—0inA. Here we
make the convention that 7" =T, = 0 for n < 0. These two conditions are
imposed:
1. For each short exact sequence as above, there is along exact sequence
CTt(©) S Th(A) = TuB) — T(€) > TiaA) -
(resp.
. TT-¢(C) 5 TT(A) — TT(B) — T™C) 2oty ),

In particular, Ty is right exact, and T is left exact.

30
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2. For each morphism of short exact sequences from 0 — Ai — Bi —
Ci -0to0—+A-B—C—0, the 6is give a commutative diagram

) S
Th(C) —> Ty—1(A") () — T"(A)
1 ! resp. ! !
S 8
T, (C) —> T,_i(A) T"C) — T"t(A)

Example 2.1.2 Homology gives a homological §-functor Hy from Chxg(A)
to A; cohomology gives a cohomological S-functor H* from Ch=(A4) to
A.

Exercise 2.1.1 Let S be the category of short exact sequences
(x) 0>A—>B—->C—-0

in A. Show that é; is a natural transformation from the functor sending (x) to
T;(C) to the functor sending () to 7;_1(A).

Example 2.1.3 (p-torsion) If p is an integer, the functors To(A) = A/pA and
Ti(A)= pA={ac A:pa=0}

fit together to form a homological §-functor, or a cohomological §-functor
(with 79=Ty and T' =Tp) from Ah to Ah. To see this, apply the Snake
Lemmato

0 — A — B — C — 0

rl el pl
o - A - B - C - 0
to get the exact sequence

8
0— ,A—> ,B— ,C— A/pA— B/pB— C/pC—0.

Generalization The same proof shows that if ris any element in aring R,
then To(M) =M /rM and T\ (M) = , M fit together to form a homologica §-
functor (or cohomological S-functor, if that is oneis taste) from R-mod to Ab.
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Vista We will see in 2.6.3 that T,(M) = TorR(R/r, M) is aso a homolog-
ical 8-functor with To(M) =M /rM. If r is a left nonzerodivisor (meaning
that ,R = (s €R:rs = 0} is zero), then in fact Torf(R/r, M) = ,M and
Tor,’f (R/r, M) =0 for n > 2; see 3.1.7. However, in general , R # 0, while
Torf(R/r, R) =0, so they arenit the same; Torf(M, R/r) is the quotient of
M by the submodule (- R)M generated by {sm:rs =0, s€ R, me M}. The
Tor, will be universal §-functors in a sense that we shall now make precise.

Definition 2.1.4 A morphism §— T of Sfunctors is a system of natura
transformations S, — T, (resp. " — T") that commute with 8. This is fancy
language for the assertion that there is a commutative ladder diagram con-
necting the long exact sequences for § and T associated to any short exact
sequencein A.

A homological §-functor T is universal if, given any other §-functor S and a
natural transformation fy:Sg — 7o, there exists a unique morphism { f£,: S, —
T,} of 8-functors that extends fo.

A cohomological S-functor T is universal if, given S and f0: 70— §0,
there exists a unique morphism T — § of 8-functors extending f°.

Example 2.1.5 We will see in section 2.4 that homology Hy: Chso(A) - A
and cohomology H*: Ch=%(4)— A are universal Sfunctors.

Exercise 2.1.2 If F: A— B is an exact functor, show that Ty=F and 7,,= 0
for n 5 0 defines a universal §-functor (of both homological and cohomologi-
ca type).

Remark If F: A — B is an additive functor, then we can ask if thereis any §-
functor T (universal or not) such that To = F (resp. T9 = F). One obvious
obstruction is that Tp must be right exact (resp. 79 must be left exact). By
definition, however, we see that there is at most one (up to isomorphism)
universal 8-functor T with To = F (resp. 7% = F). If a universal T exists, the
T, are sometimes called the left satellite functors of F (resp. the T" are called
the right satellite functors of F). This terminology is due to the pervasive
influence of the book [CE].

We will see that derived functors, when they exist, are indeed universal -
functors. For this we need the concept of projective and injective resolutions.
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2.2 Projective Resolutions

An object P in an abelian category A isprojective if it satisfies the following
universal lifting property: Given a surjection g:B—Candamapy: P— C,
there is at least one map B: P — B such that y =g o 8.

P
#y Ly
B - C - 0

We shall be mostly concerned with the special case of projective modules
(A being the category mod-R). The notion of projective module first appeared
in the book [CE]. It is easy to see that free R-modules are projective (lift a
basis). Clearly, direct summands of free modules are also projective modules.

Proposition 2.2.1 An R-module is projective iff it is a direct summand of a
free R-module.

Proof Letting F(A) be the free R-module on the set underlying an R-module
A, we see that for every R-module A there is a surjection : F(A) — A. If
A is a projective R-module, the universa lifting property yildsamap i: A —
F(A) so that wi =14, that is, A is a direct summand of the free module F(A).

<

Example 2.2.2 Over many nice rings (Z, fields, division rings, . . -) every
projective module is in fact a free module. Here are two examples to show
that thisis not always the case:

LIfR=R; xRy, then P =R;x0and 0 x R, are projective because their
sum is R. P is not free because (0, 1) P = 0. This is true, for example,
when Risthering Z/6 =2Z/2xZ/3.

2. Consider the ring R = M,(F) of n x n matrices over a field F, acting
on the left on the column vector space V = FI1. As a left R-module, R
is the direct sum of its columns, each of which is the left R-module V.
Hence R=V ®---@V, and Vis a projective R-module. Since any free
R-module would have dimension dn? over F for some cardinal number
d, and dimg(V)=n, V cannot possibly be free over R.

Remark The category .A of finite abelian groups is an example of an abelian
category that has no projective objects. We say that .A has enough projectives
if for every object A of A there is a surjection P — A with P projective.
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Here is another characterization of projective objectsin A:

Lemma 2.2.3 M is projective iff Hom 4(M,—) is an exact functor. That is,
iff the sequence of groups

0 — Hom(M, A) » Hom(M, B) -2 Hom(M, C) — 0

is exact for every exact sequence 0 - A—-B—-C—0inA.

Proof Suppose that Hom(M, —) is exact and that we are given a surjec-
tion g B - Cand a map y: M — C. We can lift y€ Hom(M, C) to B¢
Hom(M, B) such that y = g,8 =g 0 B because g, is onto. Thus M has the
universal lifting property, that is, it is projective. Conversely, suppose M is
projective. In order to show that Hom(M, —) is exact, it suffices to show that
8« is onto for every short exact sequence as above. Given y € Hom(M, C),
the universal lifting property of M gives e Hom(M, B) so that y =go 8=
g«(B), that is, g4 is onto. <&

A chain complex P in which each P, is projective in A is called a chain
complex of projectives. It need not be a projective abject in Ch.

Exercise 2.2.1 Show that a chain complex P is a projective object in Ch
if and only if it is a split exact complex of projectives. Hint: To see that P
must be split exact, consider the surjection from cone(idp) to P[—1]. TO see
that split exact complexes are projective objects, consider the specia case
0—->Pi=Py— 0.

Exercise 2.2.2 Use the previous exercise 2.2.1 to show that if .4 has enough
projectives, then so does the category Ch(d) of chain complexes over A.

Definition 2.2.4 Let M be an object of A. A left resolution of M is a com-
plex P with P; = 0 for i < 0, together with a map e: Pp— M so that the
augmented complex

.—d>P2—d->Pll->P0—E> M- 0

is exact. Itisa projective resolution if each P; is projective.

Lemma 2.2.5 Every R-module M has a projective resolution. More gener-
ally, if an abelian category A has enough projectives, then every object M in
A has a projective resolution.
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0 0

NS NS
M,

/N /N

d d £

Py P, Py Py
NS NS
M, M,
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Figure 2.1. Forming a resolution by splicing.

M

Proof Choose a projective Py and a surjection ep: Pp— M, and set Mo=
ker(egp). Inductively, given a module M, _;, we choose a projective P, and
a surjection €,: Py—> M, _1. Set M,, = ker(e,), and let d, be the composite
P,— M, _— P,_1. Since d,(P,) = M, | =ker(d,—), the chain complex
P isaresolution of M. (See Figure 2.1.) <

Exercise 2.2.3 Show that if P is a complex of projectives with P;=0 for
i <0, then a map ¢: Py— M giving a resolution for M is the same thing as
a chain map €: P — M, where M is considered as a complex concentrated in
degree zero.

Comparison Theorem 2.2.6 Let P->Mbea projective resolution of M

and fi: M — N a map in A. Then for every resolution Q.—"> N of N there
is a chain map f: P.— Q. lifting fi in the sense that no fy=fi oe. The
chain map f is unique up to chain homotopy equivalence.

e Py —> P, —> Py —> M —> 0
al 3l 3l Lr
._>Q2—>Q1———>QO—~>7]N — 0
Porism 2.2.7 The proof will make it clear that the hypothesis that P — M be
a projective resolution is too strong. It suffices to be given a chain complex
- —=>P->P—>Ph—->M->0

with the P; projective. Then for every resolution Q — N of N, every map
M — N lifts to a map P — @, which is unique up to chain homotopy. This
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stronger version of the Comparison Theorem will be used in section 2.7 to
construct the externa product for Tor.

Proof We will construct the f,, and show their uniqueness by induction on n,
thinking of f_;asfi. Inductively, suppose f; has been constructed for i <n
so that fi_1d =df;. In order to construct f,+1 we consider the n-cycles of
Pand Q If n=-1, wesat Z_j(P)=Ad4and Z_1(Q)= N; if n>0, the
fact that f,—1d = df, means that f, induces a map f, from Z,(P) to Z,(Q).
Therefore we have two diagrams with exact rows

d d
— Pyl — Zp(P) — 0 0 — Z(P) — P, — Py
ﬂ lf,i and lf,ﬁ lfn lfH
d
== Qnyl — Zp(@) — O 0 — Zy(Q) — Qn — Qn-i

The universal lifting property of the projective P41 yields amap f,+1 from
Pn+1 t0 Qny1, SO that dfy+1= fd = fad. This finishes the inductive step and
proves that the chain map f. P — Q exists.

To see uniqueness of fup to chain homotopy, suppose that g: P - Q is
another lift of fi and set h=f— g; we will construct a chain contraction
{sn: Pn— Qpny1} Of A by induction on 11. If n< O, then P, = 0, so we set
s;=0.1T n = 0, notethat sincenhg=e€(fi —fi) =0, themap kg sends Py to
Zo(Q) =d(Q1). We use the lifting property of Py to get a map so: Po— Q1
so that kg = dsp =dsp + s—1d. Inductively, we suppose given maps s; (i < n)
so that ds,_|=hy—-1—sy,—2d and consider the map h,—s,—1d from P, to
Qn. We compute that

d(hp— sp_1d) = dh, — (hy_1— Sn—2d)d = (dh — hd) + Sp_2dd = 0.

Therefore hy,—s,—1d landsin Z,(Q), aquotient of @n+1 - The lifting property
of P, yields the desired map sy:Pn—> Qn41 Such that ds, = Ay —sp—1d. <

d d
Py P, — P,y —> Py
1/ Lh—sd and e s L s
d
Ony1t — Zp(Q) — O On — Qn

Here is another way to construct projective resolutions. It is called the Horse-
shoe Lemma because we are required to fill in the horseshoe-shaped diagram.
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Horseshoe Lemma 2.2.8 Suppose given a commutative diagram
0
P2’—>P1’-———>P6L>A'——>0
La
A
Lra
-Pﬁ'—)P{’——)Pé’;A”—>O

!

0

where the column is exact and the rows are projective resolutions. Set P, =
P, ® P,/. Then the P, assemble to form a projective resolution P of A, and
the right-hand column lijts to an exact sequence of complexes

0— Pi 5P-5 PT -0,

where i,: P, — P, and m,: P, — P, are the natural inclusion and projection,
respectively.

Proof Lift €” to a map Pj — A; the direct sum of this with the map
ia€’: Py— A gives a map €: Pp— A. The diagram (x) below commutes.

0 0 0

! ! !

14

0 —>ker(e’)—>P6i> Al — 0
l l ]

(%) 0 — ker(¢e) — Py A — 0

! ! !

”"

0 — ker(¢") — P — A" — 0

i 1 i

0 0 0
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The right two columns of (x) are short exact sequences. The Snake Lemma
1.3.2 shows that the left column is exact and that coker(e) = 0, so that Py maps
onto A. This finishes the initial step and brings us to the situation

0
- —> Pj —> ker(¢) — O
ker(e)

!
— P/ —d; ker(¢’) — 0
!

0.
The filling in of the Thorseshoel now proceeds by induction. <

Exercise 2.2.4 Show that there are maps An: P, — P, _; so that
d , A _[d'@) + vet)
d= { 0 d”] s 1.€., d |:P" = d" (pT) 1

2.3 Injective Resolutions

An object I in an abelian category A is injective if it satisfies the following
universal lifting property: Given an injection f:A—Bandamap a:A—1,
there exists at least one map f:B —1 suchthat «=Bo f .

f

0 — A — B

al 3
1

We say that A has enough injectives if for every object A in A there is an
injection A — I with I injective. Note that if {I,} is a family of injectives,
then the product [] Iy is aso injective. The notion of injective module was
invented by R. Baer in 1940, long before projective modules were thought of .
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Baer’s Criterion 2.3.1 A right R-module E is injective if and only if for
every right ideal J of R, every map J — E can be extended to a map R — E.

Proof The “only if” direction is a special case of the definition of injective.
Conversely, suppose given an R-module B, a submodule A and amap a: A —
E. Let £ be the poset of all extensions a’: A’ — E of « to an intermediate
submodule A C A’ C B; the partial order is that o’ < a” if &” extends o'.
By Zorn’s lemma there is a maximal extension a’: A’ — E in £; we have to
show that A’ = B. Suppose there is some b € B not in A’. The set J ={r €

R :br € A’} is a right ideal of R. By assumption, the map J LN A5 E
extends to a map f: R — E. Let A” be the submodule A’ + bR of B and
define a”: A” — E by

o’ (a+bry=a'(a)+ f(r), ac A andrcR.

This is well defined because o’ (br) = f () for br in A’ N bR, and a” extends
o, contradicting the existence of b. Hence A’ = B. &

Exercise 2.3.1 Let R = Z/m. Use Baer’s criterion to show that R is an in-
jective R-module. Then show that Z/d is not an injective R-module when
d|m and some prime p divides both d and m/d. (The hypothesis ensures that
Lim#1Z/d @ Z]e.)

Corollary 2.3.2 Suppose that R = Z, or more generally that R is a principal
ideal domain. An R-module A is injective iff it is divisible, that is, for every
r#0in R and everya € A, a = br for some b € A.

Example 2.3.3 The divisible abelian groups Q and 7y« = Z[%] /Z are in-

jective (Z[%] is the group of rational numbers of the form a/p™, n > 1). Every
injective abelian group is a direct sum of these [KaplAB,section 5]. In partic-
ular, the injective abelian group Q/Z is isomorphic to @7 pe.

We will now show that Ab has enough injectives. If A is an abelian group,
let 1(A) be the product of copies of the injective group Q/Z, indexed by the
set Homap(A, Q/Z). Then I(A) is injective, being a product of injectives, and
there is a canonical map e4: A — I (A). This is our desired injection of A into
an injective by the following exercise.

Exercise 2.3.2 Show that e4 is an injection. Hint: If a € A, find a map
f:aZ — Q/Z with f(a) # 0and extend f toamap f: A —> Q/Z.
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Exercise 2.3.3 Show that an abelian group A is zero iff Homap(A,Q/Z) =
0.

Now it is a fact, easily verified, that if A isan abelian category, then the
opposite category A is also abelian. The definition of injective is dual to
that of projective, so we immediately can deduce the following results (2.3.4-
2.3.7) by arguing in A%,

Lemma 2.3.4 The following are equivalent for an object | in an abelian
category A:

I. 1 isinjective in A.

2. | is projective in AP,

3. The contravariant functor Hom 4(—, I) is exact, that is, it takes short
exact sequences in A to short exact sequences in Ab.

Definition 2.3.5 Let M be an object of A. A right resolution of M is a
cochain complex I with I = 0 for i <0 and a map M — I9 such that the
augmented complex

oML 42 e
is exact. This is the same as a cochain map M — I, where M is considered as
a complex concentrated in degree 0. It is called an injective resolution if each
I' is injective.

Lemma 2.3.6 If the abelian category .A has enough injectives, then every
object in A has an injective resolution.

Comparison Theorem 2.3.7 Let N —I" be an injective resolution of N and
f':M — N amap in d. Then for every resolution M — E- there is a cochain
map F: E-— I"lifting fi. The map f is unique up to cochain homotopy
equivalence.

0 — M —E' > E' S E2 5 .
rl sl al al
0 —>N———>IO—>11—U>12—>--
Exercise 2.3.4 Show that I is an injective object in the category of chain
complexes iff I is a split exact complex of injectives. Then show that if A

has enough injectives, so does the category Ch(d) of chain complexes over
A. Hint: Ch(A)? =~ Ch(A%).
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We now show that there are enough injective R-modules for every ring
R. Recal that if A is an abelian group and B is a left R-module, then
Homap(B, A) is aright R-module via the rule f r: b +— f(rb).

Lemma 2.3.8 For every right R-module M, the natural map
r:Homap(M, A) & Hompyod—g(M, Homap(R, A))

is an isomorphism, where (zf)(m) is the map r — f(mr).

Proof We define a map p backwards as follows: If g: M — Hom(R, A) is
an R-module map, pg isthe abelian group map sending m to g(m)(l). Since
t(ug) =g and ut(f)= f (check this!),  is an isomorphism. <

Definition 2.3.9 A pair of functors L: A — B and R: B — A are adjoint if
there is a natural bijection for all Ain A and B in B:

7 = tap : Homp(L(A), B) —> Hom4(A, R(B)).

Here inaturalT means that for adl f:A — Al in.Aandg: B— Bi inB the
following diagram commutes:

Homg(L(A"), B) — Horn&L(A), B) —> Homs(L(A), B)
Lo Le Is
Hom 4(4’, R(B)) —> HomA(A, R(B)) —Hom.(4, R(B)).

Wecdll L the l€eft adjoint and R the right adjoint of this pair. The above lemma
states that the forgetful functor from mod-R to Ab has Homap(R,—) as its
right adjoint.

Proposition 2.3.10 If an additive functor R: B — A is right adjoint to an
exact functor L: 4 — B and | is an injective object of B, then R(Z) is an
injective object of A. (We say that R preserves injectives.)

Dually, if an additive functor L: A — B is left adjoint to an exact functor
R: B— Aand P is a projective object of d, then L(P) is a projective object
of B. (We say that L preserves projectives.)

Proof We must show that Hom 4(—, R(Z)) is exact. Given an injection
f: A— Al in.A the diagram
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Homp(L(A"), I) —— Homp(L(A), I)
! !

Hom (A, R(Z)) ", Hom 4(A. R(Z))

13
I

commutes by naturality of r. Since L is exact and I is injective, the top
map Lf* is onto. Hence the bottom map f* is onto, proving that R(Z) is an
injective object in A. <

Corollary 2.3.11 If I is an injective abelian group, then Homap(R, 1) is an
injective R-module.

Exercise 2.3.5 If M is an R-module, let Z(M) be the product of copies of
Ip = Homayp(R,Q/Z), indexed by the set Homg (M, Ip). There is a canonical
map ep: M — Z(M); show that ey is an injection. Being a product of injec-
tives, Z(M) is injective, so this will prove that R-mod has enough injectives.
An important consequence of this is that every R-module has an injective res-
olution.

Example 2.3.12 The category Sheaves(X) of abelian group sheaves (1.6.5)
on a topological space X has enough injectives. To see this, we need two
constructions. The stalk of a sheaf 3 a a point x e X is the abelian group
Fr= li_ng{]—‘(U):er}. iStalk at x” is an exact functor from Sheaves(X) to
Ab. If A isany abelian group, the skyscraper sheaf x.A at the point xe X is
defined to be the presheaf

A ifxeU
+AYU) = )
(e A)U) {0 otherwise.

Exercise 2.3.6 Show that x,A is a sheaf and that
Homap(Fyx, A) = Homgheaves(x) (F, XxA)

for every sheaf 3. Use 2.3.10 to conclude that if A, is an injective abelian
group, then x,(Ay) is an injective object in Sheaves(X) for each x, and that
[1icx x«(Ax) is dso injective.

Given a fixed sheaf 3, choose an injection F, — I, with I, injective in Ab
for each x € X. Combining the naturd maps 3 — x,Fy With x, Fy — x, I
yields a map from 3 to the injective sheaf Z =[], cx*« (I,). Themap 3 > 7
is an injection (see [Gode], for example) showing that Sheaves(X) has enough
injectives.
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Example 2.3.13 Let | be a small category and A an abelian category. If the
product of any set of objects existsin .A (A iscomplete) and d has enough
injectives, we will show that the functor category A’ has enough injectives.
For each kin I, the k** coordinate A — A(K) is an exact functor from A’ to
A. GivenAinA, definethe functor k,A:1— A by sending i€l to

kA = [ A
Hom; (i k)

If n:i »> jisamapin I, the map k,A(i) — k. A(j) is determined by the
index map n*: Hom(j, k) = Hom(i, k). That is, the coordinate k.A(i)— A
of this map corresponding to ¢ € Hom( j, K) is the projection of k«A{i) onto
the factor corresponding to n*¢ = ¢ne Hom(i, k). If f:A—Bisamap in
A, thereis a corresponding map k«A —> k. B defined dotwise. In this way,
k. becomes an additive functor from A to .A’, assuming that .\A has enough
products for k. A to be defined.

Exercise 2.3.7 Assume that A is complete and has enough injectives. Show
that k, is right adjoint to the k*# coordinate functor, so that k, preserves injec-
tives by 2.3.10. Given Fe A/, embed each F(K) in an injective object A of
A, andlet F— k,Ay be the corresponding adjoint map. Show that the product
E=Tlies k«Ar existsin A", that E is an injective object, and that F — E is
an injection. Conclude that .4’ has enough injectives.

Exercise 2.3.8 Use the isomorphism (.A))” =~ .A4Y* to dualize the previous
exercise. That is, assuming that A is cocomplete and has enough projectives,
show that .A’ has enough projectives.

2.4 Left Derived Functors

LetF: 4 — B bearight exact functor between two abelian categories. If A
has enough projectives, we can construct the left derived jiinctors L; F(i > 0)
of F asfollows. If A isan object of A, choose (once and for all) a projective
resolution P — A and define

L;F(A) = H;(F(P)).

Note that since F( P;)— F( Py) > F(A) — 0 is exact, we aways have
LoF(A)= F(A). The aim of this section is to show that the L.F form a
universal homologicad S-functor.
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Lemma 2.4.1 The objects L; F(A) of B are well defined up to natural iso-

morphism. That is, if Q — A is a second projective resolution, then there is a
canonical isomorphism:

LiF(A) = Hy(F(P)) —> H;(F(Q)).

In particular a different choice of the projective resolutions would yield new
functors IZ,F, which are naturally isomorphic to the functors L; F.

Proof By the Comparison Theorem (2.2.6), there is a chain map f: P — Q
lifting the identity map ida, yielding a map fi from H; F( P) to H; F( Q).
Any other such chain map f é: P — Q is a chain homatopic to f,so0 f. = fJ.
Therefore, the map fi is canonical. Similarly, there is a chain map g:Q — P

lifting id4 and a map g«. Since gf and idp are both chain maps P — P lifting
id4, we have

g« fsx = (8f)« = (dp)s = identity map on H;F(P).

Similarly, fg andidg both lift id4, so fig« is the identity. This proves that fi
and g, are isomorphisms. <&

Corollary 2.4.2 If Ais projective, then L; F (A) = 0 for i # 0.

F-Acyclic Objects 2.4.3 An object Q is called F-acyclic if L; F( Q) =0 for
al i#0, that is, if the higher derived functors of F vanish on Q. Clearly,
projectives are F-acyclic for every right exact functor F, but there are oth-
ers, flat modules are acyclic for tensor products, for example. An F-acyclic
resolution of A is a left resolution Q — A for which each Q; is F-acyclic.
We will see later (using dimension shifting, exercise 2.4.3 and 3.2.8) that we
can also compute left derived functors from F-acyclic resolutions, that is, that
L; (A) = H; (F(Q)) for any F-acyclic resolution Q of A.

Lemma 2.4.4 If f: Al — Ais any map in .A, there is a natural map L; F( f ):
L;F(A")— L; F(A) for each i.

Proof Let Pi — Al and P — A be the chosen projective resolutions. The
comparison theorem yields a lift of f to achain map f from Pi to P, hence a
map £ from H; F (PT) to H; F (P). Any other lift is chain homotopic to f,so
the map £ is independent of the choice of f. The map L; F (f) is f+. <o

Exercise 2.4.1 Show that LoF(f) = f under the identification LoF (A)=
F(A).
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Theorem 2.4.5 Each L; F is an additive jiinctor from A to B.

Proof The identity map on P lifts the identity on A, so L;F(id,) is the

identity map. Given maps Af —f>A—g> AT and chain maps f, g lifting f

and g, the composite g f liftsgf. Therefore g, f» = (gf), proving that L; F
is a functor. If fi: Ai — A are two maps with lifts f;, the sum f+ f lifts
fi T fo. Therefore fi. + for = (fi + f2)s proving that L, F is additive. <

Exercise 2.4.2 (Preserving derived functors) If U: B — C is an exact functor,
show that

ULiFy=L;(UF).
Forgetful functors such as mod-R — Ab are often exact, and it is often eas-

ier to compute the derived functors of UF due to the absence of cluttering
restrictions.

Theorem 2.4.6 The derived functors L, F form a homological §-functor.

Proof Given a short exact sequence

0 > Al > A—> AT =0,
choose projective resolutions Pi — Ai and PT — AT. By the Horseshoe
Lemma 2.2.8, there is a projective resolution P — A fitting into a short ex-
act sequence 0 - Pi — P — PT — 0 of projective complexesin A. Since

the P, are projective, each sequence 0 — P, — P, — P,/ — 0 is split exact.
AsF is additive, each sequence

0— F(P)) = F(P) > F(P)—> 0
issplit exact in B. Therefore
0 —» F(PI) — F(P) > FPT) — 0

is a short exact sequence of chain complexes. Writing out the corresponding
long exact homology sequence, we get

2 LR S L F(A) = LiF(A"Y =5 Li_i F(A") = Li_ | F(A) = Li_1 F(A") —2>..
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To see the naturality of the 9;, assume we are given a commutative diagram

00— A — A — A" —0

Fa i Lr

0 —» B — B — B" —0
ip TR

in A4, and projective resolutions of the corners: Ei: Pi - Al, ¢”: PT — AT,
n':Q'— Bi andn”: QI — BT. Use the Horseshoe Lemma 2.2.8 to get projec-
tive resolutions €: P — A and n: Q — B. Use the Comparison Theorem 2.2.6
to obtain chain maps Fi: Pi — Q' and Fi: PT — QT lifting the maps f’ and
S, respectively. We shall show that there is also a chain map F: P — Q lift-
ing f, and giving a commutative diagram of chain complexes with exact rows:

00— P — P — PI —0
S R
0 -0 —Q0— QI — 0.
The naturality of the connecting homomorphism in the long exact homology

sequence now trandates into the naturality of the ;. In order to produce F, we
will construct maps (not chain maps) y.: P,/ — @/, such that F, is

P, 0,
Fy oy ]
F,=|"7 :
n [ 0 Fr;/ ® — &
nooo

Fu(p', p") = (F'(p) + v ("), F"(p")).

Assuming that Fis a chain map over f, this choice of F will yield our
commutative diagram of chain complexes. In order for F to be alifting of f,
the map (nFo— fe) from Py = Pj@® Py to B must vanish. On P this is no
problem, so this just requires that

ign'vo = fap—LroFy
as maps from Py to B, where Ap and A ¢ are the restrictions of € and 7 to Py
and Qg, and i is the inclusion of Bi in B. There is some map 8: Py — Bi so

thatigB=F A —AF] becausein BT we have

]TB(f)"_)‘Fé/):f//nA)\P_ﬂ'B)\.Fé/ = f//E//_n// 6/ = 0.
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We may therefore define yy to be any lift of 8 to Qy,.

"
PO

we |8

i

/7] I3
g — B — 0

In order for F to be a chain map, we must have

d A F oy
or-ra=[(5 2)-(4 7))

d'F'— Fid” (diy — ydT +AF”"— Fihi)
= 0 d'F" — F'd"

vanishing. That is, the map d’y,: P,/ — Q,,_, must equal
gn=Yn-1d" — A F, +Frlz—1)‘n'

y; defined for i < gy exists. A short cal-
culation, using the inductive formula for d'y,_1, showsthat d’g,= As the
complex QI is exact, the map g, factors through amap 8: P, — d(Q,,). We
may therefore define y,, to be any lift of 8to Q). This finishes the construction
of the chain map F and the proof. <

Exercise 2.4.3 (Dimension shifting) If 0 - M — P — A — 0 is exact with
P projective (or F-acyclic 2.4.3), show that L; F(A)= L;_1F(M) fori>2
and that L F(A) is the kernel of F(M) — F(P). More generaly, show that if

0—->M,—>P,—>Py,_1—> .. »Po—>A—->0

is exact with the P; projective (or F-acyclic), then L; F(A) = L —m—1 F(My,)
fori >m +2 and L,,4 (A) is the kernel of F(M,,)— F(Py). Conclude that
if P— Ais an F-acyclic resolution of A, then L; F(A) = H;(F(P)).

The object M,,, which obviously depends on the choices made, is called
the m'" syzgy of A. The word isyzygyl comes from astronomy, where it was
originally used to describe the alignment of the Sun, Earth, and Moon.

Theorem 2.4.7 Assume that .4 has enough projectives. Then for any right
exactfinctor F: A — B, the derived functors L,, F form a universal §-functor.

Remark This result was first proven in [CE, III.5], but is commonly attributed
to [Tohoku], where the term iuniversal S-functori first appeared.
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Proof Suppose that T, is a homological é-functor and that ¢o: 7o — F is
given. We need to show that ¢p admits a unique extension to a morphism
@: T, — L4 F of §-functors. Suppose inductively that ¢;:T;— L; F are al-
ready defined for O <i<n, and that they commute with al the appropriate
§i’s. Given A in A, select an exact sequence 0 - K — P — A — 0 with P
projective. Since L, F (P) = 0, this yields a commutative diagram with exact
rows:

T,(A) o T 1(K) —> To_1(P)
l‘ﬂn—l l‘/’nAI

8n
0 — LyF(A) —> LaF(K) — L,1F(P).

A diagram chase revedls that there exists a unique map ¢,(A) from T,(A) to
L,, F(A) commuting with the given 8,’s. We need to show that ¢, is a natura
transformation commuting with al é,’s for al short exact sequences.

To seethat ¢, is a naturd transformation, suppose given f: Ai — A and an
exact sequence 0 > Ki — P’ — Ai — 0 with Pi projective. AsPi is projec-
tive we can lift f tog: Pi — P, which induces a map h: K’ — K.

0 — Ki —P — Al — 0
Lh Le Ls
00— K — P — A — 0

To see that ¢, commutes with f, we note that in the following diagram that
each small quadrilateral commutes.

T,
T,(A) v 1, (A)
Q\ y
Tn—l(h)
T, (K" T, 1(K)
(P,,(A’) (pn—l l l(pn—l (Pn(A)
L, F(h)
L, \F(K) L, \F(K)
)4 ~
L, F
L,F(A) v L,F(A)

A chase reveals that
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80 L(f) o @n(A) = 80 @u(A) o T,(f).

Because 6: L, F(A) — L,—1 F( K) ismonic, we can cancel it from the equa-
tion to see that the outer square commutes, that is, that ¢, is a natural trans-
formation. Incidentaly, this argument (with A = Ai and f idsa) also sho
wn(A) it depend on the choice of
Finally, we needg,o0 verify that
- Al A= AT =0 - I

T>AT—> 0 1 f argd

ls L |
0— Al — A — AT — 0

commute. This yields a commutative diagram

) T(g)
(A" — T(K') ——  T,1(A)

onl Lot Lon

b 8 . LF(® ,
LoF(A"Y—> La_y F(KT) —— L,_i F(A)).

Since the horizontal composites are the 8, maps of the bottom row, thisimplies
the desired commuitativity relation. <

Exercise 2.4.4 Show that homology Hy:Chso(A)— A and cohomology
H*:Ch>%(4)— A are universal Sfunctors. Hint: Copy the proof above, re-
placing P by the mapping cone cone(A) of exercise 1.5.1.

Exercise 2.4.5 ([Tohoku]) An additive functor F: A — B iscalled effaceable
if for each object A of A there is a monomorphism u: A — I such that F(u) =
0. We call F coeffaceable if for every A there is a surjectionu: P — A such
that F(u) = 0. Modify the above proof to show that if 7. is a homological
d-functor such that each T, is coeffaceable (except To), then 7 is universal.
Dually, show that if T* is a cohomologica d-functor such that each 7" is
effaceable (except T?), then T* is universal.

2.5 Right Derived Functors

2.51 Let F: A— B be a left exact functor between two abelian cate-
gories. If A has enough injectives, we can construct the right derived jiinctors
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R F(i>0) of F as follows. If A is an object of A, choose an injective resolu-
tion A — I and define

R'F(A) = H{(F()).

Note that since 0 — F(A) — F(I%) — F(I') is exact, we aways have
ROF(A)= F(A).

Since F dso defines a right exact functor F°P: A°? — B°P, and AP has
enough projectives, we can construct the left derived functors L; F°P as well.
Since I becomes a projective resolution of A in A%, we see that

R'F(A) = (L;F°P)°P(A).

Therefore dl the results about right exact functors apply to left exact functors.
In particular, the objects R’ F(A) are independent of the choice of injective
resolutions, R* F is a universal cohomological S-functor, and R F (1) = 0 for
i # 0 whenever Z is injective. Calling an object Q F-acyclic if R*F( Q) =
0(# as in 2.4.3, we see that the rcagmht ade
computed from F-acyclic resolutions.

Definition 2.52 A, F ( Bx)
Homg(A, B) is left exact. Its right derivgedo

Exth (A4, R Homg(A, -)(B).

In particular, Ext’(A, B) is Hom(A, B), and injectives are characterized by
Ext via the following exercise.

Exercise 2.5.1 Show that the following are equivalent.

1. Bisan injective R-module.

2. Homg(—, B) is an exact functor.

3. Exty(A, B) vanishes for al i# 0 and al A (B is Homg(—, B)-acyclic
for al A).

4. Exth(A, B) vanishes for al A.

The behavior of Ext with respect to the variable A characterizes projectives.

Exercise 2.5.2 Show that the following are equivalent.

1. Aisaprojective R-module.

2. Homg(A, -) is an exact functor.

3. Ext}, (A, B) vanishes for al i#0and al B (A isHomg(—, B)-acyclic
for dl B).

4. Exth(A, B) vanishes for al B.
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The notion of derived functor has obvious variations for contravariant func-
tors. For example, let F be a contravariant left exact functor from A to 3. This
is the same as a covariant left exact functor from .A°” to BB, so if .A has enough
projectives (i.e., A°’ has enough injectives), we can define the right derived
functors R* F(A) to be the cohomology of F(P), P.— A being a projective
resolution in A This too is a universal 8-functor with ROF(A) = F(A), and
R'F(P) =0 for i 0 whenever P is projective.

Example 2.5.3 For each R-module B, the functor G(A) =Hompz(A, B)
is contravariant and left exact. It is therefore entitled to right derived func-
tors R*G(A). However, we will see in 2.7.6 that these are just the functors
Ext*(A, B). That is,

R* Hom(-, B)(A) = R* Hom(A, -)(B) = Ext*(A, B).

Application 2.54 Let X be atopological space. The global sections functor
I" from Sheaves(X) to Ab is the functor I'(F) = F(X). It turns out (see 2.6.1
and exercise 2.6.3 below) that I" isright adjoint to the constant sheaves functor,
soI"isleft exact. The right derived functors of T" are the cohomology jiinctors
on X:

H{(X,F)= RT(F).

The cohomology of a sheaf is arguably the central notion in modem algebraic
geometry. For more details about sheaf cohomology, we refer the reader to
[Hart].

Exercise 2.53 Let X be a topological space and (A,] any family of abelian
groups, parametrized by the points x € X. Show that the skyscraper sheaves
x.(Ax) of 2.3.12 as well as their product F =TI1x.(Ax) are r-acyclic, that is,
that H (X, F)=0for i # 0. This shows that sheaf cohomology can dso be
computed from resolutions by products of skyscraper sheaves.

2.6 Adjoint Functors and Left/Right Exactness

We begin with a useful trick for constructing left and right exact functors.

Theorem 2.6.1 LetL: A — BandR: B— A be an adjoint pair of additive
jiunctors. That is, there is a natural isomorphism

r:Homga(L(A), B) —> Hom_4(A, R(B)).
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Then L is right exact, and R is left exact.

Proof Suppose that 0 — Bi — B — BT — 0 isexact in B. By naturdlity of t
there is a commutative diagram for every A in A.

0 —> Homp(L(A), Bi) —> Homp(L(A), B) — Homp(L(A), BT)
il ! l

0 —> Homu(A, R(Bi)) — Hom4(A, R(B)) — Homy(A, R(BT))

1R
I
14

The top row is exact because Hom(LA, —) is left exact, so the bottom row is
exact for all A. By the Yoneda Lemma1.6.11,

0— R(Bi) — R(B) — R(B")

must be exact. This proves that every right adjoint R is left exact. In particular
LeP: A°? — BC°P (whichis aright adjoint) is left exact, that is, L is right exact.
<

Remark Left adjoints have left derived functors, and right adjoints have right
derived functors. This of course assumes that .4 has enough projectives, and
that B has enough injectives for the derived functors to be defined.

Application 2.6.2 Let R be a ring and B
ing standard proposition shows that ® g B: mod-R — Ab is l€ft adjoint to
Homap(B,—),so ®gB is right exact. More generdly, if S is another ring,
and B is an R-S bimodule, then ® B takes mod-R to mod-S and is a l€ft
adjoint, so it is right exact.

Proposition 2.6.3 If B is an R-S bimodule and C a right S-module, then
Homg(B, C) is naturally a right R-module by the rule (fr)(b) = f(rb) for
fe€ Hom(B, C), re R and b € B. Thefunctor Homgs(B, -) from mod-S to
mod-R is right adjoint to ® g B. That is, for every R-module A and S-module
C there is a natural isomorphism

7:Homgs(A ®g B, C) —>Homg(A, Homs(B, C)).

Proof Given f: A®gr B — C, we define (tf)(a) asthemap b~ f (a ® b)
for each a € A. Given g: A — Homg(B, C), we define 7! (g) to be the map
defined by the hilinear form a ® b — g(u)(b). We leave the verification that
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t(f)(a) is an S-module map, that 7(f) is an R-module map, t~!(g) isan R-
module map, 7 is an isomorphism with inverse t~!, and that  is natural as an
exercise for the reader. <

Definition 2.6.4 Let B be a left R-module, so that T(A) = A ®g B is aright
exact functor from mod-R to Ab. We define the abelian groups

TorR(A, B) = (L,T)(A).

In particular, Tor{f (A, B)= A ®gB. Recall that these groups are computed by
finding a projective resolution P — A and taking the homology of P ® g B. In
particular, if Ais a projective R-module, then Tor, (A, B) = 0 for n £ 0.

More generally, if B isan R-S bimodule, we can think of T(A) = A®zB
as a right exact functor landing in mod-S, so we can think of the Tor® (A, B)
as S‘modules. Since the forgetful functor U from mod-S to Ab is exact, this
generalization does not change the underlying abelian groups, it merely adds
an S-module structure, because U(L,® B)= L,U(®B) as derived functors.

The reader may notice that the functor A®r is aso right exact, so we could
aso form the derived functors L.(A®g). We will see in section 2.7 that this
yields nothing new in the sense that L.(A®g)(B) = L.(®rB)(A).

Application 2.6.5 Now we see why the inclusion “incl” of Sheaves(X) into
Presheaves(X) is a left exact functor, as claimed in 1.6.7; it is the right ad-
joint to the shedfification functor. The fact that shedfification is right exact is
automatic; it is a theorem that shesfification is exact.

Exercise 2.6.1 Show that the derived functor R’ (incl) sends a sheaf 3 to the
presheaf U H (U, F|U), where F|U is the regtriction of 3to U and H' is
the sheaf cohomology of 2.5.4. Hint: Compose R’ (incl) with the exact functors
Presheaves(X) — Ab sending 3 to 3(U).

Application 2.6.6 Let f: X — Y be a continuous map of topological spaces.
For any sheaf 3 on X, we define the direct image sheaf f,F onY by
(f+F)V)= F(f~'V) for every open Vin Y. (Exercise: Show that f,F is
a sheaf!) For any sheaf G on Y, we define the inverse image sheaf f~!G to be
the shedfification of the presheaf sending an open set U in X to the direct limit
li_n)lg(V) over the poset of all open sets Vin Y containing f(U). The follow-

ing exercise shows that f~!isright exact and that f, is left exact because they
are adjoint. The derived functors R’ f, are called the higher direct image sheaf

functors and also play a key role in algebraic geometry. (See [Hart] for more
details.)
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Exercise 2.6.2 Show tha for any sheaf F on X there is a natural map
f V. F = F, and that for any sheaf G on Y there is a natura map G —
fof 1G. Conclude that f~!' and f, are adjoint to each other, that is, that
there is a natural isomorphism

Homy (f'G, F) = Homy(G, fuF).

Exercise 2.6.3 Let * denote the one-point space, so that Sheaves(*) = Ab.

1. If f: X —* is the collapse map, show that fi and f~! are the global
sections functor I and the constant sheaves functor, respectively. This
proves that T is right adjoint to the constant sheaves functor. By 2.6.1,T"
is left exact, as asserted in 2.5.4.

2.1f x: x— X isthe inclusion of a point in X, show that x, and x~! are the
skyscraper sheaf and stalk functors of 2.3.12.

Application 2.6.7 (Colimits) Let I be a fixed category. There is a diagona
functor A from every category A to the functor category A" ; ifAe A, then
AA is the constant functor: (AA); = A for al i. Recall that the colimit of a
functor F: I — A isan object of A, written colim;¢; F;, together with a nat-
ural transformation from F to A(colim F;), which is universal among natural
transformations F — AA with A € A. (See the appendix or [MacCW, 111.31.)
This universal property implies that colim is a functor from A’ to A, at least
when the colimit existsfor all F: I— A.

Exercise 2.6.4 Show that colim is left adjoint to A. Conclude that colim is a
right exact functor when A isabelian (and colim exists). Show that pushout
(the colimit when Z is <+ — ) is not an exact functor in Ab.

Proposition 2.6.8 The following are equivalentfor an abelian category A

1. The direct sum @ A; exists in A for every set {A;} of objects in A
2. Ais cocomplete, that is, colim;¢s A; exists in A for each functor A: 7 —
A whose indexing category I has only a set of objects.

Proof As (1) is a specia case of (2), we assume (1) and prove (2). Given
A:I— A, thecokernd Cof

ailg] = ola;) —a;

solves the universal problem defining the colimit, so C = cqliIm A &
1€



2.6 Adjoint Functors and Left/Right Exactness 55

Remark Ab, mod-R, Presheaves(X), and Sheaves(X) are cocomplete be-
cause (1) holds. (If I isinfinite, the direct sum in Sheaves(X) is the sheafifica-
tion of the direct sum in Presheaves(X)). The category of finite abelian groups
has only finite direct sums, so it is not cocomplete.

Variation 2.6.9 (Limits) The limit of a functor A: I - A is the colimit of
the corresponding functor A%P:I°P — A°P, SO all the above remarks apply in
dual form to limits. In particular, lim: A’ — A isright adjoint to the diagonal
functor A, so lim is a left exact functor when it exists. If the product T1A; of
every set {A;} of objects existsin A, then A iscomplete, that is, lim;c; At
exists for every A: | - A with | having only a set of objects. Ab, mod-R,
Presheaves(X), and Sheaves(X) are complete because such products exist.

One of the most useful properties of adjoint functors is the following result,
which we quote without proof from [MacCW, V.5].

Adjoints and Limits Theorem 2.6.10 Let L: A — B be left adjoint to a
functor R: B—~ A, where A and B are arbitrary categories. Then

1. L preserves all colimits (coproducts, direct limits, cokernels, etc.). That
is, if A: 1 - A has a colimit, then so does LA: | — B, and

L(colim A;) =colim L(A;).

iel iel

2. R preserves all limits (products, inverse limits, kernels, etc.). That is, if
B: I — B has a limit, then so does RB: 1 — A, and
R(lim B;) = lim R(B;).

iel iel
Here are two consequences that use the fact that homology commutes
with arbitrary direct sums of chain complexes. (Homology does not commute

with arbitrary colimits; the derived functors of colim intervene via a spectral
sequence.)

Corollary 2.6.11 If a cocomplete abelian category .A has enough projectives,
and F: A — Bis a left adjoint, then for every set {A;} of objects in Az

L.F <@ Ai) =P L.FA.

iel iel

Proof If P;— A; are projective resolutions, then so is &P, — @A;. Hence

L F (@A) = H (F(@P)) = Hi(DF (P)) = @H(F(P)) = OL:F(A). ©
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Corollary 2.6.12 Tor.(A, ®ic;Bi) = ®ier Torx(A, Bi).

Proof If P — Ais a projective resolution, then

Tor.(A, ®B;) = H«(P @ (®B;)) = H\(®(P ® B;)) = ®H.(P ® Bi)
= @Tor.(A, B)). <

Definition 2.6.13 A nonempty category I iscalled filtered if

1. For every i, j € I thete are arrows ; >k tosomek € [.
2. For every two paralel arrows u,v:i == jthereis an arrow w: j — k
such that wu = wv.
A filtered colimit in A is just the colimit of a functor A: | — .4 in which /
is a filtered category. We shall use the notation cgl_i)m(A,-) for such a filtered

colimit.

If I is a partially ordered set (poset), considered as a category, then condi-
tion (1) aways holds, and (2) just requires that every pair of elements has an
upper bound in I. A filtered poset is often called directed; filtered colimits over
directed posets are often called direct limits and are often written Il_r)n A;.

We are going to show that direct limits and filtered colimits of modules
are exact. First we obtain a more concrete description of the elements of
colim(A;).

—

Lemma 2.6.14 Let I be a filtered category and A: I — mod-R a functor.
Then
1. Every element a eco_li)m(Ai) is the image of some element a; € A; (for
some i €I) under the canonical map A,-—>ccll_i>m(A,~).
2. For every i, the kernel of the canonical map A; — colim(A;) is the union
of the kernels of the maps ¢: A; — A (where ¢:i —:} isamap in Z).

Proof We shal use the explicit construction of colim{A;). Let hi: A; —
B;c1A; be the canonica maps. Every element a of colim At is the image of

D ria)

JjeJ

for some finite set J = {iy,---,i,). There is an upper bound i in I for
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{i1,--,in}; using the maps A;— A; we can represent each a; as an ele-
ment in A; and take a; to be their sum. Evidently, a is the image of a;, so (1)
holds.

Now suppose that a; € A; vanishes in co_li)m(A,-). Then there are jr:j —> k

in/ and ajy € Aj SO that A;(a)=)_ r(pjr(aj)) — Aj(aj)in @A;. Choose
an upper bound ¢ in I for al the i, j, k in this expression. Adding A, (¢;i:a;)—
A;(a;) to both sides we may assume that i =t. Adding zero terms of the form

Aojiaj) — apjk(@i)] + [Apji(—aj) — Mpji(—aj)l,

we can assume that al the kis are t. If any ¢j; are parallel arrows in /, then by
changing t we can equalize them. Therefore we have

M@= 1) ejl@)) =Y rja))

with al the jis distinct and none equal to ¢. Since the A ; are injections, al the
a; must be zero. Hence @i (a;) = a; = 0, that is, a; e ker(g;;). <&

Theorem 2.6.15 Filtered colimits (and direct limits) of R-modules are exact,
considered as functors from (mod-R)i to mod-R.

Proof Set A = mod-R. We have to show that if | is afiltered category (e.g.,
a directed poset), then coir}n: Al - Ais exact. Exercise 2.6.4 showed that

ccﬂm is right exact, so we need only prove that if t: A— B is monic in
Al(i.e., each 1; is monic), then coli_r)n(A,-)—»coliLn)(B,-) ismonic in A. Let
ae COEI)I(A,') be an element that vanishes in colim(B;). By the lemma above,
aisthe image of some a; € A;. Therefore ¢; (ai)_e>B,~ vanishes in ccii)m(B,-),so
there is some ¢: i — j so that

0 =gt (ai)) =tj(¢(ai)) in B;.

Since t; ismonic, ¢(a;) =0in A;. Hence a = 0 in ccﬁm(Ai). <&

Exercise 2.6.5 (AB5) The above theorem does not hold for every cocomplete
abelian category A. Show that if A is the opposite category Ab°? of abelian
groups, then the functor colm: A!' - A need not be exact when Z isfiltered.
An abelian category .4 is said to satisfy axiom (AB5) if it is cocomplete
and filtered colimits are exact. Thus the above theorem states that mod-R and
R-mod satisfy axiom (ABS5), and this exercise shows that Ab°” does not.
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Exercise 2.6.6 Let f: X — Y be a continuous map. Show that the inverse
image sheaf functor f~!: Sheaves(Y) — Sheaves(X) is exact. (See 2.6.6.)

The following consequences are proven in the same manner as their coun-
terparts for direct sum. Note that in categories like R-mod for which filtered
colimits are exact, homology commutes with filtered colimits.

Corollary 2.6.16 If A = R-mod (or A is any abelian category with enough
projectives, satisfying axiom (ABS)),and F: A — Bis a left adjoint, then for
every A: I — A with I filtered

Ly F(colim(A;)) = colim L, F(A).

Corollary 2.6.17 For everyjiltered B: | — R-mod and every A € mod-R,

Tor.(A, colim(B;)) = colim Tor, (A, B;)
—_— e

2.7 Balancing Tor and Ext

In earlier sections we promised to show that the two left derived functors
of A ®g B gave the same result and that the two right derived functors of
Hom(A, B) gave the same result. It is time to deliver on these promises.

Tensor Product of Complexes 2.7.1 Suppose that P and Q are chain com-
plexes of right and left R-modules, respectively. Form the double complex
P®rQ={P,®rQq} using the sign trick, that is, with horizonta differen-
tidls d ® 1 and vertica differentials (—1)?® d. P ®g Q is called the tensor
product double complex, and Tot®(P ® Q) is called the (total) tensor prod-
uct chain complex of P and Q.

Theorem 2.7.2 L,(AQg)(B)=L,(®gB)(A) = TorR(A, B) for all n.

Proof Choose a projective resolution P —~> Ainmod-R and a projective

resolution Q 2, Bin R-mod. Thinking of A and B as complexes concen-
trated in degree zero, we can form the three tensor product double complexes
P®R®QO,A®Q, and P ® B. The augmentations ¢ and n induce maps from
P®QtoA® Qand P ® B.
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8 3

I
]
Lo
AR g7 | Pi® Qi P, ®Q, %
l : d —d
A®Q, 1 P®Q 1 P, ®Q < P,®Q — - -
: d —d d
| |
A®qo | P®Qp ¢ P®Q) <1 P,®Q -

P,®B <% P®B <% P,®B <« ---
Using the Acyclic Assembly Lemma 2.7.3, we will show that the maps

ARQ=TotA ® Q X TP Q) ¥ TotP @ B) =P ® B

are quasi-isomorphisms, inducing the promised isomorphisms on homology:

L.(A®R)(B) < H,(Tot(P ® 0)) —> L.(®&rB)(A).

Consider the double complex C obtained from P ® Q by adding A ®
Q[-1] in the column p =—1. The trandate Tot(C)[1] is the mapping cone
of the map ¢ ® Q from Tot(P ® Q) to A ® Q (see 1.2.8 and 1.5.1), so in or-
der to show that ¢ ® Q is a quasi-isomorphism, it suffices to show that Tot(C)
is acyclic. Since each ®Q, is an exact functor, every row of C is exact, so
Tot(C) is exact by the Acyclic Assembly Lemma.

Similarly, the mapping cone of P ®#: Tot( P ® Q) — P ® B is the trans-
late Tot(D)[1], where D is the double complex obtained from P ® Q by
adding P ® B[ —1]inthe row ¢ = — 1. Since each P,® is an exact functor, ev-
ery column of D is exact, so Tot(D) is exact by the Acyclic Assembly Lemma
2.7.3. Hence cone( P ®7n) is acyclic, and P ® 7 is also a quasi-isomorphism.

<&

Acyclic Assembly Lemma 2.7.3 Let C be a double complex in mod-R.
Then
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. Tot'"(C) is an acyclic chain complex, assuming either of the following:
1. C is an upper half-plane complex with exact columns.
2. C is a right half-plane complex with exact rows.

« Tot@(C) is an acyclic chain complex, assuming either of the following:
3. C is an upper half-plane complex with exact rows.
4. C is a right half-plane complex with exact columns.

Remark The proof will show that in (1) and (3) it suffices to have every di-
agonal bounded on the lower right, and in (2) and (4) it suffices to have every
diagonal bounded on the upper left. See 5.5.1 and 5.5.10.

Proof We first show that it suffices to establish case (1). Interchanging rows
and columns also interchanges (1) and (2), and (3) and (4), so (1) implies (2)
and (4) implies (3). Suppose we are in case (4), and let 7,C be the double
subcomplex of C obtained by truncating each column at level n:

Cpq ifg >n
(tnCpg = | ker(@”: Cpp —> Cpp1) ifg=n
0 if g<n

Each 7,,C is, up to vertical trandation, a first quadrant double complex with
exact columns, so (1) implies that Tot®(z,C) = Tot'\(z,C) is acyclic. This
implies that Tot@(C) is acyclic, because every cycle of Tot@(C) is a cycle
(hence a boundary) in some subcomplex Tot®(z,C). Therefore (1) implies (4)
aswell.

In case (1), trandating C left and right, suffices to prove that Ho(Tot(C)) is
zero. Let

c=("Cpp -, C—Z,Z’CAl,lvCO,O)GHC—p,p: Tot(C)o
be a O-cycle; we will find elements b, 51 by induction on p so that

d*(b-p.p+1) + d"(b_py1.p) =C_p p-

Assembling the bis will yielwofd]C-p,,4es0th that d(b) = c,
Ho(Tot(C))
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b‘]J,[H—l

Copp < boprip

Coptlp—1 < b_pyopy

c_22 <« b_12

c_1,1 < by

!

coo «— 0(=byg)

!

0

We begin the induction by choosing b1g = 0 for p = -1. Since Co,—1 = 0,
d%(cp) = O; since the 0 column is exact, there is a bg; € Co; so that
d¥(bo1) = cgo- Inductively, we compute that

h
d*(c—p.p = d"(b—pt1,p)) =d"(c_pp) + d"d’ (b_p11,p)

=d"Ccpp) +d"(Cc—pi1,p-1) — AP (b_p12 po1)
=0.

Since the —p" column is exact, thereisab_, p+1 S0 that

d*(b—p,ps1) = c_pp = d"(b_p11.p)

as desired. <o

Ertrabel?e’.the periodic upper half-plane complex with Cpy =
Z/4for all pand g=> 0, dl differentials being multiplication by 2.
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12 12 12
. <2— n/4 42— n/4 <—2— n/4 <2—
12 12 12

2 2 2 2
c— 7/ — Z/4 — D[4 — - .

1. Show that Ho(Tot™(C))=Z/2 on the cycle (...,1,1,1) e[[C-p.,
even though the rows of C are exact. Hint: First show that the O-
boundaries are [ ] 2Z /4.

2. Show that Tot@(C) is acyclic.

3. Now extend C downward to form a doubly periodic plane double com-
plex D with D, Z/4 for dl p,qeZ. Show that Ho(Tot™ (D)) maps
onto Ho(Tot'! C) =7 /2. Hence TotT(D) is not acyclic, even though ev-
ery row and column of D is exact. Finaly, show that Tot@(D) is acyclic.

Exercise 2.7.2

1. Give an example of a 2™ quadrant double chain complex C with exact
columns for which Tot@(C) is not an acyclic chain complex.

2. Give an example of a4™ quadrant double complex C with exact columns
for which TotT(C) is not acyclic.

Horn Cochain Complex 2.7.4 Given a chain complex P and a cochain com-
plex I, form the double cochain complex Hom(P, I)={Hom(Pp,[)} using
a variant of the sign trick. That is, if f:P,— 19, then d”f:P,,+1—>l‘1 by
(d" f)(p) = f(dp), while we define d®f:P,— 197" by

@ f)(p) = (=P Tla(fp) for peP,.

Hom( P, 1) is called the Horn double complex, and TotT(Hom( P, 1)) is called
the (total) Horn cochain complex. Warning: Different conventions abound in
the literature. Bourbaki [BX] converts Hom( P, Z) into a double chain complex
and obtains a total Horn chain complex. Others convert Z into a chain complex
Q with @, =779 and form Hom(P, Q) as a chain complex, and so on.

Morphisms and Horn 2.7.5 To explain our sign convention, suppose that C
and D are two chain complexes. If we reindex D as a cochain complex, then
an n-cycle f of Hom(C, D) is a sequence of maps f,:Cp,—D""P=Dp_,
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such that f,d = (- 1)"df,+1, that is, a morphism of chain complexes from
C to the trandate D[-n] of D. An n-boundary is a morphism fthat is null
homotopic. Thus H" Hom(C, D) is the group of chain homotopy equivalence
classes of morphisms C —» D[-n], the morphisms in the quotient category K
of the category of chain complexes discussed in exercise 1.4.5.

Similarly, if X and Y are cochain complexes, we may form Hom(X, Y) by
reindexing X. Our conventions about reindexing and trandation ensure that
once again an n-cycle of Hom(X, Y) is a morphism X — Y[-n] and that
H" Hom(X, Y) is the group of chain homotopy equivalence classes of such
morphisms. We will return to this point in Chapter 10 when we discuss RHom
in the derived category D(A).

Exercise 2.7.3 To see why Tot%s used for the tensor product P ®z Q of
right and left R-module complexes, while TotT is used for Horn, let Z be a
cochain complex of abelian groups. Show that there is a natural isomotphism
of double complexes:

Homap(Tot® (P ®& Q), I) = Homg (P, Tot™ (Homap(Q, 1)).

Theorem 2.7.6 For every pair of R-modules A and B, and all n,

Ext’(A, B) = R"Homg(A, -)(B) = R" Homg(—, B)(A).

Proof Choose a projective resolution P of A and an injective resolution Z
of B. Form the first quadrant double cochain complex Hom( P, Z). The aug-
mentations induce maps from Hom(A, Z) and Hom(P, B) to Hom(P, I). As
in the proof of 2.7.2, the mapping cones of Hom(A, I)— Tot(Hom(P, I))
and Hom(P, B) — Tot(Hom(P, Z)) are trandates of the total complexes ob-
tained from Hom(P, /) by adding Hom(A, I)[—1] and Hom(P, B)[—1], re-
spectively. By the Acyclic Assembly Lemma 2.7.3 (or rather its dua), both
mapping cones are exact. Therefore the maps

Hom(A, Z) — Tot(Hom(P,I)) <« Hom(P, B)
are quasi-isomorphisms. Taking cohomology yields the result:

R* Hom(A, -)(B) = H* Hom(A, I)
= H* Tot(Hom(P, I))
=~ H* Hom(P, B) = R* Hom(-, B)(A). <&
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(AR S

Hom(A, I?) Hom(P,, I?) — Hom(P,,I?) —

Hom(A, IY) 1 Hom(Py,IY) — Hom(P,,I') —> Hom(Pp,I') — - - -

Hom(A, 1) Hom(P,,I°) — Hom(P,,I°) — Hom(P,, I) — . . .

Hom(P,,B) — Hom(P,B) — Hom(P,,B) —> . . .

Definition 2.7.7 ([CE]) In view of the two above theorems, the following
definition seems natural. Let T be aleft exact functor of p ivariablel modules,
some covariant and some contravariant. T will be called right balanced under
the following conditions:

1. When any one of the covariant variables of T is replaced by an injective
module, T becomes an exact functor in each of the remaining variables.

2. When any one of the contravariant variables of T is replaced by a pro-
jective module, T becomes an exact functor in each of the remaining
variables. The functor Horn is an example of a right balanced functor,
asisHom(A ® B, C).

Exercise 2.7.4 Show that al p of the right derived functors R*T (Aq,--,
Ai,n,Ap)(Ai) of T are naturally isomorphic.

A similar discussion applies to right exact functors T which are left bal-
anced. The prototype left balanced functor is A ® B. In particular, al of the
left derived functors associated to a left balanced functor are isomorphic.

Application 2.7.8 (External product for Tor) Suppose that R is a commuta
tivering and that A, Ai, B, Bi are R-modules. The external product isthe map

Tor;(A, B) ®g Tor;(A’, B') > Tori; j(A®r A, BOrB)
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constructed for every iand j in the following manner. Choose projective reso-
lutionsP — A, Pi — Ai, andPT — A ® Ai. The Comparison Theorem 2.2.6
gives a chain map Tot( P ® Pi) — PT which is unique up to chain homotopy
equivalence. (We saw above that H; Tot (P ® Pi) = Tori (A, Af), so we actu-
aly need the version of the Comparison Theorem contained in the porism
2.2.7.) Thisyields a natural map

H,(P®B®P' ® Bi) =H,(P®P' ® B® Bi) > H,(P" ® B® BI)
= Tor,(A® Ai, B ® BI).

On the other hand, there are natural maps H; (C) ® H; (Ci) — H;4; Tot (C®
Ci) for every pair of complexes C, Ci; one maps the tensor product ¢ ® ¢’
of cyclesc e C; and ci eC} toc® ci eC,~®C;.. (Check thisl) The externa
product is obtained by composing the special case C= P® B, C' = P’ ® Bi:

Tor;(A, B) ® Tor;(A’, BI) =H;(P® B) ® H;(P' ® Bi) > H;1;(P®B®P ®B')
with the above map.

Exercise 2.7.5

1. Show that the external product is independent of the choices of P, Pi, P”
and that it isnatural in all four modules A, Ai, B, BI.

2. Show that the product is associative asamap to Tor,(A® Al ® AT, B ®
Bi @ Bi).

3. Show that the external product commutes with the connecting homomor-
phism § in the long exact Tor sequences associated to 0 — Bp— B —
Bl — 0.

4. (Internal product) Suppose that A and B are R-algebras. Use (1) and (2)
to show that Tor® (A, B) isagraded R-algebra
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Tor and Ext

3.1 Tor for Abelian Groups

The first question many people ask about Tor.(A, B) is illhy the name
éTori?T The results of this section should answer that question. Historicaly,
the first Tor groups to arise were the groups Tori(Z/p, B) associated to
abelian groups. The following simple calculation describes these groups.

Calculation 3.1.1 Torf(Z/p,B) =B/pB,Tor’(Z/p,B) = ,B= (b€ B :
pB=0)and Torf(Z/p, B) = 0 for n> 2. To see this, use the resolution

07257 Z/p—0
to see that Tor.(Z/p, B) is the homology of the complex 0 — B 2. B->o.

Proposition 3.1.2 For all abelian groups A and B:

@ TorIZ(A, B) is a torsion abelian group.
(b) TorZ(A, B) = 0 forn>2.

Proof A is the direct limit of its finitely generated subgroups A,, so by 2.6.17
Tor, (A, B) isthe direct limit of the Tor, (A,, B). As the direct limit of torsion
groups is a torsion group, we may assume that A is finitely generated, that is,
A=7"®Z/p1®Z/p2®--.DZ/p, for appropriate integers m, pi,..., pr.

AsZ™ is projective, Tor,(Z™, —)vaz*shesfarn d S o w e h a v

Torn(A, B) = Torn(Z/pi1, B) & -- ®@Tor,(Z/pr, B).

The proposition holds in this case by calculation 3.1.1 above. <

66
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Proposition 3.1.3 Tor%(Q/Z, B) is the torsion subgroup of B for every
abelian group B.

Proof As Q/Z is the direct limit of its finite subgroups, each of which is
isomorphic to Z/p for some integer p, and Tor commutes with direct limits,

TorZ(Q/Z, B) = @Tor%(l/p, B) = lim(,B) = Up{b€ B: pb = 0},

which is the torsion subgroup of B. <

Proposition 3.1.4 If A is a torsionfree abelian group, then Torf(A, B)=0
for ns£ 0 and all abelian groups B.

Proof Aisthedirect limit of its finitely generated subgroups, each of which is
isomorphic to Z™ for some m. Therefore, Tor, (A, B) = ”ﬂl Tor, (Z™,B) = 0.

<

Remark (Balancing Tor) If R is any commutative ring, then Tor®(A, B) =
TorR(B, A). In particular, this is true for R = Z, that is, for abelian groups.
This is because for fixed B, both are universal §-functors over F(A) = A ®

B =B ® A. Therefore TorIZ(A, Q/Z) is the torsion subgroup of A. From this
we obtain the following.

Corollary 3.1.5 For every abelian group A,

TorIZ(A, -) =0« A is torsionfree @Tor?(—, A) =0.

Calculation 3.1.6 All thisfailsif we replace Z by another ring. For example,
if wetake R =2/m and A = Z/d with d!m, then we can use the periodic free
resolution

---—d>Z/mﬂiZ/m—‘—i—>Z/m—€>Z/d—>0
to see that for all Z/m-modules B we have

B/dB ifn=0
TorZ/™Z/d, B) = { {beB: db = 0}/(m/d)B ifnisodd, n>0
{beB:(m/d)pb=0}/dB ifniseven, n>0.
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Example 3.1.7 Suppose that r € R is a left nonzerodivisor on R, that is,
+R={seR:rs=0}is zero. For every R-module B, set ,B={b€B:rb =
0). We can repeat the above calculation with R/r R in place of Z/p to see that
Toro(R/rR, B) = B/rB, TorfX(R/rR, B) = ,B and Tor®(R/rR, B) = 0 for
al B when n> 2.

Exercise 3.1.1 If , R0, al we have is the non-projective resolution
0—>,R—>R—r>R—>R/rR—>0.

Show that there is a short exact sequence

R multiply R
0 — Tor; (R/rR, B) — R® B ——— B — Tor{(R/rR, B) — 0

and that Tor®(R/rR, B) = Tor® ,(,R, B) for n> 3.

Exercise 3.1.2 Suppose that R is a commutative domain with field of frac-
tions F. Show that Torf(F/R, B) is the torsion submodule {b€ B :(3dr#
0) rb = 0} of B for every R-module B.

Exercise 3.1.3 Show that TorR(R/1, RIJ) = L2 for every right ideal | and
left ideal J of R. In particular, Torj(R/I, RIZ) =1/I? for every 2-sided ideal
1. Hint: Apply the Snake Lemma to

0 —I1J — | — I®R/J — 0

! ! !

0 —J — R — R®R/J— O

3.2 Tor and Flatness

In the last chapter, we saw that if A is a right R-module and B is a left R-
module, then Tor®(A, B) may be computed either as the Ieft derived functors
of AQg evaluated at B or as the left derived functors of ® g B evaluated at A.
It follows that if either A or B is projective, then Tor, (A, B) =0 for n #0.

Definition 3.2.1 A left R-module B is flar if the functor @ g B is exact. Sim-
ilarly, a right R-module A is flar if the functor A®g is exact. The above
remarks show that projective modules are flat. The example R=27,B=Q
shows that flat modules need not be projective.
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Theorem 3.2.2 If S is a central multiplicatively closed set in a ring R, then
S~'Risa flat R-module.

Proof Form the filtered category I whose objects are the elements of § and
whose morphisms are Homj(sy, s2) ={s€ S:s1s = s3}. Then coli)m F(s) =

S~'R for the functor F:1 — R-mod defined by F(s) = R, F(s;j—> s2) be-
ing multiplication by s. (Exercise: Show that the maps F(s) — S~ ! R sending
1to1/s induce an isomorphism colim F(s) =S~ !R.) Since S~!R is the fil-

tered colimit of the free R-modules;(s), it is flat by 2.6.17. <

Exercise 3.2.1 Show that the following are equivaent for every left R-
module B.

1. B isflat.
2. TorR(A, B) =0 for all n # 0 and all A.
3. TorR(A, B) = O for dl A.

Exercise 3.2.2 Show that if 0 - A - B — C — 0 is exact and both B and
C areflat, then A is d<so flat.

Exercise 3.2.3 We saw in the last section that if R = Z (or more generally,
if Ris a principa ideal domain), a module B isflat iff B is torsionfree. Here
is an example of a torsionfree ideal I that is not a flat R-module. Let k be a
field and set R = k[x,y], I = (X, ¥y)R. Show that k = R/Z has the projective
resolution

[¥]

O—)R—)Rz(—{—&)Rek—)Q

Then compute that TorR (1, k) = TorZ (k, k) = k, showing that I is not flat.
1 2

Definition 3.2.3 The Pontrjagin dual B* of a left R-module B is the right
R-module Homap(B, Q/Z); an element r of R acts via (fr)(b) = f(rb).

Proposition 3.2.4 The following are equivalentfor every left R-module B :

1. B is aflat R-module.

2. B*is an injective right R-module.

3. I®rB=IB={xiby+---+xyb, € B:x; €1,b; € B} C B for every
right ideal 7 of R.

4. TorR (R/1, B) = 0 for every right ideal 7 of R.
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Proof The equivalence of (3) and (4) follows from the exact sequence
0 —» Torj(R/I,B) - I ®B —+B —-B/IB— 0.

Now for every inclusion Ai ¢ A of right modules, the adjoint functors ® B and
Hom(-, B) give a commutative diagram

Hom(A, B*) — Hom(Ai, B*)
L =)

(A ® B)* = Hom(A® B, Q/Z) —> Hom(A'® B, Q/Z) = (Aib B)*.

I

Using the lemma below and Bageris criterion 2.3.1, we see that
B* isinjective ¢ (A ® B)* — (Al ® B)* is surjective for all Al C A.
< Al ® B—> A® Bisinjective for al Ai ¢ A & Bisflat.
B* is injective < (R ® B)* — (I ® B)* is surjective for al IcR
< 1®B — R ®B is injective for al 1
& I®B=/Bfordl I ©

Lemma 3.2.5 A map f: B — C is injective iff the dual map f *: C* — B* is
surjective.

Proof If A is the kernel of f, then A* is the cokernel of f*, because
Hom(-, Q/Z) is contravariant exact. But we saw in exercise 2.3.3 that A =0
iff A*=0. 0

Exercise 3.2.4 Show that a sequence A — B — C is exact iff its dud C* —
B* — A* is exact.

An R-module M is cdled finitely presented if it can be presented us-
ing finitely many generators (et, . . ., &) and relations (3" a;je; =0, ] =
[,....m). That is, there isan m x n matrix & and an exact sequence R™ —»
R"—> M — 0. If M is finitely generated, the following exercise shows that the
property of being finitely presented is independent of the choice of generators.

Exercise 3.2.5 Suppose that ¢: F — M is any surjection, where F is finitely
generated and M is finitely presented. Use the Snake Lemma to show that
ker(yp) is finitely generated.

Still letting A* denote the Pontrjagin dual 3.2.3 of A, there is a natura
map a A* @ g M — Hompg(M, A)* defined by o (f ® m): h +— f (h(m)) for
fe A*, meMand he Hom(M, A). (Exercise: If M = @72, R, show that o
is not an isomorphism.)
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semma 3.2.6 The map o is an isomorphism for every finitely presented M
ind all A.

roof A simple calculation shows that o is an isomorphism if M = R. By
wdditivity, o is an isomorphism if M = R™ or R™. Now consider the diagram

A*@R™ — A*QR'" — ATQM — 0
ol% al% ol
Hom(R™, A)* —» Hom(R", A)* —> Hom(M, A)* — 0.

The rows are exact because ® is right exact, Horn is left exact, and Pontrjagin
jual is exact by 2.3.3. The 5-lemma shows that o is an isomorphism. <

Theorem 3.2.7 Every finitely presented flat R-module M is projective.

Proof In order to show that M is projective, we shall show that Homz(M, -)
is exact. To this end, suppose that we are given a surjection B — C. Then
C* —» B*isaninjection, so if M is flat, the top arrow of the square

(CHY®rM — (BH®rM

! !

Hom(M, C)*— Hom(M, B)*

i3
k¢

is an injection. Hence the bottom arrow is an injection. As we have seen, this
implies that Hom(M, B) — Hom(M, C) is a surjection, as required. <

Flat Resolution Lemma 3.2.8 The groups Tor.( A, B) may be computed us-
ing resolutions by flat modules. That is, if F — A is a resolution of A with the
F, being flat modules, then Tor.(A, B) = H,( F ® B). Similarly, if Fi — B is
a resolution of B by flar modules, then Tor, (A, B) = H,(A® Fi).

Proof We use induction and dimension shifting (exercise 2.4.3) to prove that
Tor, (A, B)= H, (F ® B) for dl n; the second part follows by arguing over
R°P. The assertion is true for n = 0 because ® B is right exact. Let K be such
thata 0 > K—>Fy— A —0is exact; if E=(---— F, > F;— 0), then
E— Kisaresolution of K by flat modules. For n = 1 we simply compute

Tor (A, B) = ker(K ® B — Fy® B)

[ Fi® B

N9 L R®BY= H(F® B).
mheB) 0% ] 1(F& B)
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Lemma 3.2.6 The map o is an isomorphism for every finitely presented M
and all A.

Proof A smple calculation shows that o is an isomorphism if M = R. By
additivity, o is an isomorphism if M = R™ or R". Now consider the diagram

A*®@ R" — A*Q@R" — A*QOM —> 0
Ul% al% al
Hom(R™, A)* —> Hom(R", A)* —> Hom(M, A)* —> 0.

The rows are exact because ® is right exact, Horn is left exact, and Pontrjagin
dual is exact by 2.3.3. The 5-lemma shows that ¢ is an isomorphism. <&

Theorem 3.2.7 Every finitely presented flar R-module M is projective.

Proof In order to show that M is projective, we shall show that Homg (M, —)
is exact. To this end, suppose that we are given a surjection B -> C. Then
C* —» B*isaninjection, so if M isflat, the top arrow of the square

(CH®rM — (BHYQrM

! !

Hom(M, C)* — Hom(M, B)*

IR
iR

is an injection. Hence the bottom arrow is an injection. As we have seen, this
implies that Hom(M, B)— Hom(M, C) is a surjection, as required. 2o

Flat Resolution Lemma 3.2.8 The groups Tor.(A, B) may be computed us-
ing resolutions by flat modules. That is, if F — A is a resolution of A with the
F, being flat modules, then Tor,(A, B) = H,(F ® B). Similarly, if Fi — B is
a resolution of B by flat modules, then Tor,(A,B) = H,(A® Fi).

Proof We use induction and dimension shifting (exercise 2.4.3) to prove that
Tor,(A, B) = H,(F ® B) for al n; the second part follows by arguing over
R°P. The assertion is true for rn = 0 because ® B is right exact. Let K be such
that 0 > K > Fy— A - 0is exact; if E=(---— F,— F;— 0), then
E — K isaresolution of K by flat modules. For n=1 we simply compute

Tor1(A, B) = ker(K ®B — Fy® B)

F B
=ker[ 1®

_NP8% L peBl=H((F® B).
mbheB 10® ] 1(F® B)
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For n > 2 we use induction to see that

Tora(A, B) = Tor,_ (K, B) = H,_1(E ® B) = H\(F ® B). o

Proposition 3.2.9 (Flat base change for Tor) Suppose R — T is a ring map
such that T is flat as an R-module. Then for all R-modules A, all T-modules
Candalln

TorR(A,C)=Tor} (A ®& T, C).

Proof Choose an R-module projective resolution P — A. Then TorR(A, C)
is the homology of P ®g C. Since T is R-flat, and each P, ®x T is a pro-
jective T-module, P® T— A® T is a T-module projective resolution. Thus
Torl (A®g T, C) is the homology of the complex (P ®z T) @ C=P ®x C
aswell. <

Corollary 3.2.10 If R is commutative and T is a flat R-algebra, then for all
R-modules A and B, and for all n

T ®r TorR(A,B)=TorT (AQRr T, T ®& B).

Proof Setting C = T ®g B, it is enough to show that TorR(A, T ® B) =
T ® TorR(A, B). AsT®g is an exact functor, T ® TorR(A, B) is the homol-
ogy of T®r (PQ®rB)=P ®r (T ®g B), the complex whose homology is
TorR(A, T ® B). &

Now we shall suppose that R is a commutative ring, so that the Tor® (A, B)
are actually R-modules in order to show how Tor, localizes.

Lemma 3.2.11 If u: A — A is multiplication by a central element r € R, so
are the induced maps p.: Tor® (A, B) — TorR (A, B) for all n and B.

Proof Pick a projective resolution P — A. Multiplication by ris an R-
module chain map fi: P — P over p (this uses the fact that r is central), and
it ® B is multiplication by r on P ® B. The induced map w, on the subquo-
tient Tor, (A, B) of P, ® B is therefore also multiplication by r. <

Corollary 3.2.12 If A is an R/r-module, then for every R-module B the R-
modules TorX(A, B) are actually R/r-modules, that is, annihilated by the
ideal r R.
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Corollary 3.2.13 (Locdlization for Tor) If R is commutative and A and B are
R-modules, then the following are equivalent for each n:

1. TorR(A, B) = 0.
2. For every prime ideal p of R Torf”(A,,,Bp) =0.
3. For every maximal ideal m of R Tor,’f”‘ (A,,,B,)=0.

Proof For any R-module M, & M, = 0 for every prime p < M, =0
for every maximal ideal m. In the case A4 = TorX (A, B) we have

R
M, =R,®rM = Tor,” (A, Bp). &

3.3 Ext for Nice Rings

Wefirst turn to a calculation of Ext3 groups to get a calculational feel for what
these derived functors do to abelian groups.

Lemma 3.3.1 Ext%(A, B) = 0 for n> 2 and all abelian groups A, B.

Proof Embed B in an injective abelian group /°; the quotient 7! is divisible,
hence injective. Therefore, Ext* (A, B) is the cohomology of

0 — Hom(A, 1% — Hom(A, I')— 0. 0

Calculation 3.3.2 (A =Z/p)Exty(Z/p,B) = ,B,Ext}(Z/p,B) =B/pB
and Ext%(Z/p, B) = 0 for n> 2. To see this, use the resolution

0->2Z-%7—-7/p—0and the fact that Hom(Z, B) = B

to see that Ext*(Z/ p, B) is the cohomology of 0 < B £-B<o.

Since Z is projective, Ext!(Z, B) = 0. Hence we can calculate Ext*(A, B)
for every finitely generated abelian group A =Z7"&Z/p1®--- S Z/pn by
taking a finite direct sum of Ext*(Z/p, B) groups. For infinitely generated
groups, the calculation is much more complicated than it was for Tor.

Example 3.3.3 (B =Z) Let A be a torsion group, and write A* for its Pon-
trjagin duad Hom(A, Q/Z) as in 3.2.3. Using the injective resolution 0 —
Z—Q— Q/Z — 0 to compute Ext*(A, Z), we see that Ext)(A,Z) = 0 and
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Ext%(A, Z) = A*. To get afed for this, note that because Z,e is the union
(colimit) of its subgroups Z/ p", the group

Ext)(Z oo, Z) = (Zpo)*

is the torsionfree group of p-adic integers, Zp =lim(Z/p™). We will calculate

Ext‘Z(Z,,oo, B) more generally in section 3.5, using IiLn“I'.

Exercise 3.3.1 Show that Ext%(Z[%],Z)EZP/ZEZPw. This shows that
Ext!(—, Z) does not vanish on flat abelian groups.

Exercise 3.3.2 When R =7/m and B = Z/p with p|m, show that

0—>2/p<sZ/m-L>/m ™87 /m 2> 2/m 5 ...

is an infinite periodic injective resolution of B. Then compute the groups
Ext'i/m(A, ZIp) in terms of A* = Hom(A, Z/m). In particular, show that if

p?m, then Ext’i/m(l/p,l/p)’él/p for al n.

Proposition 3.3.4 For all n and all rings R

1. Exty(®gAq, B) =[], Ext}(Aq, B).
2. Ext}(A. [T, Bp) =1, Exti(A, Bp).

Proof If P,— A, are projective resolutions, so iS @Py— @A,. If Bg—
Ig are injective resolutions, so is [[Bg—[]1s. Since Hom(®P,, B) =
[T1Hom(P,, B) and Hom(A, []1s) =[] Hom(A, Ig), the result follows from
the fact that for any family C, of cochain complexes,

H ([ e = []H*C)p. &

Examples 3.3.5

1. If p?lm and A is a Z/p-vector space of countably infinite dimension,
then Ext'i/m(A, Zlp) =T172{Z/p is a Zlp-vector space of dimen-

sion 2%,
2. 1f Bis the product Z/2xZ/3xZ/4xZ/5SX---then B isnot a torsion
group, and
o0
Ext!(A,B)=[[A/pA=0
p=2

vanishes if and only if A is divisible.
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Lemma 3.3.6 Suppose that R is a commutative ring, so that Homg(A, B)
and the Ext}(A, B) are actually R-modules. If u:A— Aandv: B— B are
multiplication by r € R, so are the induced endomorphisms w* and v, of
Ext% (A, B) for all n.

Proof Pick a projective resolution P — A. Multiplication by ris an R-
module chain map fi: P — P over u (asr is centra); the map Hom(j, B)
on Hom(P, B) is multiplication by r, because it sends f € Hom(FP,, B) to
f i, which takes p € P, to f (rp) = rf (p). Hence the map u* on the subquo-
tient ExtT (A, B) of Hom( P,, B) is also multiplication by r. The argument for
v« is Similar, using an injective resolution B — 1. <

Corollary 3.3.7 If R is commutative and A is actually an R/r-module, then
for every R-module B the R-modules Ext%(A, B) are actually R/r-modules.

We would like to conclude, as we did for Tor, that Ext commutes with local-
ization in some sense. Indeed, there is a natural map @ from S~ 'Hompg (A, B)
to Homg-1,(S~'A, S~ B), but it need not be an isomorphism. A sufficient

condition is that A be finitely presented, that is, some R"™-2> R* —> A — 0
isexact.

Lemma 3.3.8 If A is afinitely presented R-module, then for every central
multiplicative set §in R, & is an isomorphism:

®:S~!'Homg(A, B) = Homg-1,(S"'A,S7'B).

Proof & is trividly an isomorphism when A = R; as Horn is additive, ® is
also an isomorphism when A = R™. The result now follows from the 5-lemma
and the following diagram:

0 — S~'Homg(A, B) — S~'Homg(R", B ) —» S 'Homg(R", B)
®l El gl
0 — Hom(S~'A,5"'B) — Hom(S~'R",s"'B) > Hom(S~'R™, s 'B). <

Definition 3.3.9 A ring R is (right) noetherian if every (right) ided is finitely
generated, that is, if every module R/Z is finitely presented. It is well known
that if R is noetherian, then every finitely generated (right) R-module is
finitely presented. (See [BAIL§3.2].) It follows that every finitely generated
module A has a resolution F - A in which each F, is a finitely generated
free R-module.
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Proposition 3.3.10 Let A be a finitely generated module over a commutative
noetherian ring R. Then for every multiplicative set S, all modules B, and
all n

®: STV Ext}(A, B) = Ext} | (ST'A,$7'B).

Proof Choose a resolution F — A by finitely generated free R-modules.

Then S~1F — S~ A is aresolution by finitely generated free S~! R-modules.

Because S~ ! is an exact functor from R-modules to S~ R-modules.
STVExth(A, B) =S ! (H*Homg(F, B)) = H*(S~! Homg(F, B))

= H*Homg-1(S™'F, §7'B) = Bxt}_, .(S7'4,57'B).¢

Corollary 3.3.11 (Localization for Ext) If R is commutative noetherian and
A is a finitely generated R-module, then the following are equivalent for all
modules B and all n:

1. Extx(A, B) = 0.
2. For every prime ideal p of R, Ext'}ep (A, Bp)=0.
3. For every maximal ideal m of R, EXtrzle,,, (A,,,B)=0.

3.4 Ext and Extensions

An extension & of A by B is an exact sequence 0 - B —- X —- A — 0. Two
extensions & and £ are equivalent if there is a commutative diagram

& 00— B — X — A — 0

H ! |

& 00— B — X — A — 0

R

An extension is split if it is equivalent to 0 — B @A ®&B—>A—0.
Exercise 3.4.1 Show that if p is prime, there are exactly p equivalence
classes of extensions of Z/p by Z/p in Ab: the split extension and the ex-

tensions

0-2/p L7/ S5 2/p—>0 (=12, p- ).
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Lemma 3.4.1 If Exti (A, B) =0, then every extension of A by B is split.
Proof Given an extension &, applying Ext*(A, —) yields the exact sequence
Hom(A, X) — Hom(A, A) — Ext'(A, B)

so the identity map id4 lifts to amap o: A — X when Ext! (A, B) =0. As o
is a section of X — A, evidently X =A@ B and & is split. <

Porism 3.4.2 Taking the congtruction of this lemma to heart, we see that
the class ©®(£) =d(id4) in Exti (A, B) is an obstruction to & being split: &
is split iff id, lifts to Hom(A, X) iff the class ©(£) € Ext' (A, B) vanishes.
Equivalent extensions have the same obstruction by naturality of the map a, so
the obstruction ® (&) only depends on the equivalence class of .

Theorem 3.4.3 Given two R-modules A and B, the mapping ©: &+ a(ida)
establishes a I-I correspondence

equivalence classes of | 1-1 1
) «—— Ext (A, B)
extensions of A by B

in which the split extension corresponds to the element 0 € Ext!(A, B).

Proof Fix an exact sequence O —M-1>P > A—0with P projective.
Applying Hom(-, B) yields an exact sequence

Hom(P, B) — Hom(M, B) —> Ext'(A, B) — 0.

Given x €Ext!(A, B), choose g€ Hom(M, B) with 3(8)= x. Let X be the
pushout of j and 8, i.e, the cokernd of M — P & B (m — (j(m), —B(m))).
There is a diagram

0 — M —J> P — A — 0
sl e
£ 0 —> B — X — A —> 0,
where the map X — A is induced by the maps B-% Aand P — A. (Exer-

cise: Show that the bottom sequence £ is exact.) By naturality of the connect-
ing map 9, we see that ® (&) = x, that is, that ® is asurjection.
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In fact, this construction gives a set map W from Ext!(A, B) to the set of
equivalence classes of extensions. For if g’ Hom(M, B) is another lift of x,
then there is an f € Hom( P, B) sothat 8’ = 8+ fj. If Xi is the pushout of j
and g, then the maps i: B — X and o + if: P — X induce an isomorphism
Xi =X and an equivaence between £ and . (Check this!)

Conversely, given an extension & of A by B, the lifting property of P gives
amap t: P — X and hence a commutative diagram

o - M A P - A - 0
G+) v Le I
£ 0 — B —» X — A — 0.
Now X is the pushout of j and y. (Exercise: Check this!) Hence w(®(§)) =
&, showing that © isinjective. <

Definition 3.4.4 (Baersum)Let§:0—> B —> X > A—> 0and£¢:0 > B —
Xi — A — 0 be two extensions of A by B. Let X1 be the pullback {(x, xi)
X x Xi :x=x"inA}.

X" — X
1 1
X - A

X1 contains three copies of B: B x 0, 0x B, and the skew diagonal {(—b,b):
b € B}. The copies B x 0 and O x B are identified in the quotient Y of X1 by
the skew diagonal. Since X”/0x B =X and X/B = A, it is immediate that
the sequence

¢9: 0>oB—-Y—>A—->0

is dso an extension of A by B. The class of ¢ is called the Baer sum of the
extensions & and &', since this construction was introduced by R. Baer in 1934.

Corollary 3.4.5 The set of (equiv. classes of) extensions is an abelian group
under Baer sum, with zero being the class of the split extension. The map ® is
an isomorphism of abelian groups.

Proof We will show that ®(¢) = ®(&) + ©(£") in Ext!(A, B). This will
prove that Baer sum is well defined up to equivalence, and the corollary will
then follow. We shall adopt the notation used in (x) in the proof of the above
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theorem. Let tT: P — X' bethemapinducedbyt:P — X andti: P— Xi,
andletz: P — Y be the induced map. The restriction of Tto M is induced by
the map y +y’: M — B, so0

0O — M — P — A — 0
y+r'| ] I

9: 0 — B — Y — A — 0

commutes. Hence, ©(¢)=3(y + '), where 3 is the map from Hom(M, B)
to Ext!(4, B). But 3(y +y') = 8(y) + 0(¥') = O(§) + O). 0

Vista 3.4.6 (Yoneda Ext groups) We can define Ext' (A, B) inany abelian
category A, even if it has no projectives and no injectives, to be the set of
equivalence classes of extensions under Baer sum (if indeed this is a set).
The Freyd-Mitchell Embedding Theorem 1.6.1 shows that Ext!(A, B) isan
abelian group-but one could also prove this fact directly. Similarly, we can
recapture the groups Ext”(A, B) without mentioning projectives or injectives.
This approach is due to Yoneda. An element of the Yoneda Ext"(A, B) is an
equivalence class of exact sequences of the form

& 0—-B-o>X,»> - > X1 >A-0.

The equivalence relation is generated by the relation that £’ ~ &” if thereisa
diagram

& 0 — B — X, — -+ — X; — A — 0
I ! ! |
£ 0 —5 X X — 0.

To iaddl &and &’ whenn> 2, let X{ be the pullback of X1 and X over A, let
X! be the pushout of X, and X, under B, and let ¥, be the quotient of X, by
the skew diagonal copy of B. Then £ + £’ isthe class of the extension

0>B—>YV,> X 10X, > >X20X,>X{>A—0.
Now suppose that .4 has enough projectives. If P — A isaprojective res-

olution, the Comparison Theorem 2.2.6 yields a map from P to &, hence a
diagram
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0 — M — P, — - — Ph— A —0
ﬂl l}’n l “
g: 0 — B — Xn —_ e —> Xl — A — 0.

By dimension shifting, there is an exact sequence

Hom(Pyu_1, B) — Hom(M, B) — Ext"(A, B) — 0.

The association ©(§) =3(8) gives the |-l correspondence between the
Y oneda ExtT and the derived functor ExtT. For more details we refer the reader
to [BX, §7.5] or [MacH, pp. 82-87].

3.5 Derived Functors of the Inverse Limit

Let Z be asmall category and A an abelian category. We saw in Chapter 2 that
the functor category 4! has enough injectives, at least when A is complete and
has enough injectives. (For example, A could be Ah, R-mod, or Sheaves(X).)
Therefore we can define the right derived functors R” lim;¢; from A/to A .

We are most interested in the case in which A is Ab and Z is the poset
-+« —> 2 —1— 0 of whole numbersin reverse order. We shall call the objects
of Ab’ (countable) towers of abelian groups; they have the form

{A;}: .- > Ay > A — Ap.

In this section we shall give the aternative construction lim! of R! lim for
«

PR

countable towers due to Eilenberg and prove that R" lim =0 forns 0, 1. This

congtruction generalizes from Ab to other abelian categories that satisfy the
following axiom, introduced by Grothendieck in [Tohoku]:

(AB4*) Aiscomplete, and the product of any set of surjections is asurjection.

Explanation If Z is a discrete set, A’ is the product category IT;¢;.4 of in-
dexed families of objects {4;}in A. For {A;}in Al lim;¢; A; is the product
[TA;:. Axiom (A B4*) states that the left exact functor [] from A to A is exact
for all discrete 7. Axiom (AB4*) fails ([]2, is not exact) for some impor-
tant abelian categories, such as Sheaves(X). On the other hand, axiom (A B4*)
is satisfied by many abelian categories in which objects have underlying sets,
such as Ab, mod-R, and Ch(mod-R).
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Definition 3.5.1 Given atower {A;}in Ab, define the map

o0 o 0]
A l_I A,‘ —> l_[ A,‘
i=0 =0

by the element-theoretic formula

AG..,ai,..-,a0)=(--,ai—ait1, ., a1—a,ap—ay),
where a; 1 denotes the image of a;+1€ Aj41in A;. The kernel of A is Ii(mAi
(check thisl). We define 1<ir_n1A,- to be the cokernel of A, so that l(iLn1 is a
functor from Ab’to Ab. We aso set lim® A; = lim A; and limT A;= 0 for
n#0,1 - - -

Lemma 3.5.2 The functors {lim"} form a cohomologicul 8-functor.
«—

Proof If 0 > (A;}—{B;} > {C;}— 0 is a short exact sequence of towers,
apply the Snake Lemmato

0 — l—[Ai — HB,- — I—[C,- — 0
la la la
0 — l—[A,- —> l—[B,- —> l—ICi —> 0

to get the requisite natural long exact sequence. <

Lemma 3.53 If all the maps A;41— A; are onto, then Ii(rn_l’ A; = 0. More-

over lim A; % 0 (unless every A; = 0), because each of the natural projections
«—

limA; — A; are onto.

«—

Proof Given elements b;e A; (i=0, 1, ..-), and any ag € Ag, inductively
choose a; 1€ A;1to bealift of a;—b;e A;. Themap A sends (- . , ay, ag)
to (--+,b1,bg), SO A is onto and coker(A) = 0. If al the b; = 0, then
(-'~,a1,a0) o ﬂmAI <&

Corollary 3.54 lim! A; 2 (R'1im)(4;) and R" 1(21 =0forn#0, 1.

Proof In order to show that the lim"” forms a universal §-functor, we only need
«—

to see that lim' vanishes on enough injectives. In Chapter 2 we constructed

—



82 Tor and Ext
enough injectives by taking products of towers

kE: - - =E=E—>0-0---—>0

with E injective. All the maps in k«E (and hence in the product towers) are
onto, so l(i_n}1 vanishes on these injective towers. 0

Remark If we replace Ab by A = mod-R, Ch(mod-R) or any abelian cat-
egory A satisfying Grothendieckis axiom (AB4*), the above proof goes
through to show that Aml = R1(<1i_m) and R”(lir__n) =0for n#0, 1 as func-
tors on the category of towersin A.  However, the proof breaks down for other
abelian categories.

Example 3.5.5 Set Ag =Z and let A; = p'Z be the subgroup generated by
p'. Applying lim to the short exact sequence of towers

0= {p'7) > {2} > {Z/p'Z)— 0
with p prime yields the uncountable group
lim YpiZ)=2,/1.
Here 2,,: limZ/p'Z is the group of p-adic integers.

Exercise 3.5.1 Let {A;} be a tower in which the maps A; | — A; are in-

clusions. We may regard A = Ay as a topological group in which the sets

a+Aj(acA, i>0)are the open sets. Show that lim A; = NA; is zero iff A
«—

is Hausdorff. Then show that lim! A; = 0 iff A is complete in the sense that

every Cauchy seguence has a limit, not necessarily unique. Hint: Show that A
is complete iff A=1lim(A/A;).

Definition 3.5.6 A tower {A;} of abelian groups satisfies the Mittag-Leffler
condition if for each k there exists aj > k such that the image of A; — Ax
equals the image of A;— Ay for dl i> . (The images of the A; in Ay satisfy
the descending chain condition.) For example, the Mittag-Leffler condition is
satisfied if all the maps A; 11— A; in the tower {A;} are onto. We say that {A;}
satisfies the trivial Mittag-Leffler condition if for each k there exists aj >k
such that the map A ; — Ay is zero.
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Proposition 3.5.7 If { A;} satisfies the Mirtag-Leffler condition, then

lim'A; =O.
D

Proof If {A;} satisfies the trivid Mittag-Leffler condition, and b; € A; are
given, set ax = bk+l;k+1+"'+l_7j‘1, where b; denotes the image of &; in
Ag. (Note that b; = 0 for i > j.) Then A maps (---,ay,ag) 10 (-- -, by, bo).
Thus A isonto and I(iElAi = 0 when {A;} satisfies the trivia Mittag-Leffler
condition. In the general case, let By C Ay be the image of A; — Ay for large
i. The maps By+1— By are al onto, so Ii(nll’ By = 0. The tower {Ay/ By} sat-

ifies the trivial Mittag-Leffler condition, so Lir_ni Ay /By = 0. From the short
exact sequence

0 —{B;} > {A;} > {A;/Bi}—> O

of towers, we see that limi A; = 0 as claimed. &

Exercise 3.5.2 Show that limi A; =0 if {A;} is a tower of finite abelian
«—
groups, or atower of finite-dimensional vector spaces over afield.

The following formula presages the Universal Coefficient theorems of the
next section, as well as the spectral sequences of Chapter 5.

Theorem 3.5.8 Let. . . — C}— Cy be a tower of chain complexes of abelian
groups satisfying the Mittag-Leffler condition, and set C = I(@ C;. Then there

is an exact sequence for each g:

0 — lim ' Hy11(Cy) ~ Hy(C) — lim Hy(C;) — 0.
«— «—

Proof Let B; € Z; CC; be the subcomplexes of boundaries and cycles in the
complex Cy, so that Z; / B; is the chain complex H, (C;) with zero differentials.

Applying the left exact functor lim to 0 S {Z:) > (Ci1 -5 {Ci[— 1]} shows
that in fact(li_m Z; is the subcomplex Z of cyclesin C. (The [- 1] refers to the

surpressed subscript on the chain complexes.) Let B denote the subcomplex
d(O)[11=(C/Z)[1] of boundaries in C, so that Z/B is the chain complex
H,(C) with zero differentials. From the exact sequence of towers

0 > {Zi} > {Ci} -5 (BiI=11} > 0
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we see that ﬂryl’ B;= (M‘B,{—H)[—H] = 0 and that
0 — B[—1] > lim B;[~1] — lim 1Zzi—>0
is exact. From the exact sequence of towers
0 = {Bi} > {Zi} > H«(Cj) -2 0
we see that (li_le,-Elj_mlH*(C,-) and that
0 —+li_rn B,-—)Z—)l(ing*(Ci) -0

is exact. Hence C has the filtration by subcomplexes

0CBC l(ﬂ] BiczZcC

whose filtration quotients are B, limi  H.(C)[ 1],Lm H.(C), and C/Z respec-
tively. The theorem follows, since Z/B = H,(C). <

Variant If .. ->Cy— Cp is a tower of cochain complexes satisfying the
Mittag-Leffler condition, the sequences become

0 — lim'"H9-1(C;) > HI(C) - lim HY(C;) — O.

Application 3.59 Let H*(X) denote the integral cohomology of a topolog-
ical CW complex X. If {X;} is an increasing sequence of subcomplexes with
X =UX;, there is an exact sequence

*) 0 — lim 'HY™ (X)) > HY(X) — lim HY(X;) > 0

for each g. This use of l(iLnl to perform calculations in algebraic topology was
discovered by Milnor in 1960 [Milnor] and thrust lim! into the limelight.

To derive this formula, let C; denote the chain complex Hom(S(X;),Z)
used to compute H*(X;). Since the inclusion S(X;) € S(X;+1) splits (because
each S,(Xi+1)/Sn(X}) is afree abelian group), the maps C;4+1— C; are onto,
and the tower satisfies the Mittag-Leffler condition. Since X has the weak
topology, S(X) is the union of the S(X;), and therefore H*(X) is the coho-
mology of the cochain complex

Hom(US(X;), Z) = lim Hom(S(X;),Z) = lim C;.
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A historical remark: Milnor proved that the sequence (*) is also vdid if

H* is replaced by any generalized cohomology theory, such as topological
K-theory.

Application 3.510 Let A be an R-module that is the union of submodules
-+ CA;CA;j+1C - . Then for every R-module B and every g the sequence

0 —>l<i1_n1Ext‘11e_l(A,-, B) — Ext%(4, B) eliEExt‘}e(Ai, B) > 0
is exact. For Z po =UZ/ p*, this gives a short exact sequence for every B:
0 — lim 'Hom(Z/p', B) —>ExtIZ(Zpoo, B) —+I§p—> 0,
—

where the group I}p =1im(B/p'B) is the p-adic completion of B. This gener-

alizes the calculation Ext‘Z(Zpoo, 7)== 2,, of 3.3.3. To see this, let E be a fixed
injective resolution of B, and consider the tower of cochain complexes

Hom(A;+1, E) - Hom(A;, E) — ---— Hom(Ay,
E , ) surjec-
Hom(A;, E ) Ext*(4;, B ) , B )

Hom(UA; = lim Hom(A;,

Biteccise 358 at Exty(Z[1], 7)=1,/7 211 upTZ; cf.
exercise 331, Then show that Exth(Q,BX[],B,)/B.

A pplication 3.5.11 C. bead

lattice in the plane, and let 7,,C
prutally truncating C at the vertical line —n:

C if p>—n
(T"C)Pq:{Opq ifp<—n’

Then Tot(C) is the inverse limit of the tower of surjections
- = Tot(T;11C) — To(T;C) — - - — Tot(TpC).
q:
> lim ' Hy 1.1 (Tot(T;C)) — Hy(Tot(C)) — lim Hy (To(T;C)) — 0.
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This is especially useful when C is a second quadrant double complex, be-
cause the truncated complexes have only a finite number of nonzero rows.

Exercise 3.5.4 Let C be a second quadrant double complex with exact rows,
and let B% be the image of d":Cpy— Cpp—1 4. Show that H, 4, Tot(T_,C) =
Hy(Bh,, d"). Then let b = d"(a) be an element of B%  representing a cycle
§in Hpyq Tot(T-,C) and show that the image of & in Hpy, Tot(T_,_C)
is represented by di(a) eBp +14-1- This provides an effective method for
calculating H, Tot(C).

Vista 3.5.12 Let Z be any poset and A any abelian category satisfying
(AB4*). The following construction of the right derived functors of lim is
taken from [Roos] and generalizes the construction of Iiml' in this section.

Given A: Z — A, we define Ci to be the product over the set of al chains
ix<-<igin Z of the objects A;,. Letting pr;, ---;, denote the projection of
Cy onto the (ix <-- <iy)* factor and fy denote the map A;, — A;, associ-
ated to i1 < ig, we define d%: Cx_1— Cy to be the map whose (ix < - - - < ig)'"
factor is fo(pri,--+i,). For 1 <p <k, we define d?:C;_1— C; to be the
map whose (ix <-- < ig)™ factor is the projection onto the (ix <--- < f,, <

- < ig)™ factor. This data defines a cochain complex C,A whose differential
Ci—1— Cy is the dlternating sum Y% _o(—1)Pd?, and we define lim. , A to
be H"(C.A). (The data actually forms a cosimplicial object of A; see Chap-
ter 8.)

It is easy to see that 11m ;Ais the limit lim;¢; A. An exact sequence 0 —
A—-B—C—0inAf glves rise to a short exact sequence 0 — C,A —
C«B—C,C—0inA, whencean exact sequence

0> limA - limB — limC — lim A—>11m B——>11m C — lim2A - ---.
iel iel i d iel d d iel

Therefore the functors {lim}_,} form a cohomologica §-functor. It turns out
that they are universa when A has enough injectives, so in fact R"lim; ¢ =
hnyel

Remark Let 84 denote the d*” infinite cardinal number, Ku being the cardinal-
ity of {1,2,---}. If Z is a directed poset of cardinaity ®,, or a filtered cate-
gory with 84 morphisms, Mitchell proved in [Mitch] that R" I(ln vanishes for
n>d+2.

Exercise 3.5.5 (Pullback) Let — <« denote the poset {x,y, 2z}, x<zandy <
z, wthat lim_A; is the pullback of A, and A, over A, Show that lim '4;
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is the cokernel of the difference map A, x A, — A, and that |EILT_ = 0 for
n#0,1.

3.6 Universal Coefficient Theorems

There is a very useful formula for using the homology of a chain complex P to

compute the homology of the complex P ® M. Here is the most useful general
formulation we can give:

Theorem 3.6.1 (Kiinneth formula@) Let P be a chain complex of flat right R-
modules such that each submodule d (Py) of P, _ tis also flat. Then for every n
and every left R-module M, there is an exact sequence

0 > H,(P) ® M = H,(P ®g M) — Tor{ (H,_1(P), M) = 0.
Proof The long exact Tor sequence associated to 0 — Z, — P, —d(P,)—
0 shows that each Z, is also flat (exercise 3.2.2). Since Torf(d(P,), M) =0,

0->Z,M—> P, M —>d(P,)y®M — 0

is exact for every n. These assemble to give a short exact sequence of chain
complexes 0 >Z@M —-P®M — d(P) ® M — 0. Since the differentials
in the Z and d(P) complexes are zero, the homology sequence is

3 a
H, 1dP® M) > H(ZQM) — H,(P®M) —> H,(dP®M) — H, ((Z® M)

| g 1 |

d(Pn+l)®M Zn ®M d(Pn)®M Zn—l®M-

Using the definition of 8, it is immediate that 3 = i ® M, where iis the
inclusion of d( P,+1) in Z,. On the other hand,

0 = d(Pyp1) —> Zy— H,(P) = 0
is a flat resolution of H,,(P), so Tor, (H, (P), M) is the homology of

0 > d(Piy1)® M —>Z,® M = 0. o

Universal Coefficient Theorem for Homology 3.6.2 Let P be a chain com-
plex of free abelian groups. Then for every n and every abelian group M the



88 Tor and Ext

Kiinneth formula 3.6. | splits noncanonically, yielding a direct sum decom-
position

Hy(P® M) = Hy(P)® M ® Tor? (H,_1(P), M).

Proof We shdl use the well-known fact that every subgroup of a free abelian
group is free abelian [KapIAB, section 15]. Since d(P,) is a subgroup of
P,+1, it is free abelian. Hence the surjection P, — d(P,) splits, giving a
noncanonical decomposition

Py=Z,® d(P).

Applying ®M, we see that Z, ® M is a direct summand of P, ® M; a fortiori,
Z,® M is adirect summand of the intermediate group

ker(d, ® 1. P, M — P, _1® M).

Modding out Z, ® M and ker(d, ® 1) by the common image of d,+|®
I, we see that H,(P) ® M is a direct summand of H, (P ® M). Since P
and d(P) are flat, the Kiinneth formula tells us that the other summand is
Tor | (Hp—1(P), M). o

Theorem 3.6.3 (Ktinneth formula for complexes) Let P and Q be right and
left R-module complexes, respectively. Recall from 2.7.1 that the tensor prod-
uct complex P ®g Q is the complex whose degree n part is @p+q=n Pp,®Q,
and whose differential is given by d(a® b) = (da) ® b + (—1)Pa® (db) for
a€pP,beQ, If P, and d(P,) are flat for each n, then there is an exact
sequence

0 €D Hp(P)® Hy(Q) > Hu(P ®r Q) > P Torf(Hy(P), Hy(Q)) — 0
prq=n ptg=

n—1
for each n. If R = Z and P is a complex of free abelian groups, this sequence
is noncanonically split.

Proof Modify the proof given in 3.6.1 for Q = M. 2%

Application 3.6.4 (Universal Coefficient Theorem in topology) Let S(X) de-
note the singular chain complex of a topological space X; each S,(X)isafree
abelian group. If M is any abelian group, the homology of X with icoeffi-
cientst in Mis

Hy(X; M) = H (S(X)® M).
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Writing H.(X) for H, (X; Z), the formula in this case becomes
Ho(X; M) = H,(X) ® M @ Tor?(Hp_1(X), M).

This formula is often called the Universal Coefficient Theorem in topology.

If Y is another topological space, the Eilenberg-Zilber theorem 8.5.1 (see
{MacH, VIIIL.8]) states that H.(X x Y) is the homology of the tensor product
complex S(X) ® (Y). Therefore the Ktinneth formula yields the iktinneth
formula for cohomology:”

Hy(X x Y) ;‘ P Hx @ H,,,,,(Y] ® { TorZ(Hp-1(X), Hy_p(Y)) {.
r=0 p=1

We now turn to the analogue of the Ktinneth formula for Horn in place
of ®.

Universal Coefficient Theorem for Cohomology 3.6.5 Let P be a chain
complex of projective R-modules such that each d( #,) is also projective. Then
for every n and every R-module M, there is a (noncanonically) split exact
sequence

0 —>Ext}e(H,,_1(P), M) — H"(Homg (P, M)) — Homg(H,(P), M)— 0.

Proof Since d( P,) is projective, there is a (noncanonical) isomorphism P, =
Z,®d (P,) for each n. Therefore each sequence

0 —» Hom(d(P,), M) > Hom(P,, M) - Hom(Z,, M) — 0

is exact. We may now copy the proof of the Ktinneth formula 3.6.1 for ®,
using Hom(-, M) instead of ®M, to see that the sequence is indeed exact.
We may copy the proof of the Universal Coefficient Theorem 3.6.2 for ® in
the same way to see that the sequenceis split. <&

Application 3.6.6 (Universal Coefficient theorem in topology) The cohomol-
ogy of atopologica space X with icoefficientst in M is defined to be

H*(X; M) = H*(Hom(S(X), M))
In this case, the Universal Coefficient theorem becomes

H*(X; M) = Hom(H,(X), M) ® Exty(Hq—1(X), M).
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Example 3.6.7 If X is path-connected, then Ho(X)=Z and H' (X; Z)=
Hom(H, (X), Z).

Exercise 3.6.1 Let P be a chain complex and Q a cochain complex of R-
modules. As in 2.7.4, form the Horn double cochain complex Hom(P, Q) =
{Homg(Pp, @7)}, and then write H* Hom(P, Q) for the cohomology of
Tot(Hom(P, Q)). Show that if each P, and d(P,) is projective, there is an
exact sequence

0 [ Extp(Hy(P), H(Q)) > H"Hom(P, Q) — []Homg(H,(P), H4(Q)) 0.

ptq prg=
n—1 n

Exercise 3.6.2 A ring R is caled right hereditary if every submodule of
every (right) free module is a projective module. (See 4.2.10 and exercise
4.2.6 below.) Any principal ideal domain (for example, R = Z) is hereditary,
as is any commutative Dedekind domain. Show that the universal coefficient
theorems of this section remain valid if Z is replaced by an arbitrary right
hereditary ring R.



4
Homological Dimension

4.1 Dimensions

Definitions 4.1.1 Let A be a right R-module.
1. The projective dimension pd(A) is the minimum integer n (if it exists)
such that there is a resolution of A by projective modules

0—-P,—-->P—Ph—>A—> 0

2. The injective dimension id(A) is the minimum integer » (if it exists)
such that there is a resolution of A by injective modules

0>A—>E"S>E' ... 5> E">0.

3. The flat dimension fd(A) is the minimum integer n (if it exists) such
that there is a resolution of A by flat modules

0 —>F,—>--->F1—>Fy— A—> 0.

If no finite resolution exists, we set pd(A), id(A), or fd(A) equa to oc.
We are going to prove the following theorems in this section, which alow
us to define the global and Tor dimensions of aring R.

Globai Dimension Theorem 4.1.2 The following numbers are the same for
any ring R:

1. sup{id(B): B mod-R}

2. sup{pd(A): A€ mod-R)

3.sup{pd(R/I): Zisaright ideal of R)

4. sup{d : Ext% (A, B) # 0 for some right modules A, B)

91
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This common number (possibly cc ) is called the (right) globa dimension of
R, r.gl. dim(R). Bourbaki [BX] calls it the homological dimension of R.

Remark One may define the left globa dimension £.gl. dim(R) similarly. If
R is commutative, we clearly have £.gi. dim(R) =r.gl. dim(R). Equdity aso
holds if R isleft and right noetherian. Osofsky [Osof] proved that if every one-
sided idedl can be generated by a most R, elements, then |£.gl. dm(R) —
r.gl. dm(R) |<n+ 1. The continuum hypothesis of set theory lurks at the
fringe of this subject whenever we encounter non-constructible ideals over
uncountable rings.

Tor-dimension Theorem 4.1.3 The following numbers are the same for any
ring R:

1. sup{ f d(A): A is a right R-module}

2. sup{ fd(R/J):Jis aright ideal of R}

3. sup{f d(B):B is a left R-module]

4. sup{ fd(R/I):1is a left ideal of R}

5. sup{d : Tor® (A, B) #0 for some R-modules A, B}

This common number (possibly co) is called the Tor-dimension of R. Due to
the influence of [CE], the less descriptive name weak dimension of R is often
used.

Example 4.1.4 Obvioudy every field has both global and Tor-dimension
zero. The Tor and Ext calculations for abelian groups show that R = Z has
global dimension 1 and Tor-dimension 1. The calculations for R = Z/m show
that if some p?|m (so R isnit a product of fields), then Z/m has global dimen-
sion oo and Tor-dimension oo.

As projective modules are flat, f d(A) < pd(A) for every R-module A. We
need not have equality: over Z, f d(Q) =0, but pd(Q) = 1. Taking the supre-
mum over dl A shows that Tor-dim( R) <r.gl. dim(R). We will see exam-
ples in the next section where Tor-dim(R) #r.gl. dim(R). These examples
are perforce non-noetherian, as we now prove, assuming the global and Tor-
dimension theorems.

Proposition 4.1.5 If R is right noetherian, then
1. f d(A) = pd(A) for every finitely generated R-module A.
2. Tor—dim(R) = r.gl. dim(R).

Proof Since we can compute Tor—dim(R) and r.gl/. dim(R) using the mod-
ules R/1, it suffices to prove (1). Since f d(A) < pd(A), it suffices to suppose
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that fd(A)=n <oo and prove that pd(A)<n. AsR is noetherian, there is a
resolution

O->M—->P,_1—>..->PL—>Ph—>A—>0

in which the P; are finitely generated free modules and M is finitely presented.
The fd lemma 4.1.10 below implies that the syzygy M is a flat R-module, so
M must aso be projective (3.2.7). This proves that pd(A) <n, as required. 0

Exercise 4.1.1 Use the Tor-dimension theorem to prove that if R is both left
and right noetherian, then r.gl. dim(R) = 1.gl. dim(R).

The pattern of proof for both theorems will be the same, so we begin with
the characterization of projective dimension.

pd Lemma 4.1.6 The following are equivalent for a right R-module A:

1. pd(A) <d.

2. Exti(A,B) =0foralln > d and all R-modules B.

3. Ext%"!(A, B) = 0 for all R-modules B.

4. If0 > My — Py_1— Pyj9g— ---— P —> Py— A — 0 is any reso-
lution with the P ’s projective, then the syzygy My is also projective.

Proof Since Ext*(A, B) may be computed using a projective resolution of A,
it is clear that (4) = (1) = (2) = (3). If we are given a resolution of A as
in (4), then Ext?*! (A, B) = Ext!(My, B) by dimension shifting. Now Mj is
projective iff Ext!(M,, B) =0 for al B (exercise 2.5.2), so (3) implies (4). 0

Example 4.1.7 In 3.1.6 we produced an infinite projective resolution of A =
Z/p over the ring R = Z/ p®. Each syzygy was Z/p, which is not a projective
Z/ p?-module. Therefore by (4) we see that Z/p has pd = oo over R = Z/p2.
On the other hand, Z/p haspd =0 over R=Z/pand pd = 1 over R = 7.

The following two lemmas have the same proof as the preceding lemma.

id Lemma 4.1.8 The following are equivalent for a right R-module B:

1. id(B) <d.

2. Extz (A, B) = 0 for all n > d and all R-modules A.

3. Ext4t1(A, B) = 0 for all R-modules B.

4. f0>B > E°— ... > E4"1 5 M9 0 is a resolution with the E!
injective, then M is also injective.
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Example 4.1.9 In 3.1.6 we gave an infinite injective resolution of B=7/p
over R = Z/p* and showed that Ext’(Z/p,Z/p)=Z/p for dl n. Therefore
Z/p hasid = ca over R = Z/p?. On the other hand, it has id = 0 over R =
Z/pandid =1 over Z.

fd Lemma 4.1.10 The following are equivalentfor a right R-module A:
1. fd(A) < d.
2. Tor®(A,B) =0 for all n > d and all left R-modules B.
3. Torf (A, B) = 0 for all left R-modules B.
4. If0 —> My — Fg_y— Fq_2 — --- —> Fy— A — 0 is a resolution with
the F;all flat, then M, is also a flat R-module.

Lemma 4.1.11 A left R-module B is injective iff Ext'( R/1, B) = 0 for all left
ideals I.

Proof Applying Hom(-, B)to 0 —+Z > R — R/I — 0, we see that
Hom(R, B) - Hom(Z, B) —Ext!(R/1,B) = 0

is exact. By Baeris criterion 2.3.1, B isinjective iff the first map is surjective,
thet is, iff Ext! (R/Z, B) = 0. <&

Proof of Global Dimension Theorem The lemmas characterizing pd(A) and
id(A) show that sup(2) = sup(4) = sup(l). As sup(2)=>sup(3), we may
assume that d = sup{pd(R/I)} is finite and that id(B) > d for some R-
module B. For this B, choose a resolution

0-B->E'S>E'5 ... S E TSm0
with the Eis injective. But then for all idedls 7 we have
0 = Ext4™' (R/1, B) ~Exth(R/I, M).

By the preceding lemma 4.1.11, M is injective, a contradiction to id(B) > d.
&

Proof of Tor-dimension theorem The lemma 4.1.10 characterizing f d(A) over
R shows that sup(5) = sup( 1) > sup(2). The same lemma over R°? shows that
sup(5) = sup(3) > sup(4). We may assume that sup(2) <sup(4), that is, that
d=sup{ fd(R/J):Jisaright ideal} isat most the supremum over left ideals.
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We are done unless d is finite and fd(B)> d for some left R-module B. For
this B, choose a resolution 0 — M — F;_1—---— Fp— B — 0 with the
Fis flat. But then for all idedls J we have

0 = Tor%, |(R/J, B) = TorR(R/J, M).
We saw in 3.2.4 that this implies that M is flat, contradicting fd(B)>d. <

Exercise 4.1.2 If 0—>A —-B — C — 0 is an exact sequence, show that

1. pd(B) <max{pd(A), pd(C)} with equality except when pd(C)=
pd(A)+ 1.

2. id(B) <max{id(A), id(C)) with equality except when id(A) =
id(C) + 1.

3. fd(B)<max{fd(A), fd(C)} with equality except when fd(C)=
fd(A)+ 1.

Exercise 4.1.3

1. Given a (possibly infinite) family {A;} of modules, show that

pd (6D Ar) = sup(pd(An)

2. Conclude that if Sis an R-algebra and P is a projective S-module con-
sidered as an R-module, the pdr(P) < pdgr(S).

3. Show that if r.gi. dim(R) = oo, there actually is an R-module A with
pd(A)= co.

4.2 Rings of Small Dimension

Definition 4.2.1 A ring R is called (right) semisimple if every right ided isa
direct summand of R or, equivalently, if R is the direct sum of its minimal ide-
as. Wedderbumi's theorem (see [Lang]) classifies semisimple rings: they are
finite products R = [];_, R; of matrix rings R; = M,,,(D;) = Endp,(V;) (n; =
dim( V;)) over division rings D;. It follows that right semisimple is the same as
left semisimple, and that every semisimple ring is (both left and right) noethe-
rian. By Maschkeis theorem, the group ring k[G] of afinite group G over a
fidldk is semisimple if char(k) doesnit divide the order of G.

Theorem 4.2.2 The following are equivalent for every ring R, where by “R-
moduleT we mean either left R-module or right R-module.
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1. R is semisimple.

2. R has (left and/or right) global dimension 0.
3. Every R-module is projective.

4. Every R-module is injective.

5. R is noetherian, and every R-module is flat.
6. R is noetherian and has Tor-dimension 0.

Proof We showed in the last section that (2) < (3) < (4) for left R-modules
and also for right R-modules. R is semisimple iff every short exact sequence
0—>Z—->R— RIZ—0 glits, that is, iff pd(R/I)= 0 for every (right
and/or left) ideal 7. This proves that (1)< (2). As (1) and (3) imply (5), and
(5)< (6) by definition, we only have to show that (5) implies (1). If Z is an
ideal of R, then (5) implies that R/Z is finitely presented and flat, hence pro-
jective by 3.2.7. Since R/I is projective, R — R/I splits, and Z is a direct
summand of R, that is, (1) holds. <

Definition 4.2.3 A ring R is quasi-Frobenius if it is (Ieft and right) noetherian
and R is an injective (left and right) R-module. Our interest in quasi-Frobenius
rings stems from the following result of Faith and Faith-Walker, which we
quote from [Faith].

Theorem 4.2.4 The following are equivalent for every ring R:

1. R is quasi-Frobenius.

2. Every projective right R-module is injective.
3. Every injective right R-module is projective.
4. Every projective left R-module is injective.
5. Every injective left R-module is projective.

Exercise 4.2.1 Show that Z/m is a quasi-Frobenius ring for every integer m.

Exercise 4.2.2 Show that if R is quasi-Frobenius, then either R is semisimple
or R has global dimension oo. Hint: Every finite projective resolution is split.

Definition 4.2.5 A Frobenius algebra over afield k is a finite-dimensional al-
gebra R such that R = Homy (R, k) as (right) R-modules. Frobenius algebras
are quasi-Frobenius;, more generally, Homg(R, k) is an injective R-module
for any algebra R over any field k, since k is an injective k-module and
Homy (R, —) preserves injectives (being right adjoint to the forgetful functor
mod-R — mod-k). Frobenius algebras were introduced in 1937 by Brauer
and Neshitt in order to generalize group agebras k[G] of a finite group, espe-
cidly when char(k) = p divides the order of G so that k[G] is not semisimple.
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Proposition 4.2.6 If G is a finite group, then k{G] is a Frobenius algebra.

Proof Set R = k[G] and define f: R — k by letting f(r) be the coefficient
of g = 1 in the unique expression r =Zg€Grgg of every element r e k[G].
Let a: R — Homg(R, k) be the map «a(r): x> f(rx). Since o(r) = fr, « is
a right R-module map; we claim that « is an isomorphism. If a(r) = 0 for
r=3 regg, thenr=0as each rg= frgH=a@r)(g =0 Hence « is an
injection. As R and Hom (R, k) have the same finite dimension over k, & must
be an isomorphism. <

Vista 4.2.7 Let R be a commutative noetherian ring. R is caled a Goren-
stein ring if id(R) is finite; in this case id(R) is the Krull dimension of R,
defined in 4.4.1. Therefore a quasi-Frobenius ring is just a Gorenstein ring of
Krull dimension zero, and in particular a finite product of O-dimensional local
rings. If R isa O-dimensional local ring with maximal ideal m, then R isquasi-
Frobenius < anng(m)={reR:rm=0}= R/m. This recognition criterion
is at the heart of current research into the Gorenstein rings that arise in alge-
braic geometry.

Now we shall characterize rings of Tor-dimension zero. A ring R is called
von Neumann regular if for every a e R thereis an x € R for which axa = a.
These rings were introduced by J. von Neumann in 1936 in order to study
continuous geometries such as the lattices of projections in ivon Neumann
algebrast of bounded operators on a Hilbert space. For more information about
von Neumann regular rings, see [Good].

Remark A commutative ring R is von Neumann regular iff R has no nilpotent
elements and has Krull dimension zero. On the other hand, a commutative ring
R is semisimple iff it is afinite product of fields.

Exercise 4.2.3 Show that an infinite product of fields is von Neumann regu-
lar. This shows that not every von Neumann regular ring is semisimple.

Exercise 4.2.4 If Vis a vector space over a field k (or a division ring k),
show that R = Endi (V) is von Neumann regular. Show that R is semisimple
iff dimg (V) <o0.

Lemma 4.2.8 If R is von Neumann regular and 1 is a finitely generated right
ideal of R, then there is an idempotent e (an element with e = ¢) such that
I =eR.In particular 1 is a projective R-module, because R =Z & (1 — e)R.

Proof Suppose first that 7 =aR and that axa = a. It follows that e = ax is
idempotent and that 7/ = eR. By induction on the number of generators of
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I, we may suppose that | =aR + bR with a € | idempotent. Since bR =
abR + (1 —a)bR,we have | =aR + cRforc=(1 — a)b. If cyc = ¢, then
f = cy is idempotent and af = a1 —a)by = 0. As fa may not vanish, we
consider e= f(1—a). Theneel,ae =0 = ea, and e is idempotent:

A =fl-a)f(l-a=f(f—af)l—a =f(1-a=f(1-a=e

Moreover, eR =cR becausec = fc=ffc= f(1—a)fc=ef c. Findly, we
clam that 7 equals J = (a+ €) R. Since a + e € |, we have J C I; the reverse
inclusion follows from the observation that a = (a + e)aeJ ande= (a+
ele e J. 0

Exercise 4.2.5 Show that the converse holds: If every fin. gen. right ideal | of

R is generated by an idempotent (i.e., R = | & R/Z), then R is von Neumann
regular.

Theorem 4.2.9 The following are equivalent for every ring R:

1. R is von Neumann regular

2. R has Tor-dimension 0.

3. Every R-module is flat.

4. R/Iis projective for every finitely generated ideal I.

Proof By definition, (2) < (3). If Iis a fin. generated idedl, then R/I is
finitely presented. Thus R/I is flat iff it is projective, hence iff R=Z ®R/I
as a module. Therefore (3) = (4) < (1). Finaly, any ided 1 is the union of
its finitely generated subideals 1, and we have R/I = li_n)1(R/Ia). Hence (4)

implies that each R/ I isflat, that is, that (2) holds. 0

Remark Since the Tor-dimension of a ring is a most the globa dimen-
sion, noetherian von Neumann regular rings must be semisimple (4.1.5). Von
Neumann regular rings that are not semisimple show that we can have Tor—
dim(R) < gl. dim(R). For example, the globa dimension of [72,Cis> 2,
with equality iff the Continuum Hypothesis holds.

Definition 4.2.10 A ring R is cdled (right) hereditary if every right ided is
projective. A commutative integral domain R is hereditary iff it isa Dedekind
domain (noetherian, Krull dimension O or 1 and every loca ring R, isa
discrete valuation ring). Principal ideal domains (e.g,Z or k[t]) are Dedekind,
and of course every semisimple ring is hereditary.

Theorem 4.2.11 A ring R is right hereditary iffr.gl. dim(R) < 1.
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Proof The exact sequences 0 — | — R —> R/l — 0 show that R is heredi-
tary iff r.gl. dm(R) < 1. <

Exercise 4.2.6 Show that R is right hereditary iff every submodule of every
free module is projective. This was used in exercise 3.6.2.

4.3 Change of Rings Theorems

General Change of Rings Theorem 4.3.1 Let f:R — S be a ring map, and
let A be an S-module. Then as an R-module

pdr(A) < pds(A) + pdg(S).

Proof There is nothing to prove if pds(A) = co or pdg(S) = co, so assume
that pds(A)=n and pdg(S) = d are finite. Choose an S-module projective
resolution Q — A of length n. Starting with R-module projective resolutions
of A and of each syzygy in @, the Horseshoe Lemma 2.2.8 gives us R-module
projective resolutions P, — Q4 such that P, — Py 42 is zero. We saw in
section 4.1 that pdg (Q4)<d for each g. The truncated resolutions Py, — Q,
of length d (Pig=0for i >dand Pay = Pag/im(Pyr1,4), as in 1.2.7) have
the same property. By the sign trick, we have a double complex P,. and an
augmentation Py — Q.

0 0 0 0
L ! ]
0. | Popn <— P, «— «+ + «— + -iv— Py «— O

U !
o !

QI‘POI‘—PH‘—PZl‘—""—Pdl‘_O
Ll ! ! 1
Qo | Poo «— Pio «— Py «— - - «— Py «— 0
Tl ! 1 !
0 0 0 0 0

The argument used in 2.7.2 to balance Tor shows that Tot(P) — Q is aquasi-
isomorphism, because the rows of the augmented double complex (add Q[—1]
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in column -1) are exact. Hence Tot(P) — A is an R-module projective reso-
[ution of A. But then pdg(A) is a most the length of Tot(P), that is, d + n.
<

Example 4.3.2 If Risafield and pds(A)# 0, we have strict inequality.

Remark The above argument presages the use of spectral sequences in get-
ting more explicit information about Exty(A, B). An important case in which
we have equality is the case S = R/xR when X is a nonzerodivisor, so
pdr(R/xR) = 1.

First Change of Rings Theorem 4.3.3 Let x be a central nonzerodivisor in
aring R. If A # 0 is a R/x-module with pdg/«(A) finite, then

pdr(A) = 1+ pdg;:(A).

Proof AsxA =0, A cannot be a projective R-module, so pdgr(A)> 1. On
the other hand, if A is a projective R/x-module, then evidently pdg(A)=
Ppdr(R/x)=1.If pdr;x(A)> 1, find an exact sequence

0> M->P>A->0

with P a projective R/x-module, so that pdg/x(A) = pdgr;x (M) + 1. By in-
duction, pdr(M) =1+ pdgr;x(M) = pdg;x(A)> 1. Either pdr(A) equals
pdr(M)+ 1 or 1= pdr(P)=sup{pdr(M), pdg(A)}. We shdl conclude the
proof by eliminating the possibility that pdr(A) = 1= pdr;x(A).

Map a free R-module F onto A with kernd K. If pdr(A) =1, then K is

a projective R-module. Tensoring with R/x R yields the sequence of R/x-
modules:

0 — Torf(A,R/x) > K/xK — F/xF = A — 0.
If pdr/x(A) < 2, then TorR(A, R/x) is a projective R/x-module. But
Torf (A, R/x)={a € A:xa = 0} = A, 50 pdg/(A)= 0. &
Example 4.3.4 The conclusion of this theorem fails if pdg, (A)=oc but
pdr(A)<oo. For example, pdz;4(Z/2) = oo but pdz(Z/2)=1.

Exercise 4.3.1 Let R be the power series ring k[[x1,---, x,]] over a field
k. R is a noetherian local ring with residue field k. Show that gl. dim(R) =
pdr(k) =n.
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Second Change of Rings Theorem 4.3.5 Let x be a central nonzerodivisor
inaring R. If A'is an R-module and x is a nonzerodivisor on A (i.e.,a #0=
xa # 0), then

pdr(A) > pdg/x(A/xA).

Proof If pdr(A) = oo, there is nothing to prove, so we assume pdg(A) =
n <oo and proceed by induction on n. If A is a projective R-module, then
A/xA is a projective R/x-module, so the result is true if pdr(A) = 0. If
pdr(A)# 0, map a free R-module F onto A with kernel K. As pdgr(K) =
n—1 pdg/;x(K/xK)<n— 1 by induction. Tensoring with R/x yields the
sequence

0 — Torf(A,R/x) > K/xK — F/xF — A/xA— 0.

As x is a nonzerodivisor on A, Tort (A, R/x)={aeA:xa =0) =0. Hence
either A/xA is projective or pdg/x(A/xA) =1+ pdr; (K/xK)<1+(n—
1) = pdr(A). <&

Exercise 4.3.2 Use the first Change of Rings Theorem 4.3.3 to find another
proof when pdg,. (A/x A) is finite.

Now let R[x] be a polynomia ring in one variable over R. If Alisan R-
module, write A[x] for the R[x]-module R[x]®Rr A.

Corollary 4.3.6 pdgrix(Alx]) = pdr(A) for every R-module A.

Proof Writing T = R[x], we note that x is a nonzerodivisor on A[x] =
T ®g A. Hence pdr(A[x]) > pdr(A) by the second Change of Rings theo-
rem 4.3.5. On the other hand, if P — A is an R-module projective resolution,
then T®gr P — T ®gAis a T-module projective resolution (T is flat over
R),s0 pdr(A) = pdr(T @ A). <&

Theorem 4.3.7 If R[x;,---, x,] denotes a polynomial ring in n variables,
then gl. dim(R[xy, - - -, x,]) =n + gl. dm(R).

Proof It suffices to treat the case T = R[x]. If gi. dim(R) = oo, then by the
above corollary gl. dim(T) = oo, so we may assume g/. dim(R) = n < co. By
the first Change of Rings theorem 4.3.3, gl. dim(T) > 1 + gl. dm(R). Given
a T-module M, write U(M) for the underlying R-module and consider the
sequence of T-modules

*) 0> T ®rUM) L5 T @r UM) 5 M -0,
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where p is multiplication and 8 is defined by the bilinear map B(t @ m) =
tx®m—1® (xm)] (t e T, m € M). We claim that (x) is exact, which yields
the inequality pdr(M) <1+ pdr(T ®g UM)) =1+ pdr(UM))<1+n.
The supremum over al M gives the final inequality gl. dim(T) <1 +n.

To finish the proof, we must establish the claim that (x) is exact. We first
observe that, since T is a free R-module on basis { 1, x, x2,-- -}, we can write

every nonzero element f of T ® U(M) as a polynomial with coefficients
m; € M:

f:xk®mk+...+x2®m2+x®m1 + 1 ®@mg (my #0).

Since the leading term of B(f)isx**! @ my, we see that B isinjective. Clearly
uB = 0. Finadly, we prove by induction on k (the degree of f) that if fe
ker(u), then feim(B). Since n(1® m) = m, the case k =0 is trivid (if
u(f) =0, then f =0). If k#£ 0, then p(f)=pu(g) for the polynomia g=
f—BG*1®@my;) Of lower degree. By induction, if feker(u), then g=
B(h) for some h, and hence f = B(h+ x*"'®@ my). <&

Corollary 4.3.8 (Hilbertis theorem on syzygies) If k is a field, then the poly-
nomial ring k[xy,--, x,] has global dimension n. Thus the (n —1)*" syzygy
of every module is a projective module. <&

We now turn to the third Change of Rings theorem. For simplicity we deal
with commutative local rings, that is, commutative rings with a unique maxi-
mal ideal. Here is the fundamental tool used to study local rings.

Nakayamais Lemma 4.3.9 Let R be a commutative local ring with unique
maximal ideal m and let B be a nonzero finitely generated R-module. Then

I. B #mB.
2. If AC B is a submodule such that B = A + mB, then A = B.

Proof If we consider B/A then (2) is a special case of (1). Let m be the
smallest integer such that B is generated by, -+ -, by; 8B # 0, we have m = 0.
If B = mB, then there are r;e m such that b,, =) _ r;b;. This yields

(1 —tm)bp =ribi+ - -+ rm_1by_1.
Since 1 —rp, & m, it isaunit of R. Multiplying by its inverse writes b,, as

a linear combination of {by,---,b,_1}, so this set aso generates B. This
contradicts the choice of m. &
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Remark If R is any ring, the set
J={reR:(VseR)1—rs isaunitof R}

isa2-sided ideal of R, called the Jacobson radical of R (see [BAII, 4.21). The
above proof actually proves the following:

General Version of Nakayamais Lemma 4.3.10 Let B be anonzero finitely
generated module over R and J the Jacobson radical of R. Then B # J B.

Proposition 4.3.11 A finitely generated projective module P over a commu-
tative local ring R is a free module.

Proof Choose uy,-, u,€ P whose images form a basis of the k-vector
space P/mP. By Nakayamais lemma the u’s generate P, so the map €: R" —
P sending (ry,---,ry) toY_rju; is onto. AsP is projective, € is split, that
is, R"= P @ ker(¢). As k" = R*/mR" = P/mP, we have ker(e) C mR".
But then considering P as a submodule of R" we have R*=P + mR", so
Nakayamais lemma yields R” = P. <

Third Change of Rings Theorem 4.3.12 Let R be a commutative noethe-
rian local ring with unique maximal ideal m, and let A be a finitely generated
R-module. If x € mis a nonzerodivisor on both A and R, then

pdr(A) = pdr/x(A/xA).
Proof We know > holds by the second Change of Rings theorem 4.3.5, and
we shall prove equality by induction on n = pdg;x(A/xA).1f n = 0, then

A/xA is projective, hence a free R/x-module because R/x islocal.

Lemma 4.3.13 If A/x A'is a free R/x-module, A is a free R-module.

Proof Pick elements u 1,--, u, mapping onto a basis of A/xA; we claim
they form a basis of A. Since (u41,-, uy)R + xA= A, Nakayamais lemma
states that («1,--+, #y) R=A, that is, the uis span A. To show the uis are lin-

early independent, suppose D r;u; = 0 for r;€R. In A/x A, the images of the
uis are linearly independent, so r;€ x R for al i. As x is a nonzerodivisor on
R and A, we can divide to get r;/x€R such that }_(r;/x)u; = 0. Continuing
this process, we get a sequence of elements r;, r; /x, r; /x2,--- which generates
astrictly ascending chain of ideals of R, unless r; = 0. As R is noetherian, all
the r; must vanish. <
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Resuming the proof of the theorem, we establish the inductive step n # 0.
Map a free R-module F onto A with kernel K. As Torf(4,R/x) = (a€A:
xa=0}=0, tensoring with R/x yields the exact sequence

0 >K/xK—>F/xF—>A/xA— 0.

As F/x Fis free, pdr/x(K/x K) = n — 1 when n # 0. As R is noetherian,
K is finitely generated, so by induction, pdgr(K)=n — 1. This implies that
pdr(A) = n, finishing the proof of the third Change of Rings theorem. <

Remark The third Change of Rings theorem holds in the generality that R is
right noetherian, and x € R is a central element lying in the Jacobson radical of
R. To prove this, reread the above proof, using the generalized version 4.3.10
of Nakayamais lemma

Corollary 4.3.14 Let R be a commutative noetherian local ring, and let A be
a finitely generated R-module with pdr(A)<oo. If xe mis a nonzerodivisor
on both A and R, then

pdr(A/xA) =1 + pdr(A).

Proof Combine the first and third Change of Rings theorems. <

Exercise 4.3.3 (Injective Change of Rings Theorems) Let x be a centra
nonzerodivisor in aring R and let A be an R-module. Prove the following.

First Theorem. If A+ 0 isan R/x R-module withidg,«r(A) finite, then
idr(A) = 1 + idg;xr(A).

Second Theorem. If x is a nonzerodivisor on both R and A, then either A is
injective (in which case A/xA = 0) or else

idr(A)> 1 + idg/xr(A/xA).
Third Theorem. Suppose that R is a commutative noetherian local ring, A is

finitely generated, and that x € m is a nonzerodivisor on both R and A.
Then

idgr(A) = idr(A/xA) = 1 +idgr/xr(A/xA).

4.4 Local Rings

In this section a local ring R will mean a commutative noetherian local ring
R with a unique maximal ided m. The residue field of R will be denoted
k =R/m.
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Definitions 4.4.1 The Krull dimension of aring R, dm(R), is the length d
of the longest chain pocpic--- Cpg of primeidedsin R; dm(R) < oo for
every local ring R. The embedding dimension of aloca ring R is the finite
number

emb. dim(R) = dimg(m/m?).

For any local ring we have dim(R) < emb. dim(R); R is called a regular local
ring if we have equality, that is, if dim(R) = dimy(m/m?). Regular local rings
have been long studied in algebraic geometry because the local coordinate
rings of smooth algebraic varieties are regular local rings.

Examples 4.4.2 A regular local ring of dimension O must be a field. Every
I-dimensional regular local ring is a discrete valuation ring. The power series
ring k[[xi,--, x,]] over afield k is regular local of dimension n, as is the loca
rng kfxy, ..., xplmsm = (x1, ..., Xn).

Let R be the local ring of a complex agebraic variety X at a point P. The
embedding dimension of R is the smallest integer n such that some analytic
neighborhood of P in X embeds in Ci. If the variety X is smooth as a mani-
fold, R isaregular local ring and dim(R) = dim(X).

More Definitions 4.4.3 If A is a finitely generated R-module, a regular se-
quence on A, or A-sequence, is a sequence (xy,---, x,) of elementsin m such
that x; is a nonzerodivisor on A (i.e., if a 0, then xja # 0) and such that
each x; (i > 1) is a nonzerodivisor on A/(xy, ---,x;—1)A. The grade of A,
G(A), is the length of the longest regular sequence on A. For any loca ring
R we have G(R) < dim(R).

R is called Cohen-Macaulay if G(R) = dim(R). We will see below that
regular local rings are Cohen-Macaulay; in fact, any xi,..., x4€ m mapping
to a basis of m/m? will be an R-sequence; by Nakayamais lemma they will
also generate m as an ideal. For more details, see [KapCR].

Examples 4.4.4 Every O-dimensiona local ring R is Cohen-Macaulay (since
G(R) = 0), but cannot be a regular loca ring unless R is a field. The 1-
dimensional local ring k[[x,€]]/(xe = e 0) is not Cohen-Macaulay; every
element of m = (x, €) R kills e € R. Unless the maximal ideal consists entirely
of zerodivisors, a |-dimensional local ring R is always Cohen-Macaulay; R
is regular only when it is a discrete valuation ring. For example, the local
ring k[[x]] is a discrete valuation ring, and the subring k[[x2, x?}]is Cohen-
Macaulay of dimension 1 but is not aregular local ring.
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Exercise 4.4.11f R is a regular local ring and x{,--,xg € m map to a basis
of m/m?, show that each quotient ring R/(xy,---,x;) R is regular local of
dimension d —i.

Proposition 4.4.5 A regular local ring is an integral domain.

Proof We use induction on dim(R). Pick x € m—m?; by the above exercise,
R/xR is regular local of dimension dim(R) — 1. Inductively, R/xR is a do-
main, so x R isaprime ided. If there is a prime ideal Q properly contained in
x R, then Q ¢ x"R for dl n (inductively, if g=rx"eQ,thenreQc xR, so
g € x"T!'R).In this case Q CNx"R = 0, whence Q = 0 and R is a domain.
If R were not a domain, this would imply that xR is a minima prime idea
of R for al x e m—m?. Hence m would be contained in the union of m? and
the finitely many minimal prime ideds Py,---, P, of R. This would imply that
m C P; for some i. But then dim(R) = O, a contradiction. <

Corollary 4.4.6 1'F R is a regular local ring, then G(R) = dim(R), and any
X1, - - -, Xg€ mmapping to a basis OF m/m? is an R-sequence.

Proof As G(R) < dim(R), and x;e€ R is a nonzerodivisor on R, it suffices
to prove that xz, . , x4 form aregular sequence on R/x; R. This follows by
induction on d. 0

Exercise 4.4.2 Let R be a regular local ring and [ an ided such that R/I
is aso regular locd. Prove that I =(xy,---,xi)R, where (x1,--, x;) form a
regular sequence in R.

Standard Facts 4.4.7 Part of the standard theory of associated prime ideas
in commutative noetherian rings implies that if every element of m is a zerodi-
visor on a finitely generated R-module A, then m equals {r€ R:ra = 0} for
some nonzero a € A and therefore a R = R/m = k. Hence if G(A) = 0, then
Homg(k, A)# 0.

If G(A) #0 and G(R) # 0, then some dement of m —m? must aso be
a nonzerodivisor on both R and A. Again, this follows from the standard
theory of associated prime ideals. Another standard fact is that if xe misa
nonzerodivisor on R, then the Krull dimension of R/x R is dim(R) — 1.

Theorem 4.48 1T Ris a local ring and A + 0 is a finitely generated R-
module, then every maximal A-sequence has the same length, G(A). More-
over, G(A) is characterized as the smallest r such that Ext’ (k, A) # 0.
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Proof We saw above that if G(A) = 0, then Homg(k, A) # 0. Conversdly, if
Homg(k, A) # 0, then some nonzero a € A has aR= Kk, that is, ax = 0 for al
xe m. In this case G(A) = 0 is clear. We now proceed by induction on the
length n of a maxima regular A-sequence xi,-,x;0nA. If n>1,x=x1is
a nonzerodivisor on A, so the sequence 0 — A ~2>A—>A/xA—0is exact,
and x3,--, x, is @a maximal regular sequence on A/xA. This yields the exact
sequence

Ext' 1k, A) 5> Ext' =k, A) — Ext'~'(k, A/xA) > Ext' (k, A) = Ext'(k, A).

Now xk = 0, so Ext!(k, A) is an R/x R-module. Hence the maps “x” in this
sequence are zero. By induction, this proves that Exti (k, A)=0for0<i<n
and that Ext" (k, A) % 0. This finishes the inductive step, proving the theorem.

0

Remark The injective dimension id(A) is the largest integer n such that
Ext(k, A) # 0. This follows from the next result, which we cite without proof
from [KapCR, section 4.5] because the proof involves more ring theory than
we want to use.

Theorem 4.4.9 If R is a local ring and A is a finitely generated R-module,
then

id(A) <d < Ext’y(k, A) = 0 for dl n> d.

Corollary 4.4.10 If R is a Gorenstein local ring (i.e., idr(R)<oc), then R
is also Cohen-Macaulay. In this case G(R) = idr(R) = dim(R) and

Exth(k, R) # 0 < g = dim(R).

Proof The last two theorems imply that G(R) < id(R). Now suppose that
G(R) = 0 but that id(R) # 0. For each se R and n> 0 we have an exact
sequence

Ext’%(R, R) — Ext’,(sR, R) — Ext%T'(R/sR, R).

For n = id(R) > 0, the outside terms vanish, so Ext(sR,R) = 0 as well.
Choosing s € R so that s R = k contradicts the previous theorem so if G(R) =
0 then id(R) = 0. If G(R) =d > 0, choose a nonzerodivisor x& m and
set § = R/xR. By the third Injective Change of Rings theorem (exercise
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4.3.3), ids(S) = idp(R)— 1, s0 S is aso a Gorenstein ring. Inductively,
S is Cohen-Macaulay, and G(S) = ids(S) = dm(S) = dim(R) — 1. Hence

idr(R) = dm(R). If x2,---, x4 are elements Of m mapping onto a maximal
S-sequence in mS, then xy,x3,..., x4 forms a maximal R-sequence, that is,
GR) = 1 + G(§) = dim(R). <

Proposition 4.4.11 If R is a local ring with residue field k, then for every
finitely generated R-module A and every integer d

pd(A)<d < Torh, (A, k) = 0.
In particular, pd(A) is the largest d such that TorX (A, k) #0.

Proof Asfd (A) <pd (A), the = direction is clear. We prove the converse by
induction on d. Nakayamais lemma 4.3.9 states that the finitely generated R-
module A can be generated by m = dimx(A/mA) elements. Let {ug,---, um}
be a minimal set of generators for A, and let K be the kernd of the surjection
€:R™— A defined by €(ry,---,r) =3 riu;. The inductive step is clear,
since if d #0, then

Torgy+1(A, k) = Torg(K, k) and pd(A) <1+ pd(K).
If d =0, then the assumption that Torj(A, k) = 0 gives exactness of

0 — K®k — R"®@k — AQk — 0

I I l\

®k
0 — K/mK — K" 25 A/mA — 0.

By construction, the map € ® k is an isomorphism. Hence K /mK = 0, so
the finitely generated R-module K must be zero by Nakayamais lemma. This
forces R™= A, so pd(A) =0 as asserted. 0

Corollary 4.4.12 If R is a local ring, then gl. dim(R) = pdg( R/m).
Proof pd(R/m)<gl.dim(R) = sup{pd(R/D)} < fd(R/m) < pd(R/m). 0

Corollary 4.4.13 If R is local and x € m is a nonzerodivisor on R, then
either gl.dim(R/xR) = oo or gl.dim(R) = 1 + gl.dim(R/xR).

Proof Set S =R/xR and suppose that gl. dm(S) = d is finite. By the First
Change of Rings Theorem, the residue field k = R/m = §/mS has

pdr(k) =1+ pds(k) =1 + d. 0
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Grade 0 Lemma 4.4.14 If R is local and G(R) = 0 (i.e., every element of
the maximal ideal m is a zerodivisor on R), then for any finitely generated
R-module A,

either pd(A) =0 or pd(A) = co.

Proof If 0 < pd(A) < cc for some A then an appropriate syzygy M of Ais
finitely generated and has pd (M) = 1. Nakayamais lemma states that M can
be generated by m = dimg (M /mM) dements. If u1,---,un generate M, there
is a projective resolution 0 — P —R™" 5 M — 0 with e(ry, ..., r) =
> riuy; visibly R™ fmR™ = k™ = M/mM. But then P SmR"™, 5P = 0,
where s € R is any element such that m = {r e R: sr = 0}. On the other hand,
P is projective, hence a free R-module (4.3.1 1), so s P = 0 implies that s = 0,
acontradiction. <

Theorem 4.4.15 (Auslander-Buchsbaum Equality) Let R be a local ring,
and A a finitely generated R-module. If pd(A)<oo, then G(R) = G(A) +
pd(A).

Proof If G(R) = 0 and pd( A) < oo, then A is projective (hence free) by
the Grade 0 lemma 4.4.14. In this case G(R) = G(A), and pd(A) = 0. If
G(R) # 0, we shdl perform a double induction on G(R) and on G(A).

Suppose first that G(R) # 0 and G(A) =0. Choose x emand 0 £a€ A
so that x is a nonzerodivisor on R and mu = 0. Resolve A:

0>K—>R"-55 A0

and choose u € R™ with g(u) =a. Now mu € K so xu e Kand m(xu)CxK,
yet xu¢g x Kasu ¢ K and x is a nonzerodivisor on R™ Hence G( K /x K) = 0.
Since K is a submodule of a free module, x is a nonzerodivisor on K. By the
third Change of Rings theorem, and the fact that A is not free (as G(R) #
G(A)),

pdr/xr(K /xK) = pdr(K) = pdr(A) — 1.
Since G(R/x R) = G(R) — 1, induction gives us the required identity:
GR) = 1 + G(R/xR) =1+ G(K/xK) + pdr;xr(K/xK) = pdr(A).

Finaly, we consider the case G(R) # 0, G(A) # 0. We can pick xe m,
which is a nonzerodivisor on both R and A (see the Standard Facts 4.4.7
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cited above). Since we may begin a maximal A-sequence with x,G(A/xA) =
G(A) — 1. Induction and the corollary 4.3.14 to the third Change of Rings
theorem now give us the required identity:

G(R) = G(A/xA) + pdr(A/xA)
= (G(A) — 1) + (1+ pdgr(A))
= G(A) + pdgr(A). &

Main Theorem 4.4.16 A local ring R is regular iff gl. dim(R) <oc. In this
case

G(R) = dim(R) = emb. dm(R) = gl. dm(R) = pdr(k).

Proof First, suppose R isregular. If dm(R) = 0, Risafield, and the result
is clear. If d =dim(R) > 0, choose an R-sequence xi,--, x4

and set S =R/x|R. Then x3, - - -, xgis an S-sequence generating the maximal
ideal of S, so0 Sisregular of dimension d — 1. By induction on d, we have

gl.dmR) =1+ gl. dmS) =1+ @d—1)=d.

If gl.dim(R) =0, R must be semisimple and local (afield). If g/. dm(R) #
0, cc then m contains a nonzerodivisor x by the Grade 0 lemma 4.4.14;
we may even find an x = x| not in m? (see the Standard Facts 4.4.7 cited
above). To prove that R isregular, we will prove that S = R/xR isregu-
lar; as dim(S) = dim(R) — 1, this will prove that the maximal idedd mS of
S is generated by an S-sequence y»,---, yq4. Lift the yyemS to elements
xiem (i =2, ---,d). By definition xi,--, xgisan R-sequence generating
m, so this will prove that R isregular.

By the third Change of Rings theorem 4.3.12 with A=m,

pds(m/xm) = pdr(m) = pdr(k)— 1 =gl. dm(R) — 1.

Now the image of m/xminS=R/xRism/xR =mS, sO we get exact se-
quences

00— xR/xm-o>m/xm—->mS—>0 and 0->mS—>S—>k—0.
Moreover, xR/xm=TorR(R/xR, k) ={aek:xa=0}=k and the image
of xinx R/xm isnonzero. We claim that m/xm = mS & k as S'modules. This

will imply that

gl. dim(S) = pds(k) < pds(m/xm) =gl. dm(R) — 1.



4.5 Koszul Complexes 111

By induction on global dimension, this will prove that S is regular.

To see the claim, set r = emb. dim(R) and find elements xz,---, x, in
m such that the image of {xi,---, x,} in m/m? forms a basis. Set | =
(x2,...,x)R+xm and observe that {/xm < m/xm maps onto mS. As the
kernel xR/xm of m/xm — mS is isomorphic to k and contains x ¢/, it fol-
lows that (xR/xm)N{(I/xm) = 0. Hence I/xm=mS and k B mS=m/xm,
as claimed. <

Corollary 4.4.17 A regular ring is both Gorenstein and Cohen-Macaulay.

Corollary 4.4.18 If R is a regular local ring and p is any prime ideal of R,
then the localization Ry is also a regular local ring.

Proof We shall show that if § is any multiplicative set in R, then the local-
ization S™'R has finite global dimension. As R,=S"'R for § =R —p, this
will suffice. Considering an S~! R-module A as an R-module, there is a pro-
jective resolution P — A of length at most gl. dim(R). Since S™'R is aflat
R-module and S"!A=A S~!'P — Ais a projective S~! R-module resolution
of length at most gl. dim(R). Lo

Remark The only non-homological proof of this result, due to Nagata, is very
long and hard. This ability of homological agebra to give easy proofs of re-
sults outside the scope of homological algebra justifies its importance. Here is
another result, quoted without proof from [KapCR], which uses homological
algebra (projective resolutions) in the proof but not in the statement.

Theorem 4.4.19 Every regular local ring is a Unique Factorization Domain.

4.5 Koszul Complexes

An efficient way to perform calculations is to use Koszul complexes. If x €R
is central, we let K(x) denote the chain complex

0>R-S5R->0

concentrated in degrees 1 and 0. It is convenient to identify the generator of the
degree 1 part of K (x) as the element e,, so that d(ey) =x. If x = (x1, - - -, xp)
is a finite sequence of central elements in R, we define the Koszul complex
K(x) to be the total tensor product complex (see 2.7.1):

Kx)®rK(x2)®r ... QrK(xp).
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Notation 4.5.1 If Ais an R-module. we define
Hq(x, A) = Hy(K (x) ®r A);
Hi(x, A) = HY(Hom(K (x), A)).
The degree p part of K (x) is a free R-module generated by the symbols
enN-Ne, =10 - Q1Qe; ®... Qe ® @1 (1< <ip).

In particular, K ,(x) is isomorphic to the p** exterior product A”R" of R"
and has rank (}), so K) exterior al
Kp(xxt=2Kp-1(x) sends e, A --Ae, 0> (—Dflxpe; a. . . A
i, A.Ae,. As an example, K(x,y)is the complex

.- , O
0 — R R R — O

basis: {ex A ey) {ey, ex} {1}

DG-Algebras 4.5.2 A graded R-algebra K, is afamily {K,,p >0} of R-
modules, equipped with a bilinear product K,®zK;— K44 and an ele-
ment 1 € Ky making Ko and ® K, into associative R-algebras with unit. K,
is graded-commutative if for every a€ Kp,be K, we have a-b = (—1)P?b-a.
A differential graded algebra, or DG-algebra, is a graded R-algebra K,
equipped with a map d: K, — K,_;, satisfying d?=0and satisfying the
Leibnitz rule:

d(@-b) = d@) -b+(—1)Pa- db) for aek,.

Exercise 4.51

1. Let K be a DG-agebra. Show that the homology H,(K) = {H,(K)}
forms a graded R-algebra, and that H*(K) is graded-commutative when-
ever Kiis.

2. Show that the Koszul complex K (x)= A* (R") is a graded-commutative
DG-algebra. If R is commutative, use this to obtain an external product
H,(x, A)®g Hy(x, B) > Hp4(x, A®g B). Conclude that if Ais a
commutative R-algebra then the Koszul homology H.(x, A) is a graded-
commutative R-algebra.

3. If xy,---eland A =R/Z, show that H,.(x, A) is the exterior algebra
A*(A™M).
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Exercise 4.5.2 Show that {H,(x,—)} is a homological -functor, and that
{H9(x,—)} is a cohomological §-functor

Ho(x, A) =A/(xy, -, xn)A
H%x, A) = Hom(R/xR,A) = {a € A x;a = O for al i}.
Then show that there are isomorphisms H,(x, A) = H"~?(x, A) for al p.

Lemma 4.5.3 (Ktinneth formula for Koszul complexes) If C = C, is a chain
complex of R-modules and x € R, there are exact sequences

0 — Hy(x, Hy(C)) > Hy(K (x) g C) - Hy(x, H;_1(C)) — 0.

Proof Considering R as a complex concentrated in degree zero, there is a
short exact sequence of complexes 0 — R — K(x) - R[- 1]— 0. Tensoring
with C yields a short exact sequence of complexes whose homology long exact
sequence is

Hy11(Cl=1]) = Hy(C) > Hy(K (x) ® C) > Hy(C[—1]) - H,(C).

Identifying Hy 41 (C[—1]) with H,(C), the map d is multiplication by x (check
this!), whence the result. <

Exercise 4.5.3 If x is a nonzerodivisor on R, that is, H; (K (x)) = 0, use the
Ktinneth formula for complexes 3.6.3 to give another proof of this result.

Exercise 4.5.4 Show that if one of the x; is a unit of R, then the complex
K (x) is split exact. Deduce that in this case H.(x, A) = H*(x, A) = 0 for al
modules A.

Corollary 4.5.4 (Acyclicity) If x is a regular sequence on an R-module
A, then H,(x, A) = 0 for q # 0 and Hop(x, A) = A/xA, where xA = (xq,---,
Xn)A.

Proof Since x is a nonzerodivisor on A, the result is true for n= 1. Induc-
tively, letting X = x4, y = (x1,-+-, Xp-1), and C=K (@) ® A, H;(C)=0 for
q # 0 and K(x) ® Hp(C) is the complex

0 —>A/yA—> A/yA— 0.

The result follows from 4.5.3, since X is a nonzerodivisor on A/yA. <
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Corollary 4.5.5 (Koszul resolution) If x is a regular sequence in R, then
K(x) is a free resolution of R/l, Z = (x,---, x,) R. That is, the following
sequence is exact:

0— A"(R") — ---—> AX(R") > R* = R—> R/I > 0.
In this case we have
Tor}(R/1, A) = Hp(x, A);

Exth(R/1, A) = HP(x, A).

Exercise 4.5.5 If x is a regular sequence in R, show that the external and
internal products for Tor (2.7.8 and exercise 2.7.5(4)) agree with the externa
and internal products for H,(x, A) constructed in this section.

Exercise 4.5.6 Let R be a regular loca ring with residue field k. Show that
Tor (k, K) = Exthk, k) = APk = k), where n = dim(R).
Conclude that idg(k) = dim(R) and that as rings Torf (k, K) = A*(K").

Application 4.56 (Scheja-Storch) Here is a computational proof of Hilbertis
Syzygy Theorem 4.3.8. Let F be a fidd, and set R = Flxy,---, x4]. S =
R[y1,.., yn]. Let t be the sequence (t1,--,t,) of elements f; = y;—x; of
S. Since S = Ri{t;,---, 1], t is a regular sequence, and Hp(t, S) = R, so the
augmented Koszul complex of K(t) is exact:

0 > A"S" > A" IS .. S A" > 85" § 5 R 0.

Since each APS" is a free R-module, this is in fact a split exact sequence
of R-modules. Hence applying ® gA yields an exact sequence for every R-
module A. That is, each K(t) ® g A is an Smodule resolution of A. Set Ri =
Flyi,..., ynl, asubring of S. Since ; = 0 on A, we may identify the R-
module structure on A with the Ri-module structure on A. But S @ g A =
Ri ®pAis afree Ri-module because Fisafield. Therefore each A?S"®@r A
is a free Ri-module, and K(t) ® g A is a canonical, natural resolution of A by
free Ri-modules. Since K(t) ® g A has length n, this proves that

pdr(A) = pdr/(A) <n

for every R-module A. On the other hand, since Tor,’f (F,F)=F, we see that
pdgr(F)=n.Hencethering R = F[x1,---, x,] has global dimension n.
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4.6 Local Cohomology

Definition 4.6.1 If I is afinitely generated ideal in a commutative ring R and
Ais an R-module, we define

H;)(A) = {a EA:(EIi)Iia = O} = ll_n)lHOIn(R/Il’ A)

Since each Hom(R/I',—) is left exact and I|_r)n is exact, we see that H}’ isan
additive left exact functor from R-mod to itself. We set

Hi(A) = (RTHD)(A).
Since the direct limit is exact, we aso have

H;(A) = lim Ext%h(R/1', A).

Exercise 4.6.1 Show that if J <1 are finitely generated ideals such that 7 C
J for some i, then H(A)= H{(A) for al R-modules A and dl g.

Exercise 4.6.2 (Mayer-Vietoris sequence) Let I and J be ideals in anoethe-
rian ring R. Show that there is a long exact sequence for every R-module A:

25 HY, (A) > Hi(A) @ HI(A)— HI(A) > Hi(A) — .. ..

Hint: Apply Ext*(-, A) to the family of sequences
0 —-R/I'NJ >R/I'®R/J - R/ + J)— 0.

Then pass to the limit, observing that (I + J)* C(I' + JH)C (I + J)! and
that, by the Artin-Rees lemma ([BA 1, 7.13]), for every i thereisan N > i so
that IYN N J¥Ncu n Jpicrng

Generalization 4.6.2 (Cohomology with supports; See [GLC]) Let Z be a
closed subspace of a topological space X. If Fis a sheaf on X, let Hg(X, F)
be the kernd of HY(X, F) - HO(X —Z, F), that is, al global sections of
F with support in Z. Hg is a left exact functor on Sheaves(X), and we write
H7(X, F) for its right derived functors.

If I is any ideal of R, then H}(A) is defined to be H;(X,A), where X =
Spec(R) is the topological space of prime idedls of R, Z = {p:ICp},and A
is the sheaf on Spec(R) associated to A. If I is a finitely generated ided, this
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agrees with our earlier definition. For more details see [GLC], including the
construction of the long exact sequence

0 - HY(X/5) HY'X3) HYX -3 FHLX, F) > -

A standard result in algebraic geometry states that H"™(Spec(R), A) = O for
n # 0, so for the punctured spectrum U = Spec(R) — Z the sequence

0— H)A)— A— HU,A) - H}(A)—> 0
is exact, and for n £ 0 we can calculate the cohomology of A onU via

H"(U, A) = H'"(A).

Exercise 4.6.3 Let A be the full subcategory of R-mod consisting of the
modules with HY(A)= A.

1. Show that A is an abelian category, that HP: R-mod — A is right ad-
joint to theinclusion¢: A4 < R-mod, and that ¢ is an exact functor.

2. Conclude that H}) preserves injectives (2.3.10), and that .A has enough
injectives.

3. Conclude that each H}'(A) belongs to the subcategory .4 of R-mod.

Theorem 4.6.3 Let R be a commutative noetherian local ring with maximal
ideal m. Then the grade G(A) of any finitely generated R-module A is the
smallest integer n such that H7 (A)+ 0.

Proof For each i we have the exact sequence
Ext""!(m/mi*t1 A) > Ext"(R/m!, A) - Ext"(R/m'+!, A) — Ext"(m' /m'*!, A).

We saw in 4.4.8 that Ext"(R/m, A) is zero if n < G(A) and nonzero if n =
G(A); as mi/mit! is a finite direct sum of copies of R/m, the same is true
for Exti (mi /mi*1, A). By induction on i, this proves that ExtT (R/mi*! A)is
zero if n < G(A) and that it contains the nonzero module Ext"(R/m', A) if
n = G(A). Now take the direct limit as i — co. <

Application 4.6.4 Let R be a 2-dimensiona local domain. Since G(R) # 0,
H2(R) = 0. From the exact sequence

0>m—->R->R/m -0
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we obtain the exact sequence
0 — R — Homg(m/, R) — Exth(R/m’, R) — 0.

AsR is a domain, there is a natural inclusion of Homg(m!, R) in the fidd F
of fractions of R as the submodule

mi=(xecF:xm'CR}.
Set C=Um™, (Exercise: Show that C is a subring of F.) Evidently
HL(R) = limExt'(R/m’, R) = CIR.

If R is Cohen-Macaulay, that is, G(R) = 2, then Hn‘I(R) =0,soR=C
and Homg(m’, R) = R for al i. Otherwise R # C and G(R) = 1. When
the integral closure of R is finitely generated as an R-module, C is actu-
aly a Cohen-Macaulay ring-the smallest Cohen-Macaulay ring containing
R [EGA, IV.5.10.17].

Here is an aternative construction of local cohomology due to Serre [EGA,
IL1.1]. If x€ R there is a natural map from K (x'T1) to K (x7):

ci+]
00— R — R — 0

x| |

1

00— R — R — 0.

By tensoring these maps together, and writing x’ for (xi, -+, x}), this gives
amap from K (x'*1) to K (x'), hence a tower {H, (K (x')} of R-modules. Ap-
plying Homg(—, A) and taking cohomology yields a map from HY(x!, A) to
HI@ !, A).

Definition 4.6.5 Hy(A)=lim Hi(x', A).
—

For our next result, recall from 3.5.6 that a tower {A;} satisfies the trivial
Mittag-Leffler condition if for every ithereisaj > i so that A; — A; is zero.

Exercise 4.6.4 If {A;}— {B;}—{C;} is an exact sequence of towers of R-
modules and both {A;} and {C;} satisfy the trivia Mittag-Leffler condition,
then {B;} also satisfies the trivia Mittag-Leffler condition (3.5.6).

Proposition 4.6.6 Let R be a commutative noetherian ring and A a finitely
generated R-module. Then the tower {Hq(xi , A)) satisfies the trivial Mittag-
Lefflersondition for every g
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Proof We proceed by induction on the length n of x. If n = 1, one sees im-
mediately that H)(x', A) is the submodule A; = {a € A: x'a = 0). The sub-
modules A; of A form an ascending chain, which must be stationary since
R is noetherian and A is finitely generated. This means that there is an inte-
ger k such that Ay = Ay =---, that is, x*A; = 0 for dl i. Since the map
Aiyj— A; is multiplication by x7, it is zero whenever J > k. Thus the lemma
holdsifn= 1.

Inductively, set y = (xl, ..., x,_1) and write x for x,. Since K(x')®
K (') = K(x%), the Kiinneth formula for Koszul complexes 4.5.3 (and its
proof) yields the following exact sequences of towers:

{Hy ', A} = (Hy(x', A} = {Hymr 0, A
{H{(', A] = {H (', A} —> {H(x', A/y' A)} — 0.

If g> 2, the outside towers satisfy the trivial Mittag-Leffler condition by in-
duction, so { Hy(x', A)} does too. If g =1 and we set A;; = [a€A/y' A :
x/a=0}= H\(x/,A/y' A), it is enough to show that the diagonal tower {A;;}
satisfies the trivial Mittag-Leffler condition. For fixed i, we saw above that
there is a k such that every map A;; — A; j+« iS zero. Hence the map A;; —
Ajivk— Aitk.i+k IS Zero, as desired. <o

Corollary 4.6.7 Let R be commutative noetherian, and let E be an injective
R-module. Then Hy (E) = 0 for all q # 0.

Proof Because E is injective, Homz(—, E) is exact. Therefore
H9(x', E) = HYHomg(K (x', R), E) = Homg(H,(x', R), E).
Because the tower { H, (x', R)) satisfies the trivia Mittag-Leffler condition,
Hﬁ(E)z@HomR(Hq(xi, R), E) = 0. >

Theorem 4.6.8 If R is commutative noetherian, x = (xy,---, x,) IS any se-
quence of elements of R, and | = (xy,---, x,) R, then for every R-module A

H;(A) =~ H{(A).

Proof Both H;I and Hy are universal §-functors, and

HY(A)=lim Hom(R/x'R, A) = h_r)nHO(xi, A) = H2(A). 0
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Corollary 469 R is a noetherian HL(AgAO anlynvghen
G(A) <q < dim(R). In particular,if R is a Cohen-Macauley local ring, then

Hi(R)# 0« q=dim(R).

Proof Set d = dim(R). By standard commutative ring theory ([KapCR,
Thm.153]), there is a sequence x = (xy,---, x4) of elements of m such
that m/ C 1< m for some j, where I = (xy,---, x4)R. But then Hi(A)=
H;’(A) = H{(A), and this vanishes for q > d because the Koszul complexes
K (x') have length d. Now use (4.6.3). <&

Exercise 4.6.5 If | is a finitely generated ideal of R and R — Sis a ring
map, show that H} (A)= H}(A) for every Smodule A. This result is rather
surprising, because there isnit any nice relationship between the groups
Exth(R/I', A) and Ext}(S/I¢, A). Consequently, if anng(A) denotes {r e
R:rA=0}, then H/(A) =0 for g >dim(R/anng(A)).

Application 4.6.10 (Hartshorne) Let R = C[xj, x2, yi, ¥21, P =(x1, x2) R,
Q=0nLY)R, and I =PNQ.AsP,@,and m=P + Q = (x1,x2, y1, y2)R
are generated by regular sequences, the outside terms in the Mayer-Vietoris
sequence (exercise 4.6.2)

H;(R) ® H;(R) = H;(R) = H;(R) — H;(R) & H;(R)

vanish, yielding H}(R)gHé(R)¢O. This implies that the union of two
planes in C* that meet in a point cannot be described as the solutions of only
two equations fi1= f» = 0. Indeed, if this were the case, then we would have

I'C(f1, f)RCI for some i, so that H}(R) would equa Hf3(R), which is
zero.

then



5
Spectral Sequences

5.1 Introduction

Spectral sequences were invented by Jean Leray, in a concentration camp
during World War 11, in order to compute the homology (or cohomology) of
achain complex [Leray]. They were made agebraic by Koszul in 1945.

In order to motivate their construction, consider the problem of computing
the homology of the total chain complex T, of afirst quadrant double complex
E,. As afirst step, it is convenient to forget the horizontal differentials and

add a superscript zero, retaining only the vertica differentidls dv aong the
columns E9,.

s <— o < o
p <0 <o

v
l

| o

p

If we write E,, for the vertical homology H,(EY,) at the (p, q) spot, we

may once again arrange the data in a lattice, this time using the horizontal
diffentials d”.

120
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p

Now we write Elz,q for the horizontal homology H,,(E,iq) at the (p, ¢) spot.

In a sense made clearer by the following exercises, the elements of qu area
second-order approximation of the homology of T, = Tot( E,,).

Exercise 5.1.1 Suppose that the double complex E consists solely of the two
columns p and p — 1. Fix n and set ¢ = n — p, so that an element of H,,(T)
is represented by an element (a, b)€ Ep—1,4+1X E,. Show that we have
calculated the homology of T = Tot(E) up to extension in the sense that there
is ashort exact sequence

0— Ef)—l,q+1 — Hp 4 (T) —>E;2;q — 0.

Exercise 5.1.2 (Differentials at the E? stage)

1. Show that E,z,q can be presented as the group of al pairs (a, b) in
Ep_i4+1 X Epg such that 0 = db = d%a + d"b, modulo the rela-
tion that these pairs are trivia: (a, 0); (d"x,d’x) for x€E, g 11; and
(0, d*c) for dl ¢ € E 41 4 with d¥c = 0.

2. If d"(a) = 0, show that such a pair (a, b) determines an element of

Hp-i-q(T)-
3. Show that the formula d(a, b) = (0, d"(a)) determines a well-defined
map
.2 2
d: EM — Ep-2,q+1-

Exercise 5.1.3 (Exact sequence of low degree terms) Recall that we have
assumed that E?,q vanishes unless both p > 0 and ¢ > 0. By diagram chasing,

show that E3, = Ho(T) and that there is an exact sequence

d
Hy(T) — E3y —— E2 — H((T) > Efy — 0.
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E?, : E,
q
&&E& 5 %&

\\\

14
Figure 5.1. The steps E% and E? of the spectral sequence.

There is an agorithm for computing H.(T) up to extension, called a spec-
tral sequence, and we have just performed the first two steps of this algorithm.
The next two steps are illustrated in Figure 5.1.

5.2 Terminology

Definition 5.2.1 A homology spectral sequence (starting with E?)in an
abelian c at e A@ongists of the following data

1. A family { £}, } of objects of A defined for al integers p.q, and r>a

2. Maps d}, 0 E},, — E, ., that are differentidls in the sense that
didi =0, so that the ilines of dope -(r +1)/r” in the lattice E%, form
chain complexes (we say the differentials go ito the l&ftT)

3. Isomorphisms between E;j;‘ and the homology of EL, at the spot £},

Er it azker(d),)/image (d),, . ,11)

Note that E;,;‘ is a subquotient of E},,. The total degree of the term E},,
isn = p+q; the terms of total degree n lie on a line of dope —1, and each
differential d},, decreases the total degree by one.

There is a category of homology spectral sequences; a morphism f: Ei —
E is a family of maps f;q'E;fqﬁE;,q in A (for r suitably large) with d” " =
f"d" such that each f’+l is the map induced by f,, on homology.

Example 5.2.2 A first quadrant (homology) spectral sequence is one with
E,’,q7 =0unless p>0and q=>0, that is, the point (p, q) belongs to the first
guadrant of the plane. (If this condition holds for r = a, it clearly holds for all
r) If wefix p and g, then E7,, = E.’Ijél for al large r (r > max{p,q+ 1) will
do), because the d” landing in the (p, q) spot come from the fourth quadrant,
while the d" leaving E 4 1and in the second quadrant. We write E°o for this
stable value of E7,,.



5.2 Terminology 123

Dual Definition 52.3 A cohomology spectral sequence (starting with E,) in
Aisafamily {E/?} of objects (r > a), together with maps d?? going ito the
righti:
drpq: E,‘.Uq N Erp+r,q*r+1’
which are differentias in the sense that d,d, =0, and isomorphisms between
E,+1 and the homology of E,. In other words, it is the same thing as a homol-
ogy spectral sequence, reindexed via EfY=E” , . so that d, increases the
total degree p + q of E7,, by one.
Thereisa category of cohomology spectral sequences; amorphism f:Ei —
E is a family of maps qu qu EF?in A (for rsuitably large) with
d, fr = frd, such that each 1 is the map induced by e

Mapping Lemma 5.2.4 Let F: {E}, }->{E 1 be a morphism of spectral
sequences such that for some fixed r, f r .E’ :E ’ is an isomorphism for

all p and g. The 5-lemma implies that f*: E;q: E&for all s> r as well.

Bounded Convergence 5.2.5 A homology spectral sequence is said to be
bounded if for each n there are only finitely many nonzero terms of total
degree nin E%,. If so, then for each p and q there is an ro such that £, =
E;,“ for al r>rg. We write E°° for this stable value of E’

We say that a bounded spectral sequence converges to H* if we are given a
family of objects H, of A, each having a finite filtration

0= Fang"'ng—lHnngHnng—}—lHng"'gFtHn =

n»

and we are given isomorphisms Epo=F,Hp4/Fp—1Hptq. The traditiona
symbolic way of describing such a bounded convergence is like this:

E,, = Hpiq.

Similarly, a cohomology spectral sequence is caled bounded if there are
only finitely many nonzero terms in each total degree in E}*. In a bounded
cohomology spectral sequence, we write E5Z for the stable value of the terms
EP?? and say the (bounded) spectral sequence converges to H* if thereis a
finite filtration

0=F'H"C...FPTIg"C FPH"... CF*H" = H" so that

ENd =~ pPHP+a pprigrta,
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Example 5.2.6 If a first quadrant homology spectral sequence converges to
H,, then each H,, has a finite filtration of length » + 1:

O=F_ {H, CFH, < --CFy1H, S F,H, = H,.

The bottom piece FoH, = E;, of H, is located on the y-axis, and the top quo-
tient Hy,/Fy~1 H, = EZj is located on the x-axis. Note that each arrow landing
on the x-axis is zero, and each arrow leaving the y-axis is zero. Therefore each
Eg,, is asubobject of Eg, , and each E5 isaquotient of E£2;. The terms £ on
the y-axis are called the fiber terms, and the terms £, on the x-axis are called
the base terms for reasons that will become apparent in the next section. The
resulting maps Eg, — Eg. C Hyand H,— ESjc Eqparek now n  adge
bémtmeorgpéstisal sequence for the obvious visual reason. Simi-
larly, if a first quadrant cohomology spectral sequence converges to H*, then
H" has afinite filtration:

O= Fn—HHnanHng“.g FlHng FOHn :__Hn_

In this case, the bottom piece F”H" = E7 is located on the x-axis, and the
top quotient H”/FIH”EEgg is located on the y-axis. In this case, the edge
homomorphisms are the maps E™ — E"0 ¢ H" and H" — E* ¢ EO*,

Definition 5.2.7 A (homology) spectra sequence collapses at E”(r > 2) if
there is exactly one nonzero row or column in the lattice { £7,}. If a collapsing
spectral sequence converges to H,, we can read the H, off: H, is the unique
nonzero Ej,. with p + ¢ =n. The overwhelming majority of all applications

of spectral sequences involve spectral sequences that collapse at E! or E2.

Exercise 5.2.1 (2 columns) Suppose that a spectral sequence converging to
H, has Ef,q =0 unless p = 0, 1. Show that there are exact sequences

0— E}, > H,—>E},— 0.

Exercise 5.2.2 (2 rows) Suppose that a spectral sequence converging to H,
has Ef;q =0 unless g = 0, 1. Show that there is a long exact sequence

2 d p2 2 4 2
o Hpy > Ep g —E, 1 > Hp—>Ey—E;, 5, > Hpi---.

If a spectral sequence is not bounded, everything is more complicated, and
here is no uniform terminology in the literature. For example, a filtration in
CE] is iregular? if for each n thereisan N such that H,(F,C)=0 for p<N,

the
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and al filtrations are exhaustive. In [MacH] exhaustive filtrations are called
iconvergent abovel In [EGA, Omp(11.2)] even the definition of spectral se-
quence is different, and Tregularf spectral sequences are not only convergent
but also bounded below. In what follows, we shall mostly follow the terminol-
ogy of Bourbaki [BX, p. 175].

E* Terms 5.2.8 Given a homology spectral sequence, we see that each E;j;l
is a subquotient of the previous term E7, . By induction on r, we see that there
is a nested family of subobjects of E,

—BY Cc...Cc B C r+1C.__ r+1 r a _ pa
0 BPq = _qu _qu - gzl’q gzl’q < gZI”I EP‘I

such that £, =77 /By,,. We introduce the intermediate objects

x xX0
o0 — r oo r
By, = U B,, and Z,, = ﬂ Zpg
r=a r=a

and define Ep; = Z72/Bp. In a bounded spectral sequence both the union
and intersection are finite, so Bpg = By, and Z7 = Z7, for large r. Thus we
recover our earlier definition: E77 = E7, for larger.

Warning: In an unbounded spectral sequence, we will tacitly assume that Boo,
Z3,, and E77 exist! The reader who is willing to only work in the category of
modules may ignore this difficulty. The queasy reader should assume that the

abelian category A satisfies axioms (AB4) and (A B4*).

Exercise 5.2.3 (Mapping Lemma for E°) Let f:{E;q}—>{E;;q} be a mor-
phism of spectra sequences such that for some r (hence for al large r
by 5.2.4) f": E;,qu;,’q is an isomorphism for al p and gq. Show that
f o ESS = E 52 as well.
Definition 5.2.9 (Bounded below) Bounded below spectral sequences have
good convergence properties. A homology spectral sequence is said to be
bounded below if for each n there is an integer s = s(n) such that the terms
Ej, of total degree n vanish for al p< s Bounded spectral sequences are
bounded below. Right half-plane homology spectral sequences are bounded
below but not bounded.

Duadlly, a cohomology spectra sequence is said to be bounded below if
for each n the terms of total degree n vanish for large p. A left half-plane
cohomology spectral sequence is bounded below but not bounded.

Definition 52.10 (Regular) Regularity is the most useful general condition
for convergence used in practice; bounded below spectral sequences are also
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regular. We say that a spectral sequence is regular if for each p and g the
differentials 7, (or d/?) leaving E,, (or Ef?) are zero for all large r. Note
that a spectral sequence is regular iff for each p and q: Zj3 =77 for dll
larger.

Convergence 5.2.11 We say the spectral sequence weakly converges to H, if
we are given objects H,, of A, each having a filtration

"nglenngHnng+lHng"'§Hm

together with isomorphisms B,q. Epo = Fp Hptq/ Fp- 1 Hp4q for dl p and q.
Note that a weakly convergent spectral sequence cannot detect elements of
NF, Hy, nor can it detect elements in H, that are not inUF, H,,.

We say that the spectral sequence {Ej,,} approaches H, (or abuts to H,)
if it weakly converges to H, and we also have H, =UF,H, andNF,H, =0
for &l n. Every weakly convergent spectral sequence approaches UF, H,/N
FpH,.

We say that the spectral sequence converges to H, if it approaches H,, it
is regular, and H, = ligl_(Hn/FpH,,) for each n. A bounded below spectra

sequence converges to H, whenever it approaches H,, because the inverse
limit condition is always satisfied in a bounded below spectral sequence.

To show that our notion of convergence is a good one, we offer the fol-
lowing Comparison Theorem. If {E;,q} and {E;fq} weakly converge to H,
and H,, respectively, we say that a map h: H,— H/ is compatible with a
morphism f: E — E’if h maps F,H, to F,H, and the associated maps
FpHy/Fp_1Hy — FpH,/Fp 1 H, correspond under g and g' to fp0: Egp —
EX (@=n-p).

Comparison Theorem 5.2.12 Let {E", } and { E}, } converge to H, and HJ,
respectively. Suppose given a map h: H,— H, compatible with a morphism
f: E— Ei of spectral sequences. If f’:E;q%E;fq is an isomorphism for
all p and g and some r (hence for r = ca by the Mapping Lemma), then
h: H,— H is an isomorphism.

Proof Weak convergence gives exact sequences

0 — Fp_\H,/F;H, — FyH,/F;H, — E,_, — 0

! l i=

o — Fp_iH,/F;H, —> F,H,/FH, —> E;’;_p —> 0.
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Fixing s, induction on p shows that F,H,/FsH,=F,H,/FsH, for al p.
Since H,=UF, Hy, thisyields H,/ F; H,= H, / F; H,, for al s. Taking inverse
limits yields the desired isomorphism H,= H,,. <

Remark The same spectral sequence may converge to two different graded
groups H,, and it can be very difficult to reconstruct a picture of H, from
this data. For example, knowing that a first quadrant spectral sequence has
Ej.=Z/2for al p and g does not alow us to determine whether H3 isZ/16
or Z/2 & Z/8, or even the group (Z/2)*. The Comparison Theorem 5.2.12
helps us reconstruct H, without the need for convergence.

Multiplicative Structures 52.13 Suppose that for r = a we are given a bi-
graded product

r r r
(*) Ep1q1 X Epzqz e EP1+172,611+q2

such that the differential d” satisfies the Leibnitz relation
(%) d"(x1x2) =d"(x)x2 + (=DPxid (x2), xi €E},,.

Then the product of two cycles (boundaries) is again a cycle (boundary), and
by induction we have (x) and (xx) for every r > a. We shall cal this a multi-
plicative structure on the spectral sequence. Clearly this can be a useful tool in
explicit calculations.

5.3 The Leray-Serre Spectral Sequence

Before studying the algebraic aspects of spectral sequences, we shall illustrate
their computational power by citing the topological applications that led to
their creation by Leray. The material in this section is taken from [MacH,
x1.21.

Definition 5.3.1 A sequence F —> E — B of based topological spaces is
called a Serre fibration if F is the inverse image w~!(xp) of the basepoint
of B and if = has the following ihomotopy lifting property®: if P is any
finite polyhedron and I is the unit interval [0, 1],g: P — E is a map, and
H: P x I — B is a homotopy between mg = H(-, 0) and hj = H(-, 1),

P —g-> E
xOl G/' in

PxI— B
H
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there is a homotopy G: P x Z — E between g and amap g = G(-, 1) which
lifts H in the sense that G = H. The spaces F, E, and B are caled the
Fiber, total space (Espace totale for Leray), and Base space, respectively. The
importance of Serre fibrations lies in the fact (proven in Serreis thesis) that
associated to each fibration is a long exact sequence of homotopy groups

e T 1(B) = N(F) = 7a(E)— n,(B) = . . ..

In order to simplify the presentation below, we shall assume that B is sim-
ply connected, that is, that 7o( B) = 71 (B) = 0. Without this assumption, we
would have to introduce the action of 7; (B) on the homology of F and tak
about the homology of B with ilocal coefficientst in the twisted bundles
Hy(F).

Theorem 5.3.2 (Leray-Serre spectral sequence) Let F ——> E "5 B be a
Serre jbration such that B is simply connected. Then there is a first quadrant
homology spectral sequence starting with E? and converging to H,(E):

E2, = Hp(B; H,(F)) = Hp+q(E).

Addendum | Hy(B) =2, so along the y-axis we have qu = H,(F). Because

Elz,q: 0 for p < 0, the groups qu, . %ﬂ = ng; are successive quotients

of qu. The theorem states that Egg = FoH, ( E), so there is an iedge map’
Hy(F) = E}, — E§o € Hy(E),

This edge map is the map i,: H,(F) — H,(E).

Addendum 2 Suppose that mq(F) = 0, so that Ho(F) =Z. Along the x-
axis we then have E,Z;o = Hy(B). Because E;= 0 for g <0, the groups

E?;o» e E';,O“ = E%} are successive subgroups of E2. The theorem states
that E;?,;H,,(E)/F,,_lH,,(E), so there is an Tedge map”

Hp(E) = Eg3 — Ebg = Hy(B).
This edge map is the map m,: H,(E) — H,(B).
Remark The Universal Coefficient Theorem 3.6.4 tells us that

Hp(B; Hy(F)) = Hy(B) ® Hy(F) & Torl(H,_(B), Hy(F)).
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Therefore the terms Elz,q are not hard to calculate. In particular, since 1 (B) =
0 we have Hi(B) = H, (B; H, (F)) = 0 for all q. By the Hurewicz homomor-
phism, m2(B)= Hy(B) and therefore H»(B; H,(F)) = Hy(B)® H,(F) for
al g as well.

Application 53.3 (Exact sequence of low degree terms) In the lower left
comer of this spectral sequence we find

H 2(F) (O\
B, H\(F) 0 . .
z 0 “HyB) HyB)  HyB)

The kernel of the map d? = d3;, is the quotient ESS of H>(E), because the
maps dj,, are zero for r > 3. Similarly, the cokernel of d? is the subgroup EgY

of H(E). From this we obtain the exact homology seguence in the following
diagram:

m3(B) — m(F) — m(E) — m(B) — mn(F) — mi((E) — 0
l l l l= l l

2
X > H)(F) — Hy(E) — H(B) i> H(F) — H|(E)— 0.

Here the group labeled X contains the image in H,(F) of E§1“=“H2(B)®

H\(F) and elements related to E3, = H3(B). Thus Hy(B)® H;(F) is the first
obstruction involved in finding a long exact sequence for the homology of a
fibration.

Application 53.4 (Loop spaces) Let P B denote the space of based paths in
B, that is, maps [0, 1]— B sending O to xg. The subspace of based loops
in B (maps [0, 1]— B sending 0 and 1 to xp) is written QB. There is a
fibration QB — P B —> B, where 7 is evaluation at 1 e [0, 1]. The space
P B is contractible, because paths may be pulled back along themselves to the
basepoint, so H, (P B) = 0 for n# 0. Therefore, except for EG = Z, we have
a spectral sequence converging to zero. From the low degree terms (assuming
that m1(B) = O!), we see that H(2B)= H>(B) and that

Hy(B) LN Hy(B) ® Hy(B) LN Hy(QB) — H3(B) = 0

is exact. We can use induction on n to estimate the size of H,(£2 B).
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Exercise 5.3.1 Show that if n> 2 the loop space 25" has

Z if —p) pvizles 0

H,(QS") =
p(257) {0 otherwise.

Application 5.3.5 (Wang sequence) If F ——E "> 5" is a fibration whose
base space is an n-sphere (n #0, 1), there is along exact sequence

-.~—>Hq(F)—i> H,(E) —>Hq_n(F)i>Hq-l(F) —’>Hq_1(E)—>....

In particuler, Hy (F) = H,; (E)if0<g=<n-—2.

Proof H,(S")=0for p# 0, n and H,(S") = Ho(8") = Z. Therefore the
nonzero terms Eﬁq al lie on the two vertical lines p =0, n and Ef,q =H,(F)
for p=0or n. All the differentials dj,, must therefore vanish for r##n, so
E2,= E7, and EZ;IH = E%9. The description of E"*! as the homology of E”
amounts to the exactness of the sequences

n

0 — Efl’f’q — H,(F) _-’Hq+n—1(F)“_’E(C)>,oq+n—1—> 0.

H,(F)
H,\(F)
B | b Hy(F)
: Hy(F)
HyF) Hy(F)

On the other hand, the filtration of H,(E) is given by the E;‘;, so it is deter-
mined by the short exact sequence

0 —)ES;J—-) H,(E) —>E,?,Oq~n—> 0.

The Wang sequence is now obtained by splicing together these two families of
short exact sequences. <
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Example 5.3.6 The special orthogonal group SO(3) is a 3-dimensional Lie
group acting on S2CR3. This action gives rise to the Serre fibration

SO(1) > SO3) > S2.

Because SO(1)=S!, we get H3(SO(3))=Z and the exact sequence

0— H(SO0@3))—~Z -i Z — Hi(S0@3)) —>0.

Classicaly, we know that 7180 (3)=2Z/2, so that H;(SO(3))=72/2. There-
fore Hy(SO(3)) = Z, dthough H>(S0(3)) = Hy(S?) is not an isomorphism.

Application 5.3.7 (Gysin sequence) If §” — E — B is a fibration with B
simply connected and n # 0, there is an exact sequence

an+l!

b4
. > Hp_n(B) > HyE —> Hp(B) —> Hp_n—1(B) > Hp_1(E) — -~ .

In particular, H,(E)=H,(B)for0<p<n

Proof Thisis similar to the Wang sequence 5.35, except that now the nonzero
terms Ef,q all lie on the two rows q = 0, n. The only nontrivial differentials are

dyg! from Hy(B) = Efd' to ENTL | = Hp n 1(B). &

p—n—ln—

Exercise 5.3.2 If n# 0, the complex projective n-space CP”* is a ssimply con-
nected manifold of dimension 2n. As such H,(CP") =0 for p > 2n. Given
that there is a fibration S'— §2*1— CP", show that for 0 <p < 2n

n | Z peven
H,,((CIP’):{O bodd |

5.4 Spectral Sequence of a Filtration

A filtration F on a chain complex C is an ordered family of chain subcom-
plexes--- € Fp_1C € F,C < -- - of C. In this section, we construct a spectral
sequence associated to every such filtration; we will discuss convergence of
the spectral sequence in the next section.

We say that afiltration is exhaustive if C=UF,C. It will be clear from the
congtruction that both U F,,C and C give rise to the same spectral sequence. In
practice, therefore, we always insist that filtrations be exhaustive.
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Construction Theorem 5.4.1 A filtration F of a chain complex C naturally
determines a spectral sequence starting with qu =FpCpiq/Fp-1Cpiqgand

E), = Hpiq(ES).

Before constructing the spectral sequence, let us make some eementary
remarks about the ishapel of the spectral sequence.

Definition 5.4.2 A filtration on a chain complex C is caled bounded if for
each n there are integers s <t such that F;C, = 0 and F,C, = C,,. In this casg,
there are only finitely many nonzero terms of total degree n in E**, so the
spectral sequence is bounded. We will see in 5.5.1 that the spectral sequence
always converges to H*(C).

A filtration on a chain complex C is caled bounded below if for each n there
is an integer s so that F;C, = 0, and it is caled bounded above if for each
n there is a ¢ so that F,C,, = C,,. Bounded filtrations are bounded above and
below. Being bounded above is merely an easy way to ensure that a filtration
is exhaustive. Bounded below filtrations give rise to bounded below spectral
sequences. The Classical Convergence Theorem 55.1 of the next section says
that the spectral sequence always converges to H,(C) when the filtration is
bounded below and exhaustive.

Example 5.4.3 (First quadrant spectra sequences) We cal the filtration
canonically bounded if F-1 C = 0 and F,C, = C,, for each n. As qu =
FpCpiq/Fp—1Cpiq, every canonically bounded filtration gives rise to a first
quadrant spectral sequence (converging to H,(C)). For example, the Leray-
Serre spectral sequence 5.3.2 arises from a canonically bounded filtration of
the singular chain complex S,(E).

Here are some related notions, which we introduce now in order to give a
better perspective on the construction of the spectral sequence.

Definition 5.4.4 A filtration on a chain complex C is caled Hausdorff if
NF,C=0. It will be clear from the construction that both C and its Hausdorff
quotient C*=C/n F,C giverise to the same spectral sequence.

A filtration on C |s caled complete if C = lim C/FpC Complete filtra-
tions are Hausdorff because NF,C is the kemel of the map from C to
its completion c —(Il_m C/FpC (which is aso a filtered complex: F, C=

lim F,,C/F,C).Bounded below filtrations are complete, and hence Hausdorff,
<«

because F; H,, (C) = 0 for each n. The following addendum to the Construc-
tion Theorem 5.4.1 explains why the most interesting applications of spectral
sequences arise from complete filtrations. It will follow from exercise 5.4.1.
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Addendum 5.4.5 The two spectral sequences arising from C and C arethe
same.

The Construction 5.4.6 For legibility, we drop the bookkeeping subscript g
and write 7, for the surjection F,,C — F,C/F,_;C = E). Next we introduce

A; = {c €F,C:d(c)eF, ,C},

the elements of F,C that are cycles modulo F,_,C (iapproximately cyclesr)
and their images 2% = n,(A%) in ES and Bjt L =7, _.(d(A"))in ES_,. The

r

indexing is chosen so that Z7, and B = np(d(A;,Irl,_l)) are subobjects of Eg.
Set Z3P =N, Z}, and By® = U2 By, Assembling the above definitions,

we see that we have defined a tower of subobjects of each Eg:

0=B)CBlCc...CB,C...CBXCZ¥C.CZ,C..CZ,CZ0=E).
Note that A,NF,1C = A"}, so that Z;, = A /AT Hence
BT — Zy AT E©O) Ap
P~ pr — r—1 — _ .
By, d(A, L) +Fp1(O) d(A’p+1r_1)+ Arp—_ll

Let d;: E,— E;_, be the map induced by the differential of C. To define the

spectral sequence, we only need to give the isomorphism between E™*! and
H.(E").

Lemma 5.4.7 The map d determines isomorphisms

zh/zn = prtlypr
Proof Thisis largely an exercise in decoding notation. First, note that d(A},)N
Fp_r_1C = d(A%Y), s0 that B),") 2= d(A7)/d(A%H) and hence BLYL/BY,
isisomorphic to d(A%,)/d (A" + A;‘_’]). The other term Z;,/Z;,Jrl is isomor-
phicto A;,/(A;,“ + A’pill). As the kernd of d: A’p—>F,,,,C is contained in
ALt the two sides are isomorphic. &

Resuming the construction of the spectral sequence, the kernel of d; is
reic s caveat |} ateay g

-1 —1 ~1 I :
d(Arp+r—1) + A;—l = d(ALL, ) + ALZy By
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By lemma 5.4.7, the map d, factors as

E,=2Z/B,— Z /25 = = BytY/B, > 7! /B, =E_,.
From this we see that the image of dJ, |sB’+],/Bp _, replacing p with p+r,
theimage of d,,, is Blr,+ l/prfl'his provides the isomorphism

E;+]: %r+l Br-‘rl Nker(dr)/lm(d,,_”)

needed to complete the construction of the spectral sequence. &

Observation Fix p and k>1, and set C'=C/F,_xC,C" = F,14C/F,_C.
The complex Ci is bounded below, C” is bounded, and there are maps C —
Ci <« Ci. For 0 <r <k these maps induce isomorphisms on the associated
groups A’/ F,_C and {d(A’+r D+ FpkC}/Fp_C. (Check thisl) Hence
the associated groups Z!,, B}, and E), ae isomorphic. That is, the associated

spectra sequences for C, Cl’, and CT agree in the (p, q) spots through the E*
terms.

Exercise 5.4.1 Recall that the completion C is dso afiltered complex. Show
that C/ F, +C and C/ F, C are naturally isomorphic.

We can now establish the addendum 5.45. For each p,q, and k, we
have shown that the maps C —C— Ci induce isomorphisms between the
corresponding E’;,q terms. Letting k go to infinity, we see that the map
{ ;q:E;,q(C)—»E,’,q(f)} of spectral sequences is an isomorphism. because
each f7,, is an isomorphism.

Exercise 5.4.2 Show that the spectral sequences for C, UF,C,and C/NF,C
are all isomorphic.

Multiplicative Structure 5.4.8 Suppose that C is a differentia graded alge-
bra (45.2) and that the filtration is multiplicative in the sense that for every s
and ¢, (F;C)(F;C)C F;++C. Since Ep,, —p is FpCpn/Fp—1Cy, it is clear that
we have a product
0 0 0
Epigi X Eprgy = Epiprgiva

satisfying the Leibnitz relation. Hence the spectral sequence has a multiplica
tive structure in the sense of 5.2.13. Moreover, we saw in exercise 4.5.1 that
H,(C) is an agebra and that the images FpH,.(C) of the H«(F,C) form a
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multiplicative system of ideals in H,(C). Therefore whenever the spectra
sequence (weakly) converges to H,(C) it follows that E* is the associated
graded agebra of H,(C). This convergence is the topic of the next section.

5.5 Convergence

A filtration on a chain complex C induces a filtration on the homology of
C:F,H,(C) is the image of the map H,(F,C)— H,(C). If the filtration on
C is exhaudtive, then the filtration on H, is aso exhaustive (H, = UF,H,),
because every element of H, is represented by an element ¢ of some F,C,
such that d(c) = 0. If the filtration on C is bounded below then the filtration on
each H,(C) is also bounded below, since F,C = 0 implies that F, H,(C) = 0.

Exercise 5.5.1 Give an example of a complete Hausdorff filtered complex
C such that the filtration on Hy(C) is not Hausdorff, that is, such that
NFpHo(C)# 0.

Here are the two classica criteria used to establish convergence; we will
discuss convergence for complete filtrations later on.

Classical Convergence Theorem 5.51

1. Suppose that the filtration on C is bounded. Then the spectral sequence
is bounded and converges to H,(C):

Epy =Hpig(FyC/Fp1C) = Hp14(C).

2. Suppose that the filtration on C is bounded below and exhaustive. Then
the spectral sequence is bounded below and also converges to H,(C).
Moreover, the convergence is natural in the sense that if f:C —C’
is a map of filtered complexes, then the map fi: H,(C) = H(C") is
compatible with the corresponding map of spectral sequences.

Example 5.5.2 (First quadrant spectral sequences) Suppose that the filtration
is canonically bounded (F-iC =0 and F,C, = C, for each n), so that the
spectral sequence lies in the first quadrant. Then it converges to H,(C). Along
the y-axis of E!we have Eéq = H,(FyC), and ng; is a quotient of this (see
5.2.6). Along the x-axis, E;lzo is the homology H ,,(C) of Cis top quotient chain
complex C,C, = Cn/Fu—1Cn; ESY is therefore a subobject of H,(C).

Corollary 55.3 If the filtration is canonically bounded, then Egj; is the image
of Hy(FoC) in Hy(C) and E55 is the image of H,(C) in H,(C).
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Proof By definition, Egj; = FyH,(C) is the image of H,(FpC) in Hy(C).
Now consider the exact sequence of chain complexes 0 —F, .1C—>C,—
C‘,, — 0. From the associated homology exact sequence we see that the image
of Hy(C) in Hy(C) is the cokernel of the map from H,(F,—1C) to H,(C),
which by definition is E7G = Hp(C)/Fp-1Hp(C). <&

Proof of Classical Convergence Theorem Suppose that the filtration is exhaus-
tive and bounded below (resp. bounded). Then the filtration on H, is exhaus-
tive and bounded below (resp. bounded), and the spectral sequence is bounded
below (resp. bounded). By Definition 5.2.11, the spectral sequence will con-
verge to H, whenever it weakly converges. For this, we observe that since the
filtration is bounded below and p and n are fixed, the groups A}, = {c € F,Cy:
d(c)e Fp_,Cyn—1} tabilize for large r; write A;o for this stable value, and ob-
serve that since Z7, =np(A7) we have Z‘,‘ioznp(A‘;,o). Now A;’," is the kernel
of d: FyCp— FpCu—1,(dC)N FpC is the union of the d(A%,,,), and A;‘f’_l is
the kernel of the map n,: A¥ — EJ,. Thus

FpHu(C)/Fp_1Hy(C) = AL/{AY | + d(UAT,,))

= np(A;O)/ npd(UA;,+,)
=Z7/B; = E}. >

When the filtration is not bounded below, convergence is more delicate. For
example, the filtration on H,(C) need not be Hausdorff. This is not surprising,
since by 5.4.5 the completion C has the same spectral sequence but different
homology. (And see exercise 5.5.1.)

Example 5.5.4 Let C be the chain complex 0 —Z —>7 — 0, and let F,C
be 2PC. Then the Hausdorff quotient of H,(C) is zero, because FpH\(C) =

H,(C) for al p, even though Hy(C) = Z/3. Each row of E¥is Z/2<3—Z/2
and the spectral sequence collapses to zero a E!, so the spectral sequence is
weakly converging (but not converging) to H,(C). It converges to H,(C) = 0.

Theorem 5.5.5 (Eilenberg-Moore Filtration Sequence for complete com-
plexes) Suppose that C is complete with respect to a filtration by subcom-
plexes. Associated to the tower {C/F,C} is the sequence of 3.5.8:

0 — lim 'Hy11(C/FpC) — Ha(C) 7> lim H, (C/F,C) > 0.
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This sequence is associated to the filtration on H,(C) as follows. The left-
hand term }i_mlH,,H(C/F,,C) is NF,H,(C), and the right-hand term is the

Hausdorff quotient of H,(C):

H,(C)/ N FpHy(C) = lim Hy(C)/FpHn(C) = lim H,(C/FyC).

Proof Taking the inverse limit of the exact sequences of towers
0 — {FpHi(C)} > H,(C) — {H«(C)/FpH((C)} = 0;
0 — {Hi(C)/FpH(C)} = {H«(C/F,C)}
shows that H,(C)/ N F,H,(C) is a subobject of Iim H,(C)/FpH4(C), which

is in turn a subobject of lim H,(C/F,C). Now combine this with the lim!
«— «—
sequence of 3.5.8. <

Corollary 55.6 If the spectral sequence weakly converges, then H,(C)
H,(C).

I

A careful reading of the proof of the Classica Convergence Theorem
5.5.1 yields the following lemma for all Hausdorff, exhaustive filtrations. To
avoid confusion, we reintroduce the fixed subscripts g and n = p + g. Write
AT = NZ A%, recaling that in our notation A}, = {c € F,Cy: d(c) €
F,,-,C,, 1}. In E i=F pCn/ Fp— 1C,,,np( ) is contamed in Z°° and con-
tains By, = np(F CnN d(C)). (Check th|s') Hence ep, np(A 2)/Bpa
contained iNEZ,.

Lemma 5.5.7 Assume that the filtration on C is Hausdorff and exhaustive.
Then

1. A?r?z is the kernel of d: F,C,— FpCy-1;
2. FpHy(C) = Aje/ U2 1d(AL Ly i)
3. The subgroup ey, of E°° is related to H,(C) by

6% 2 Fy Hy(C)/Fpo1 Ha(C).

Proof Recall that F, H,(C) is the image of the map H,( F,C)— H,,(C).

Since NF,C = 0, the kernel of d: F,Cp— FpCy— 1|squ, S0 Hy(F,C) =
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A, /d(FpCni). AsUF,C = C, the kernel of A°° — H,(C) is the union

Ud(A7,,, ,—r41)- FOr part (3) observe that A7, ﬂF ~1Cn=A%", ;1 by def-
inition, so that npAp; = Ape /AT .4y Hence we may calculate in EY,
FpHn(C)/Fp 1 Hy(C)= AL /A | (g + Ud(Al o o y)
=np(Apg)/ Unpd(Aly, 4 ri1)
= np(Apg)/ Bpg = €pg- ¢

Corollary 5.5.8 (Boardmanis Criterion) Let @, denote l(iE‘{A;)q} Jor fixed

p and g. The inclusions A 1q+1CA induce a map a: Q,—1—Qp, and
there is an exact sequence
a |
0—epy — Epe—Qp1—>Q0p— |ILn_ {Zpg}— 0.

In particular; if the filtration is Hausdorff and exhaustive, then the spectral
sequence weakly converges to H,(C) ¥ and only if the maps a: @p—1—>Q)p
are all injections.

Proof The short exact sequence of towers from 5.4.6
0> {A ) > (AL} {27} >0
yields
0> AX | > AP > Z¥ - Qpo1 — Q, = lim (Z}} —> 0.
Now mod out by B}?, recalling that 3 isn(AG,)/Bog <

Exercise 5.5.2 Set R, = N, image{H(F,C) — H(F,C)}. Show that the
spectral sequence is weakly convergent iff the maps R,—1— R, are injections
for dl p. Hint: R, c Q).

Exercise 5.5.3 Suppose that the filtration on C is Hausdorff and exhaustive.
If for any p + g = n we have E},, =0, show that FpH,(C) = Fp_1Hy(C).
Conclude that H,(C) =NF,H, (C) provided that every Ej . withp + g
equaling »n vanishes.

Proposition 5.5.9 (Boardman) Suppose that the filtration on C, is complete,
and form the tower of groups Q,, = 11m {Ap n—p}asin 5.5.8 along the maps

a: Qp—1— Qp. Then Llr_nQp—O <
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Proof Let Z denote the poset of negative numbers -<p—1<p<p+1l<

..< 0. For each negative p and ¢, the subgroups A(p,t) = A’p_”z{ce

FpCp:d(c)e F,Cp_y} of Cp form a functor A: Z x Z — Ab, that is, a

idouble towerT of subgroups. If we fix ¢ and vary p, then for p <t we

have A(p,t) = F,C,. Hence we have lim A(p,t) = lim F,C, = 0 and
“p “~p

limi A(p,1) = lim' F,C, = 0 (see 3.5.7). We assert that the derived func-
p —r

tor R'lim;; from double towers to abelian groups fits into two short exact
sequences:

0 — lim!(lim A(p, t)) = R'lim A(p, t) - lim(lim'A(p, 1)) — 0,
e IxI «— —

t p t 14
()
0— lim1(1<ir_n A(p, 1)) > R! lim A(p, t) > lim(lim'A(p, 1)) = 0.
«— X e
14 t p t

We will postpone the proof of this assertion until 5.8.7 below, even though it

follows from the Classical Convergence Theorem 55.1, as it is an easy appli-

cation of the Grothendieck spectral sequence 5.8.3. The first of the sequences

in (1) implies that R'lim; «; A(p, t) = 0, so from the second sequence in ()
we deduce that lim (lim' A(p, t)) = 0.

“—p <t

To finish, it suffices to prove that lim!' A(p, t) is isomorphic to Q) for each

=t

p < 0. Fix p, so that there is a short exact sequence of towersin z:
) 0 —->{A(p,p+ D} > {A(p, D} = {A(p,t)/A(p,p + )} > 0.

If ' <p +tthe map A(p,t')/A(p,p + ti) — A(p,1)/A(p,p + 1) is obvi-
oudly zero. Therefore the third tower of (c) satisfies the trivial Mittag-L effler
condition (3.5.6), which means that

lim A(p.1)/A(p.p +t) = lim' A(p, )/ A(p,p + 1) = 0.
t t
From the lim exact sequence of (x) we obtain the described isomorphism

Q,,ZIEA’IJZIimA(p,p+t)§l(i£1A(p,t). <&

t t !
Complete Convergence Theorem 5.5.10 Suppose that the filtration on C is
complete and exhaustive and the spectral sequence is regular (5.2.10). Then

1. The spectral sequence weakly converges to H,(C).
2. If the spectral sequence is bounded above, it converges to H,(C).
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Zero Region describing the image
differentials of H,,(C) in H,(C/IEC)
into here
Cannot affect

Nonzero
differentials
in this range

Ey, forp>t

1
|
|
|
|
|
|
I
I
|
|
1
t
(
|
|
|
|

p=M p=t

Figure 5.2. Complete convergence for regular, bounded above spectral sequences.

Proof When the spectral sequence is regular, Z;; equals Z, = npAp, for
large r. By Boardmanis criterion 5.5.8, all the maps Q,—;— Q, are onto,
and the spectral sequence weakly converges if and only if @, =0 for al p.
This is indeed the case since the group l(iEQp maps onto each @, (3.5.3),

and we have just seenin 5.5.9 that lim @, = 0. This proves (1).

To see that the spectral sequence converges to H,(C), it suffices to show
that the filtration on H,(C) is Hausdorff. By the Eilenberg-Moore Filtration
Sequence 5.5.5, it suffices to show that the tower {H,(C/F;C)}isMittag-
Leffler for every n, since then its limi groups vanish by 3.5.7. Each C/F,C
has a bounded below filtration, so it has a convergent spectral sequence whose
associated graded groups E o (C/F;C) are subquotients of qu(C) forp>t.
For m <t, the images of the maps E;’,?](C/FmC)—»E;Z(C/F,C) are the
associated graded groups of the image of H.(C/F,C)— H.(C/F;C), s0 it
suffices to show that these images are independent of m asm — —oco.

Now assume that the spectral sequence for C is regular and bounded above.
Then for each n and ¢ there is an M such that the differentias EpL,(C)—
E;_r‘qﬂ_r(C) are zero whenever p+qg=n,p >t and p—r<M. By
inspection, this implies that E77 (C) = E7o(C/ FC) for every p + g = n with
p>tand every m <M. Thus the image of ETC(C/FnC)— E7 (C/F,C)is
independent of m <M for p + q =n and p > ¢, as was to be shown. &

Exercise 5.5.4 (Complete nonconverging spectral sequences) Let Z < x>
denote an infinite cyclic group with generator x, and let C be the chain com-
plex with

0 i=0
Ci=@Z<xi> C= ] Z<y> Ci=0 forn#0,1
i=1

i=-00
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and d: C;— Cp defined by d(x;) = y1—i—y—;. For p <0 define F,C1 =0
and Fp,Co = ﬂisp Z < y;>; this is a complete filtration on C.

1. Show that F,Ho(C) = Ho(C) for every p <0, so that the filtration on
Ho(C) is not Hausdorff. (Since C) is countable and Cy is not, we have
Ho(C)# 0.) Hence no spectra sequence constructed with this filtration
can approach H,(C), let done converge to it; such a spectral sequence
will weskly converge to H,(C) if and only if it converges to zero.

2. Here is an example of an (essentially) second quadrant spectral sequence
that weakly converges but does not converge to H,(C). For p > 1 define
F,Cy=Ciand F,Cp = Co. The resulting spectral sequence has ES =
CL,Ey_,=1Z<yp>forp<0and ES~0 otherwise. Show that
d"(x;)is[yi—r]and d"(x;) = 0 for i # r, and conclude that E,‘jz =0 for
every p and q.

3. Here is a regular spectral sequence that does not converge to H,(C). For
p = 1let F,Cy be the subgroup of Cl spanned by xip,---,x, and set
FpCo = Co. The resulting spectral sequence has E) | =7 <x,> for
p=1Ey_,=Z<y,>forp<0and E~0 otherwise. Show that
this spectral sequence is regular and converges to zero.

5.6 Spectral Sequences of a Double Complex

There are two filtrations associated to every double complex C, resulting in
two spectral sequences related to the homology of Tot(C). Playing these spec-
tral sequences off against each other is an easy way to calculate homology.

Definition 5.6.1 (Filtration by columns) If C = Cy is a double complex, we
may filter the (product or direct sum) total complex Tot(C) by the columns of
C, letting ’F,, Tot(C) be the total complex of the double subcomplex

0

C ifp<n
1 —_)Cre
(tsnc)pq_[o ifp>n

oS O OO

0
0
0

* % X ¥

of C. This gives rise to a spectral sequence {'EY, ), starting with 'E9 = C,,.
The maps d° are just the vertical differentials 4 of C, so

Il _
EL, = HY(Cpy).
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The maps d‘:H;(Cp*)eH;(Cp_l,*) are induced on homology from the
horizontal differentials d" of C, so we may use the suggestive notation:

12 — ghpv
qu—Hqu(C).

If Cisafirst quadrant double complex, the filtration is canonically bounded,
and we have the convergent spectral sequence discussed in section 5.1:

'E2, = HIHY(C) = Hp 4 (Tot(C)).

If C is a fourth quadrant double complex (or more generaly if C,, =0
in the second quadrant), the filtration on Toti(C) is bounded below but is
not exhaustive. The filtration on the direct sum total complex Tot@(C) is
both bounded below and exhaustive, so by the Classica Convergence The-
orem 5.5.1 the spectral sequence ‘E., converges to H,(Tot® C) and not to
H,(Tot" C).

If Cis a second quadrant double complex (or more generaly if Cp, =0
in the fourth quadrant), the filtration on the product total complex TotT(C)
is complete and exhaustive. By the Complete Convergence Theorem 5.5.10,
the spectral sequence 'E”, weakly converges to H,(Tot™ C), and we have the
Eilenberg-Moore filtration sequence (5.5.5)

0 — lim!'H, ;1(C/1<,C) = H,(Tot" C) — lim H,(C/t<,C) — 0.
«— - =
We will encounter a spectral sequence of this type in Chapter 9, 9.6.17.

Definition 5.6.2 (Filtration by rows) If C is a double complex, we may aso
filter Tot(C) by the rows of C, letting !/ F, Tot(C) be the total complex of

[ 0 0 00 0 O
C ifg<n 0 0 00O O O
(”T<nC) - P

- Pq 0 |fQ>n * * * % * *

Since F,Tot(C)/Fp-1 Tot(C) is the row Cyp,"'EJ, = Cyp and 'E], =
Hq"(C*p). (Beware the interchange of p and g in the notation!) The maps

d! are induced from the vertical differentials d” of C, so we may use the
suggestive notation

g2 _ h
E2, = HYH!C).
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Of course, this should not be surprising, since interchanging the roles of p
and q converts the filtration by rows into the filtration by columns, and inter-
changes the spectral sequences ‘E and /E.

As before, if C is a first quadrant double complex, this filtration is canon-
ically bounded, and the spectral sequence converges to H, Tot(C).If Cisa
second quadrant double complex (or more generaly if Cpq = 0 in the fourth
quadrant), the spectral sequence //E7, converges to H, Tot®(C). If Cisa
fourth quadrant double complex (or if Cp, = 0 in the second quadrant), then
the spectral sequence //E”, weakly converges to H, TotT(C). <&

Application 5.6.3 (Baancing Tor) In Chapter 2, 2.7.1, we used a disguised
spectral sequence argument to prove that L,(A®)(B)=L,(®B)(A), that is,
that Tor.(A, B) could be computed by taking either a projective resolution
P — A or a projective resolution Q — B. In our new vocabulary, there are
two spectral sequences converging to the homology of Tot(P ® Q). Since
H(P,® Q) = P,® H,(A), the first has

g2 { H/(P® B) = Ly(®B)(4) ifq=0 }
pa 0 otherwise
This spectral sequence collapses to yield H,(P ® Q) = L ,(®B)(A). There-
fore the second spectral sequence converges to L ,(® B)(A). Since H;'(P®
On) = Hq(P) ® O,

g2 _ (A ® Q) = Ly(A®)(B) ifg = 0 ]
Pe{o otherwise]”

This spectral sequence collapses to yield Hy(P ® Q) = L ,(A®)(B), whence
the result.

Theorem 56.4 (Kiinneth spectral sequence) Let P be a bounded below com-
plex of flat R-modules and M an R-module. Then there is a boundedly con-
verging right half-plane spectral sequence

E2, = TorR(Hy(P). M) = Hp1q(P®R M).

Proof Let Q — A4 be a projective resolution and consider the upper half-
plane double complex P ® Q. Since P, is flat, H/(P® Q) =Pp®Hy(Q),
so thefirst spectral sequence has

g2 _ H,(P®M) ifq =0 .
rq 0 otherwise
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This spectral sequence collapses to yield Hpy(P® Q) = Hp(P ® M). Since
Qg isfla, Hy(P ®Qpn)= H,(P) ® Qn, so the second spectral sequence has
the desired E2 term

YES, = Hy(Hy(P)® Q) = Tor (Hy(P), M). &

Kiinneth Formula 5.6.5 In Chapter 3, 3.6.1, we could have given the follow-
ing spectral sequence argument to compute H, (P ® M), assuming that d(P)
(and hence Z) is flat. The flat dimension of H,(P) is a most 1, since

0 =>d(Pg1)—>Zy—> H(P) =0

is aflat resolution. In this case only the columns p = 0, 1 are nonzero, so all
the differentials vanish and Ef‘_,q:ng]. The 2-stage filtration of H,(P® Q)
yidlds the Kiinneth formula

0

0 | H PY®M  Tor|(Hy(P), M)
0 Hy_((P)®M Tori(Hy_1(P), M)
0 ..

SO oo
O O O o
O o O o

Exercise 5.6.1 Give a spectral sequence proof of the Universal Coefficient
Theorem 3.6.5 for cohomology.

Theorem 5.6.6 (Base-change for Tor) Let f: R — S be a ring map. Then
there is a first quadrant homology spectral sequence

2 _ s R R
qu = Torp(Torq (A, S), B):>Torp+q(A,B)

for every A € mod-R and B € S-mod.

Proof Let P— A be an R-module projective resolution, and Q — B an §-
module projective resolution. As in 2.7.1, form the first quadrant double com-
plex P® Q and write H,(P® Q) for H(Tot(P ®g Q)). Since P,Rp is an
exact functor, the p** column of P® Q is a resolution of P,® B. There-
fore the first spectral sequence 5.6.1 collapses a 'E'=H(P® Q) to yield
H.(P® Q) = H,(P®B) =TorR(A, B). Therefore the second spectral se-
quence 5.6.2 converges to Tor® (A, B) and has

EL = Hy(P®r Qp) = Hy(P®RS)®s Q)
= Hq(P®R ®SQp :TOI‘§(A, ®S Qp

and hence the prescribed EZ, H,("'E} )="Tor3(Tork(A,5),B). ¢
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Exercise 5.6.2 (Bourbaki) Given rings R and S, let L be a right R-module,
M an R-S bimodule, and N a left S-module, so that the tensor product L ® g
M ®s N makes sense.

1. Show that there are two spectral sequences, such that
152 R s HEZ — oeS (TacR
E,,=Tor, (L, Tor,(M, N)) Ej, = Tor,(Torg (L, M), N)

converging to the same graded abelian group H,. Hint: Consider a dou-
ble complex P ® M ® Q, where P — L and Q — N.

2.1f M is a flat Smodule, show that the spectral sequence //E converges
to Tor®(L, M ®5 N). If M is a flat R-module, show that the spectral
sequence ‘E converges to Tors (L®g M, N).

Exercise 5.6.3 (Base-change for Ext) Let f: R — S be a ring map. Show that
there is a first quadrant cohomology spectral sequence

Ej? = Ext{(A, Ext%(S. B)) = Ext; (A, B)

for every S'module A and every R-module B.

Exercise 5.6.4 Use spectra sequences to prove the Acyclic Assembly Lem-
ma 2.7.3.

5.7 Hyperhomology

Definition 5.7.1 Let A be an abelian category that has enough projectives. A
(Ieft) Cartan-Eilenberg resolution Py, of a chain complex A, in A is an upper
half-plane double complex ( Ppq = 0 if g < 0), consisting of projective objects
of A, together with a chain map (iaugmentationt) P.9— A, such that for
every p

L. If A, =0, the column P, is zero.

2. The maps on boundaries and homology

By(€): By(P, d") — By(A)

Hp(e): Hy(P, d") — H,(A)

are projective resolutions in A. Here B,,(P,dh) denotes the horizon-
tal boundaries in the (p, q) spot, that is, the chain complex whose g**
term is d"(Pp11.4). The chain complexes Z,(P,d") and H,(P,d") =
Z,(P,d")/B,(P,d") are defined similarly.
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Exercise 57.1 In a Cartan-Eilenberg resolution show that the induced maps
€V Pps— A,
ZP(€): Z,(P,d") — Z,(A)

are projectiveresolutionsin A.  Then show that the augmentation Tot@(P) —
A is a quasi-isomorphism in A4, provided of course that Tot@(P) exists.

Lemma 5.7.2 Every chain complex A, has a Cartan-Eilenberg resolution
P — A.

Proof For each p select projective resolutions PJ, of B,(A) and P, of
H,(A). By the Horseshoe Lemma 2.2.8 there is a projective resolution P,,Z*

of Z,(A) so that
0> P2 —~ Pl —>Pl—>0
is an exact sequence of chain complexes lying over
0 —By(A)— Z,(A) > Hy(A)— 0

Applying the Horseshoe Lemma again, we find a projective resolution P;,“* of
A, fitting into an exact sequence

V4 A B
00— Pp*_>Pp*__) Pp—l,*_)o’

We now define P, to be the double complex whose p** column is PI;“* ex-
cept that (using the Sign Trick 1.2.5) the vertica differential is multiplied by
(—1)?; the horizontd differential of P, is the composite

A
Pp+1,*

— PE — Pl — P
The construction guarantees that the maps e,: Ppo — A, assemble to give a
chain map ¢, and that each B ,(¢) and H,(¢) give projective resolutions (check

this!). &

Exercise 5.7.2 If f: A— Bis achain map and P — A, Q — B are Cartan-
Eilenberg resolutions, show that there is a double complex map f:P — Q
over f. Hint: Modify the proof of 2.4.6 that L f is a homologica §-functor.

Definition 5.7.3 Let f, g- D — E be two maps of double complexes. A
chain homotopy from f to g consists of maps sf,q:qu—»EpH,q and s,
Dpg— Ep 4+150 that

g— f :(dhsh _+_Shdh)+(dvsv +svd\))
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svdt + dhsv = shqv + dvs" = 0.

This definition is set up so that {s" + sV Tot(D),, — Tot(E),+1} forms an
ordinary chain homotopy between the maps Tot(f) and Tot(g) from Tot@(D)
to Tot@(E).

Exercise 57.3

1. If f,g: A — B are homotopic maps of chain complexes, and f,3:P —
Q are maps of Cartan-Eilenberg resolutions lying over them, show that
f is chain homotopic to 3.

2. Show that any two Cartan-Eilenberg resolutions P, Q of A are chain ho-
motopy equivalent. Conclude that for any additive functor F the chain
complexes Tot®(F ( P)) and Tot®( F( Q)) are chain homotopy equiva-
lent.

Definition 5.7.4 (L«F)Let F: A— B be aright exact functor, and assume
that .A has enough projectives. If Aisachain complex in Aand P — Ais
a Cartan-Eilenberg resolution, define IL; F(A) to be H; Tot®( F (P)). Exercise
5.7.3 shows that L; F(A) is independent of the choice of P.

If f:A— Bisachanmapand f:P— Qis a map of Cartan-Eilenberg
resolutions over f, define L; F(f) to be the map H;(Tot(f)) from I; F(A) to
L; F(B). The exercise above implies that L; F is a functor from Ch(d) to B, at
least when B is cocomplete. The LL; F are called the Ieft hyper-derivedfinctors
of F.

Warning: If B is not cocomplete, Tot®(F ( P)) and IL; F(A) may not exist for
all chain complexes A. In this case we restrict to the category Ch, (A) of all
chain complexes A which are bounded below in the sense that there is a pg
such that A, = 0 for p < po. Since Ppy = 0 if p < po or q <0, Tot®(F(P))
exists in Ch(3) and we may consider L; F to be a functor from Ch+(d) to B.

<&

Exercises 5.7.4

1. If Aisan object of A, considered as a chain complex concentrated in
degree zero, show that L; F(A) is the ordinary derived functor L; F(A).

2. Let Chso(.A) be the subcategory of complexes A with A, = 0 for p <O.
Show that the functors L; F restricted to Chso(A) are the left derived
functors of the right exact functor Hp F.

3. (Dimension shifting) Show that L; F(A[n]) = L,+; F(A) for dl n. Here
A[n]isthe trandate of A with A[n]); = Ap4,.
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Lemma 5.7.5 If 0 - A— B — C — 0 is a short exact sequence of bound-
ed below complexes, there is a long exact sequence

L FC) =25 LiF(A) — LiF(B) = LiF(C) =2 - -

Proof By dimension shifting, we may assume that A, B, and C belong to
Cho(A). The sequence in question is just the long exact sequence for the
derived functors of the right exact functor HpF'. <

Proposition 5.7.6 There is always a convergent spectral sequence
HEL, = (LpF)(Hy(A) = Ly F(A).
If A is bounded below, there is a convergent spectral sequence

'E2, = Hp(LyF(A)) = LpygF(A).

Proof We have merely written out the two spectral sequences arising from the
upper half-plane double chain complex F(P). <&

Corollary 5.7.7

I. If Ais exact, L; F(A) = 0 for all i.
2. Any quasi-isomorphism f: A — B induces isomorphisms

L.F(A)=L.F(B).

3. If each A, is F-acyclic (2.4.3), that is, L, F(Ap) =0 for q # 0, and A
is bounded below, then

L,F(A) = H,(F(A)) for al p.

Application 57.8 (Hypertor) Let R be aring and B a left R-module. The
hypertor groups Tor,.R(A*, B) of a chain complex A, of right R-modules are
defined to be the hyper-derived functors L; F(A,) for F = ®gB. This extends
the usual Tor to chain complexes, and if A is a bounded below complex of
flat modules, then TorR(A., B) = H;(A.® B) for dl i. The hypertor spectral
seguences coming from 5.7.6 are

ME? = Tor,(H,(A), B)= TorX, (A, B)
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and (when A is bounded below)

'E},, = Torg(Ap, B), E3, = H,Tory(A,, B)= Tork _(A,, B) .

B
A®r to be

TorlR(A*, B,) = H; TOteB(P Qr Q),

where P — A and Q — B are Cartan-Eilenberg resolutions. Since Tot(P ®
Q) is unique up to chain homotopy equivalence, the hypertor is independent
of the choice of P and Q. If B is a module, considered as a chain complex,
this agrees with the above definition (exercise!); by symmetry the same is true
for A. By definition, hypertor is a balanced functor in the sense of 2.7.7. A
lengthy discussion of hypertor may befound in [EGA, 111.61.

Exercise 5.7.5 Show that there is a convergent spectral sequence

M2, = EB Tork (Hy(A,), Hyr(B,)) = TorR, (A, B)
q9'+q9"=q

If A, and B, are bounded below, show that there is a spectral sequence

'E}, = H,Tot® Tor, (A, B) = Torf, (A,, B).

Exercise 5.7.6 Let A be the mapping cone complex O —>A1—f>A0—> 0
with only two nonzero rows. Show that there is a long exact sequence:

< Lis1F(A) > LiF(Ay) L LiF(A)) » LiF(A) = Li_(F(A) - --.

Cohomology Variant 5.7.9 Let A be an abelian category that has enough in-
jectives. A (right) Cartan-Eilenberg resolution of a cochain complex A* in .4
is an upper half-plane complex 7** of injective objectsof A, together with an
augmentation A* — /*9 such that the maps on coboundaries and cohomology
are injective resolutions of BP(A) and H?(A). Every cochain complex has a
Cartan-Eilenberg resolution A—1.If F: A — B isaleft exact functor, we
define R{F(A) to be H Tot™ (F (1)), at least when Tot!l(F (1)) existsin B. By
appealing to the functor F°P: A% — B°P, we see that R’ F isa functor from
Ch* (A) (the complexes A* with A? = 0 for p << 0) to B, and even from

isalsc
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Ch(d) to B when B is complete. The R F are called the right hyper-derived
jiinctors of F.

If Aisin Ch(A), the two spectral sequences arising from the upper half-
plane double cochain complex F(Z) become

HEPY = (RPF)(H7(A)) = RP1Y F(A), weskly convergent; and
'EPT = HP(R? F(A)) = RP™ F(A), if Ais bounded below.

Hence R*F vanishes on exact complexes and sends quasi-isomorphisms of
(bounded below) complexes to isomorphisms.

Application 57.10 (Hypercohomology) Let X be a topologica space and
JF* a cochain complex of sheaves on X. The hypercohomology Hi (X, F*)is
RIT(F*), whereT is the global sections functor 2.5.4. This generalizes sheaf
cohomology to complexes of sheaves, and if F* is a bounded below complex
of injective sheaves, then Hi(X, F*)= H (' (F*)). The hypercohomology
spectral sequence is 1E? = HP (X, H(F*)) = HPI(X, F*).

5.8 Grothendieck Spectral Sequences

In his classic paper [Tohoku], Grothendieck introduced a spectral sequence
associated to the composition of two functors. Today it is one of the organi-
zational principles of Homological Algebra

Cohomological Setup 5.8.1 Let A, B, and C be abelian categories such that
both .A and B have enough injectives. We are given left exact functors G: .4 —
Band F: B— C.

G

A — B

FG\{ JF
C

Definition 5.8.2 Let F: B— C be a left exact functor. An object B of B is
caled F-acyclic if the derived functors of F vanish on B, that is, if R' F(B)=
0 for i# 0. (Compare with 2.4.3.)

Grothendieck Spectral Sequence Theorem 5.8.3 Given the above cohomo-
logical setup, suppose that G sends injective objects of .A to F-acyclic objects
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of B.convergent firsttspuadrant cohomological spectral se-
quence for each A in A:

IESY = (RPF)(RIG)(A) = RPTI(FG)(A).
The edge maps in this spectral sequence are the natural maps
(RPF)(GA) —» RP(FG)(A) and RI(FG)(A) — F(RIG(A)).
The exact sequence of low degree terms is

0 — (R'F)GA) — RIFG)A — F(R'G(A)) — (R*F)(GA) — R*(FG)A.

Proof Choose an injective resolution A — 1 of Ain A, and apply G to get a
cochain complex G(Z) in B. Using a first quadrant Cartan-Eilenberg resolution
of G(Z), form the hyper-derived functors R" F(G(I)) as in 5.7.9. There are
two spectral sequences converging to these hyper-derived functors. The first
spectral sequenceis

'E}" = HP((RTF)(GI) = (RPMF)(GI).

By hypothesis, each G(I7) is F-acyclic, so (RIF)(G(IP)) =0forq # 0.
Therefore this spectral sequence collapses to yield

(RPEYGI= HP(FG(1)) = RP(FG)(A).
The second spectral sequences is therefore
gD = (RPFY)HY(G(I)) = RP(FG)(A).
Since H1(G(I))= RPG(A), it is Grothendieckis spectral sequence. bod

Corollary 5.8.4 (Homology spectral sequence) Let A, B, and C be abelian
categories such that both A and B have enough projectives. Suppose given
right exactfunctors G: A — B and F: B — C such that G sends projective ob-
jects of A to F-acyclic objects of B. Then there is a convergent first quadrant
homology spectral sequence for each A in A:

E}, =(LpF)(LyG)(A) = Lp1q(FG)(A).
The exact sequence of low degree terms is

Ly(FGYA - (LyF)(GA) - F(L1G(A)) - Li(FG)A— (L F)(GA) — 0.
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Proof Dudizing alows us to consider G7: A°? — B and F°P: 37 — C%,
and the corollary is just trandation of Grothendieckis spectral sequence using
the dictionary L,F = RP F°P, and so on. <

Applications 5.8.5 The base-change spectral sequences for Tor and Ext of
section 5.7 are actually specia instances of the Grothendieck spectral se-
guence: Given a ring map R — S and an Smodule B, one considers the
composites

R-mod ?ik; S-mod ®—S€ Ab

and

Hompg(—,S) Homg(—,B)
R-mod ———— S-mod ———— Ab.

Leray Spectral Sequence 5.8.6 Let f: X — Y be a continuous map of topo-
logical spaces. The direct image sheaf functor f, (2.6.6) has the exact functor
f~Vasitsleft adjoint (exercise 2.6.2), S0 f; is left exact and preserves injec-
tives by 2.3.10. If 3 is a sheaf of abelian groups on X, the global sections of
fF isthe group (fxF)(Y)=F(f~1Y)= 3(X). Thus we are in the situation

f*
Sheaves(X) —> Sheaves(Y)

N\ T
Ab

The Grothendieck spectral sequence in this case is caled the Leray spectral
sequence: Since RPT is sheaf cohomology (2.5.4), it is usually written as

E} = HP(Y; R f,F)= HPT(X; F).

This spectral sequence is a centra tool to much of modem agebraic geometry.

We will see other applications of the Grothendieck spectral sequence in
6.8.2 and 7.5.2. Here is one we needed in section 5.5.9.

Recall from Chapter 3, section 5 that a tower --- A — Ag of abelian groups
is afunctor 7 — Ab, where Z is the poset of whole numbers in reverse order.
A double tower is afunctor A: I x Z — Ab; it may be helpful to think of the
groups A;; as forming alattice in the first quadrant of the plane.
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Proposition 58.7 (lim! of a double tower) For each double tower A: | x
| — Ab we have }m} A;j=1lim lim A;;, a short exact sequence
X

i ]
. e 14: . IS |
0~ tim!tim ) (' lim) 4 - tm i 4,) 0
(Rzlim> Ajj =limi1(lim}Aij), and <Rﬂ 1im) A;jj =0 forn>3.
Ixl «— — IxI

Proof We may form the inverse limit as lim A;; = l(igl‘l(iilAij, that is, as the
AN
composition of lim :(Ab/)’ — Ab’ and lim : Abi — Ab. From 2.3.10 and
«—j i

2.6.9 we see that lim preserves injectives; it is right adjoint to the iconstant
towerT functor. Therefore we have a Grothendieck spectral sequence

Eg’qzlgfl(u_n?mj: (RP*9 1im) A;j

Since both Ab and Ab’ satisfy (AB4*),lim” = 1im?= 0 for p,q #0, 1.
Thus the spectral sequence degenerates as described. <

5.9 Exact Couples

An alternative construction of spectral sequences can be given via iexact cou-

plest and is due to Massey [Massey]. It is often encountered in algebraic topol-
ogy but rarely in commutative algebra.

It is convenient to forget al subscripts for a while and to work in the cat-
egory of modules over some ring (or more generaly in any abelian category
satisfying axiom A BS). An exact couple & isapair (D, E) of modules, to-
gether with three morphisms i, j, k

1

D — D

E N S
E

which form an exact triangle in the sense that kernel = image at each vertex.

Definition 5.9.1 (Derived couple) The composition jk from E to itself satis-
fies (jk)(jk) = j(kj)k =0, so we may form the homology module H(E) =
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ker(jk)/image(jk). Construct the triangle

D) — (D)
&N i
H(E)

where i isthe restriction of i to i(D), while ji and ki are given by

J'@@) =1j@l, K(e) =k

The map ji is well defined since i(d) = 0 implies that for some e €Ed =
k(e) and j(d) = jk(e) is a boundary. Similarly, k(jk(e)) = 0 implies that the
map ki iswell defined. We call £’ the derived couple of £. A diagram chase
(Ieft to the reader) shows that 11 is also an exact couple.

If we iterate the process of taking exact couples r times, the result is called
the r'* derived couple £ of &.

Dr _i_) Dr
&N i
Er

Here D" = ii(D) is a submodule of D, and E" = H(E™™!) is a subquotient
of E. The maps i and k are induced from the i and k of £, while j? sends
[i"(d)] to [j(d)].

Exercise 5.9.1 Show that H(E) = k~ (i D)/j (ker(i)) and more generally,
that "= Z"/B", with Z" = k~1(i" D) and B" = j(ker(i")).

With this generic background established, we now introduce subscripts (for
D, and E,) in such a way that i has bidegree (1, —1), k has bidegree
(—1,0), and

bidegree(j) = (-a a).

Thus i and j preserve total degree (p + ¢), while k drops the total degree by
1. Setting D;,q =i(Dp_14+1)EDpy and letting E;,q be the corresponding
subquotient of E g, it is easy to see that in £ the maps i and k still have bide-
grees (1, -1) and (—1, 0), while ji now has bidegree (-1 —a, 1 + a). It is
convenient to reindex so that £ = &% and 1i denotes the (r —a)*"* derived cou-
ple of £, so that j has bidegree (—r, r) and the E"-differential has bidegree
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(-r, r = 1).

k i i
r r r r
qu 5 Dp—l»q 5 Dp.qfl E

In summary, we have established the following result.
Proposition 59.2 An exact couple £ in which i, k, and j have bidegrees
(1, —1),(=1,0),and (-a, a) determines a homology spectral sequence { £}, }

starting with E4. A morphism of exact couples induces a morphism of the
corresponding spectral sequences.

Example 5.9.3 (Exact couple of afiltration) Let C, be a filtered chain com-
plex of modules, and consider the bigraded homology modules

D}, = Hy(F,C), Eb, = Hy(FyC/Fy 1C), n=p+aq,

Then the short exact sequences 0 — F,_1— F, — F,/ Fp_1— 0 may be
rolled up into an exact triangle of complexes (see Chapter 10 or 1.3.6)

i

OF,C ®F,C
AN W ®np
@®F,C/F,_iC
whose homology forms an exact couple
®Hp+q(FpC) i ®Hp1q(F,C)
g AN i

SHp + q(FpC/Fp_1C)

Theorem 59.4 Let C. be a filtered chain complex. The spectral sequence
arising from the exact couple £! (which starts at E!) is naturally isomorphic
to the spectral sequence constructed in section 5.4 (which starts at E°).

Proof In both spectral sequences, the groups E},, are subquotients of E?, =
FpCpiq/Fp—1Cpiq; We shal show they are the same subquotients. Since the
differentials in both are induced from d: C — C, this will establish the result.

In the exact couple spectral sequence, we see from exercise 5.9.1 that the
numerator of E”in Elisk~'(i"~1D!) and the denominator is j(keri"1).
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If ce Fp,Cy represents [c] € H,(FpC/Fp—1C), then d(c) € Fp,—1C and k([c])
is the class of d(c). Therefore the numerator in Fp/Fpifor E"isZ), ={ce
FyC:d(c)=a+ d(b) for some a€F,_.C,beF,C}/Fp_1C. Similarly, the
kernd of i"~': H, (F,C)— H, (Fp4,—1C) is represented by those cycles ¢ €
F,C with ¢ = d(b) for some b € Fp4,—1C. That is, ker(i"~") is the image of
A;;lr_l in H,(FpC). Since | is induced on homology by 7, we see that the
denominator is By, = npd(ATL ).

p+r—1
EN Z}/B,, we <&

Convergence 5.9.5 Let £ be an exact couple in which i, j, and k have bide-
grees (- 1,1), (-a, a) and, (- 1,0), respectively. The associated spectral
sequence is related to the direct limits Hy = lim Dp—p of the Dp, @ong
the maps i: Dpg— Dpi1,4-1. Let FpyH, denote the image of Dpyg4-4 in

Hn(p + q =n); the system ... F,_1H,CFp,H, < .. forms an exhaustive
filtration of H,,.

Proposition 59.6 There is a natural inclusion of FpH,/Fp_1Hyin E;’,‘fn_p.
The spectral sequence E7,, weakly converges to Hy if and only if:

Z® =Nk~ 1" D) equals k~1(0) = j(D).
Proof Fix p,q,and n=p +q. The kemmel Kpi4,49-a Of Dptgg—a— Hy is

the union of the ker(i"), s0 j (K pya,q-a) =Uj(ker(i")) = UB;q = B;’,fl. (This
is where axiom A B5 is used.) Applying the Snake Lemma to the diagram

0 — Kp—1+a —> Dpyg1 — Fp1H, - 0
! Li !
0 — Kpra — Dprg — F,H, —> 0

yields the exact sequence
0 —>B;Z — j(Dpta,g—a) = FpHy/Fp_1Hy — 0.

But j(Dp+a,g—a)=k~'(0), so it is contained in Z5, =k"1G"Dp_y_14+4r)
for al r. The result now follows. 0

We say that an exact couple is bounded below if for each n there is an inte-
ger f(n) such that Dp 4 = 0 whenever p < f(p+q).In this case, for each p
and q there is an r such that i"(Dp_r 1 4+,) = i1(0) = 0, i.e, Z},, =k~ 1(0).
As an immediate corollary, we obtain the following convergence result.
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Classical Convergence Theorem 5.9.7 If an exact couple is bounded below,
then the spectral sequence is bounded below and converges to H, =1limD.

a
qu = Hp+q

The spectral sequence is bounded and converges to H, if for each n there is a
p such that D,,,,,_piH,,.

Exercise 5.9.2 (Complete convergence) Let £ be an exact couple that is
bounded above (D, ,= 0 whenever p > f(p + @)). Suppose that the spec-
tral sequence is regular (5.2.10). Show that the spectral sequence converges to
Dy=1imDy,—p.

Application 5.9.8 Hereis an exact couple that does not arise from a filtered
chain complex. Let C, be an exact sequence of left R-modules and M aright
R-module. Let Z, C C), be the kernel of d: C,— C,; associated to the short
exact sequences 0 —Z,— Cp,—Z, _;— 0 are the long exact sequences

- Torg (M, Zp) —2> Torg (M, C) = Torg(M, Zp—1) —> Tory_ (M, Z,) -
which we can assemble into an exact couple £ = £° with
DY, = Torg(M,Zp) and EY, = Torg(M,Cp).

By inspection, the map d = jk: Torg(M, C) — Tory(M,Cp—1) is induced
viaTor, (M, —) by the differential d: C, — Cp_1, SO we may write

E}, = Hp(Tory(M, C,)).

More generaly, if we replace Tor.(M,—) by the derived functors L. F of any
right exact functor, the exact couple yields a spectral sequence with qu =
LyF(Cp) and E},q = Hp(LyF(C)). Theseare essentiadly the hyperhomol-
ogy sequences of section 5.7 related to the hyperhomology modules L, F(C),
which are zero. Therefore this spectral sequence converges to zero whenever
C, isbounded below.

Bockstein Spectral Sequence 5.9.9 Fix aprime £ and let H, be a (graded)
abelian group. Suppose that multiplication by £ fits into a long exact sequence

3 ¢ J ] £
...En+1_.)Hn —‘)Hn—)En —)Hn_l_—)....
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If we roll this up into the exact couple

4
H, — H,

N P
Ly

then we obtain a spectral sequence with £7 = £,, called the Bockstein spectral

sequence associated to H,. This spectral sequence was first studied by W.

Browder in [Br], who noted the following applications:

1. H.=HJ(X;Z)and E, = H,(X;Z/¢) for a topologica space X
2. Ho=rm(X)and £, = 7. (X; Z/¢) for a topological space X

3. H,=H.(G;Z) and E, = H.(G;Z/¢) for a group G

4. H, = H,(C) for a torsionfree chain complex C, and E,. = H.(C/¢C)
We note that the differentiadl d = ja sends E; to E/_ |, so that the bigrading
subscripts we formally require for a spectral sequence are completely artificial.
The next result completely describes the convergence of the Bockstein spectral
sequence. To tate it, it is convenient to adapt the notation that for q e Z

gHi={x € Hy:qx =0}.

Proposition 5.9.10 For every r > 0, there is an exact sequence

H, j

0~ i = By (W H) N (el = 0.
n jag ey

In particular, if T,, denotes the &primary torsion subgroup of H, and Q,
denotes the infinitely e-divisible part of ; H,, then there is an exact sequence

H,

0> — " _
KHn+Tn

J 3
—— E>X — Qp_1 > 0.

Proof For r = 0 we are given an extension

0 — Hu/eHy —2> E® 25 yH,_ | — 0.

Now E’ is the subquotient of EY with numerator 8~!(¢” H) and denominator
J (er H) by the above exercise, so from the extension

0 > H/eH 5070 H) -5 0"H N yH)— 0

the result is immediate. 0
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If we roll this up into the exact couple

¢
H, — H,

AN i
E,
then we obtain a spectral sequence with E? = E,, called the Bockstein spectral

sequence associated to H,. This spectral sequence was first studied by W.
Browder in [Br], who noted the following applications:

1 H.=H.(X;Z)and E,= H.(X;Z/¢) for a topological space X

2. H,=n,(X)and E,=m.(X;Z/£) for a topological space X

3. H,=H(G;Z) and Ex=H,(G;Z/¢) for a group G

4. H, = H,(C) for a torsionfree chain complex C, and E, = H(C/LC)
We note that the differential d = jd sends Ej to E; |, so that the bigrading
subscripts we formally require for a spectral sequence are completely artificial.
The next result completely describes the convergence of the Bockstein spectral
sequence. To state it, it is convenient to adapt the notation that for qeZ

gHy={x € Hy: qx =0}.

Proposition 5.9.10 For every r > 0, there is an exact sequence

Hn J a
0> —— S E'"——S@H,_)N{H—1) — 0.
tH o H, ,, (L"Hy—D) N (¢Hp-1)

In particular; if T,, denotes the e-primary torsion subgroup of H, and Q,
denotes the infinitely e-divisible part of ¢ H,, then there is an exact sequence

Hy,
_) —
ZHn + Tn

j o 9
— E)°— Qp—1—0.

0

Proof For r =0 we are given an extension
J 0 9
0 >H,/eH,— E,, — ¢Hy1— 0.

Now E” is the subquotient of EY with numerator 8~ !(¢” H) and denominator
Jj (e H) by the above exercise, so from the extension

0 >H/tH -3 ¢ H)-5> (@"HN H)—> 0

the result is immediate. <&
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Corollary 5.9.111f each H, is finitely generated and dim(H,® Q) =d,,
then the Bockstein spectral sequence converges to ES° = (Z/p)® and is
bounded in the sense that E2° = EJ, for large r.

Actually, it turns out that the Bockstein spectral sequence can be used to
completely describe H, when each H,, is finitely generated. For example, if X
is a smply connected H-space whose homology is finitely generated (such as
a Lie group), Browder used the Bockstein spectral sequence in [Br] to prove
that m2(X) = 0.

For this, note that j induces a map H,— Ej, for each r. If X € E7 has
a(x) = p'y, then d(x) = ja(x) = j(y) in the notation of the proposition.
In particular, x is a cycle if and only if a(x) is divisible by p"*!. We can
summarize these observations as follows.

Corollary 5.9.12 In the Bockstein spectral sequence

1. Elements of E, that survive to E” but not to E”+! (because they are
not cycles) correspond to elements of exponent p in H,_;, which are
divisible by p” but not by p"+1.

2. An element y € H, yields an element j (y) of E” for all r; if j (y) #0

in E7~1 but j(y) = 0 in E”, then y generates a direct summand of H,
isomorphic to Z/p".

Exercise 5.9.3 Study the exact couple for H = Z/p3, and show directly that
E?#£0but E3 =0.



6
Group Homology and Cohomology

6.1 Definitions and First Properties

Let G be a gr @unmoduldisélabelian group A on which G acts
by additive maps on the left; if ge G and ae A, we write ga for the action of
g on a Letting Homg (A, B) denote the G-set maps from A to B, we obtain a
category G-mod of left G-modules. The category G-mod may be identified
with the category ZG-mod of left modules over the integra group ring ZG.
It may also be identified with the functor category Ab® of functors from the
category 16T (one object, G being its endomorphisms) to the category Ab of
abelian groups.

A trivial G-module is an abelian group A on which G acts itrividly,T that is,
ga=aforadl ge Gand ac A. Considering an abelian group as a trivial G-
module provides an exact functor from Ab to G-mod. Consider the following
two functors from G-mod to Ab:

1. Theinvariant subgroup A of a G-module A,

A={acA:ga=aforallge G and ac A}.

2. The coinvariants Ag of a G-module A,

Ag = A/submodule generated by {(gu —a) : g€ G, a € A).

Exercise 6.1.1

1. Show that A is the maximd trivial submodule of A, and conclude that
the invariant subgroup functor —¢ is right adjoint to the trivial module
functor. Conclude that —€ is a left exact functor.

160
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2. Show that Ag is the largest quotient module of A that is trivia, and
conclude that the coinvariants functor —g is l€eft adjoint to the trivial
module functor. Conclude that —¢ is a right exact functor.

Lemma 6.1.1 Let A be any G-module, and let Z be the trivial G-module.
Then Ag=Z ®z¢ A and A® = Homg(Z, A).

Proof Considering Z asaZ-ZG bimodule, the itrivia module functor”
from Z-mod to ZG-mod is the functor Homz(Z, —). We saw in 2.6.3 that
Z ®z — is its left adjoint; this functor must agree with its other left adjoint
(—)g. For the second equation, we use adjointness: A® 2= Hompp(Z,A%) =
Homg(Z, A). <&

Definition 6.1.2 Let A be a G-module. We write H.(G; A) for the left de-
rived functors L,(—¢g)(A) and call them the homology groups of G with co-
efficients in A; by the lemma above, H,(G;A) =TorZ%(Z, A). By defini-
tion, Hy(G; A) = Ag. Similarly, we write H*(G; A) for the right derived
functors R*(—%)(A) and call them the cohomology groups of G with coef-
ficients in A; by the lenma above, H*(G; A) = Ext};(Z, A). By definition,
HY(G; A) = AC.

Example 6.1.3 If G = 1 is the trivial group, Ag = A® = A. Since the higher
derived functors of an exact functor vanish, H, (1; A) = H* (1; A) =0 for
* #£0.

Example 6.1.4 Let G be the infinite cyclic group T with generator ¢ . We may
identify ZT with the Laurent polynomial ring Z[z,¢~!]. Since the sequence

0—>ZT Rrrsz-o0
is exact,
H,(T;A)=H"(T;A)=0forns 0, 1, and
H(T; A) = HYT; A) = AT, H\(T; A) = Hy(T; A) = Ar.
In particular, H; (T; Z)=H'(T; Z)=2. We will see in the next section that
all free groups display similar behavior, because pdg (Z) = 1.

Exercise 6.1.2 (kG-modules) As a variation, we can replace Z by any com-
mutative ring k and consider the category kG-mod of k-modules on which
G acts k-linearly. The functors Ag and AS from kG-mod to k-mod are left
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(resp. right) exact and may be used to form the derived functors Tor‘® and
Ext; . Prove that if A is a ke-module, then we have isomorphisms of abelian
groups

Ho(G; A= TorfO(k, A) and H*(G; A) =Extig(k,

H.(G; A) H*(G; A) are A kG-
HintP—-»Z PRz — k.

Hy and HO.

Definition 6.1.5 The augmentation ideal of ZG is the kernel 3 of the ring

map ZG — Z which sends Y nggto ¥ n,. {I} Ug—1:g€G,

g# 1) is a beGs for JZsaf
{g—1:ge g#l}

Example 6.1.6 Since the trividl G-module Z isZG /3, Hy(G; A) = Ag is
isomorphic t0 Z ®76 A=2G/T®zc A=A/JA for every G-module A. For
example, Ho(G;Z)=1Z/3Z = Z,Hy(G;ZG) = ZG/I=Z, and Hy(G;3) =
37732,

Example 6.1.7 (A = ZG) Because ZG is a projective object in ZG-mod,
H(G;ZG) =0 for x# 0 and Ho{G;ZG)=2Z. When G is a finite group,
Shapirois Lemma (6.3.2 below) implies that H*(G;ZG) =0 for x# 0. This
fails when G is infinite; for example, we saw in 6.1.4 that H (T ;ZT)=Z for
the infinite cyclic group T.

The following discussion clarifies the situation for HY%G:ZG): If Gis
finite, then HO(G; zG) = Z, but HY(G;ZG) =0 if G is infinite.

The Norm Element 6.1.8 Let G be a finite group. The norm element N of
the group ring ZG isthe sum N = dec g. The norm is a central element of
ZG and belongs to (ZG)©, because for every he G hN = Zg hg = Zg, gl =
N, and Nh = N similarly.

Lemma 6.1.9 The subgroup H%(G;ZG)=(ZG)% of ZG is the 2-sided ideal
Z . N of ZG (isomorphic to Z) generated by N.

Proof If a =Y ngg isin (ZG), then a = ga for dl ge G. Comparing
coefficients of g shows that al the n, are the same. Hence a = nN for some
nel. <
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Exercise 6.1.3

1. Show that if G is an infinite group, then H%(G;ZG) = (ZG)° = 0.

2. When G is a finite group, show that the natural map Z . N = (ZG)®¢ —
(ZG)g=Z sends the norm N to the order #G of G. In particular, it is an
injection.

3. Conclude that Jis ker(ZG-LZG) =(a €ZG:Na = 0} when G is
finite.

Proposition 6.1.10 Let G be a finite group of order m, and N the norm. Then
e = N/m is a central idempotent element of QG and of ZG[%]. If Aisa QG-
module, or any G-module on which multiplication by m is an isomorphism,

Ho(G;A) = HYG;A) = eA and H.(G;A) = H*(G; A) = 0 for *# 0.

Proof N2=(3_g)-N=m-N, so e =¢ in R =ZG[.). Note that R =
eRXx (1 —e)R as aring, that ¢R = Z[%], and that the projection e from
R-mod to (eR)-mod € Ab is an exact functor. Let A be an R-module; we
first show that eA = Ag = AC. Clearly N - A € A®, and if a € A®, then
N-a=m-a, tha is, a=e-a. Therefore eA = A®. By exercise 6.1.3 (3),
JL1=ker(R—> R) = (1 — e)R. Hence (1 — €)A = (1 — e)R ®r A equals
J[L1®k A = JA; therefore Ag = A/JA= A/(1—e)A = eA.

Because eR is projective over R, TorR (eR, A) = Extk(eR,A) =0 if n##0.
Since R isflat over ZG, flat base change for Tor (3.2.29) yields

Hy(G; A) = TorZ6(Z, A) = TorR(Z @ R, A) = Tor®(eR, A) = 0 if n # 0.

For cohomology, we modify the argument used in 3.3.11 for localization of
Ext. If P—Z is aresolution of Z by projective ZG-modules, then P[%]—»
Z[1]is a resolution of Z[L]1=eR by projective R-modules. Because A is
an R-module, adjointness yields Homg( P, A) = Homg( P[%], A). Thus for
n# 0 we have

H™(G; A) = H" Homg(P, A) = H" HomR(P[l], A) = Ext%(eR,A) = 0. &
m

We now turn our attention to the first homology group Ht.

Exercise 6.1.4

1. Define 6: G — 3/3% by 6(g) = g — 1. Show that 6 is a group homomor-
phism and that the commutator subgroup [G, G] of G maps to zero.



164 Group Homology and Cohomology

2. Define 0:3— G/IG, G] by o(g— 1) = g, the (left) coset of g. Show
that o (J%) =1, and deduce that 8 and ¢ induce an isomorphism /3=
G/IG, G].

Theorem 6.1.11 For any group G, H\(G;Z)=3/3*=G/[G, G].
Proof The sequence 0 — 3 -+ ZG — Z — 0 induces an exact sequence
H(G;7G)—> Hi(G;Z) > 36— ZG)¢ >Z — 0.

Since ZG is projective, H{(G;ZG) = 0. The right-hand map is the isomor-
phism (ZG)¢=ZG/3=Z, so evidently H;(G;Z) is isomorphic to Jg =
J/3%. By the previous exercise, this is isomorphic to G/[G, G]. <&

Theorem 6.1.12 If A is any trivial G-module, Ho(G; A) = A, H; (G; A) =
G/[G,G]l®z A, and for n> 2 there are (noncanonical) isomorphisms:

H,(G; A) = Hy(G;2) ®7 A ® Tor¥ (H,—1(G; Z), A).

Proof If P —Z is a free right ZG-module resolution, H,(G; A) is the ho-
mology of P ®zg A= (P ®26Z)®z A. Now use the Universa Coefficient
Theorem. &

Exercises 6.1.5 Let A be a trivial G-module.

1. Show that H'(G: A) is isomorphic to the group Homgreups(G, A) =
Homap(G/[G, G], A) of al group homomorphisms from G to A.

2. Conclude that H ! (G; Z) = 0 for every finite group.

3. Show that in general there is a split exact sequence

0 — Exty(Hy—1(G; 2), A) — H*(G; A) — Homan(Hn(G; Z), A) — 0.

Exercise 6.1.6 If G is finite, show that H'(G;C) =0 and that H%(G;Z) is
isomorphic to the group H l(G,(C*)gHom(;,.‘,ups(G,(C*) of dl I-dimension-
a representations of G. Here G acts trivialy on Z,C, and on the group C* of
complex units.

We now turn to the product G x H of two groups G and H. First note that
Z[GxH]=ZG®ZH. Indeed, the ring maps from ZG and ZH to Z[G X H]
induce a ring map from ZG ® ZH to Z[G x H]. Both rings have the set
G X H as a Z-basis, so this map is an isomorphism. The Kiinneth formula
gives the homology of G x H:
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Proposition 6.1.13 (Products) For every G and H there is a split exact se-
quence:

0->@H,,(G;Z)®Hq(H;Z)—>Hn(Gx H: 7)

P+q

=n

— @D Tork(H,(G; ), Hy(H; Z)) — 0.

p+q
=n-1

Proof Let P —Z be a free ZG-resolution and Q — Z a free ZH-resolution,
and write P ®z Q for the total tensor product chain complex (2.7.1), which
is a complex of ZG ® ZH-modules. By the Kiinneth formula for complexes
(3.6.3), the homology of P ®7 Q is zero except for Ho(P ®7Q) =Z. Hence
P®7Q —Zisafree ZG® ZH-module resolution of Z, and H.(G x H; Z)
is the homology of

(P ®z Q) ®zcezn L= (P ®76 Z) ®7 (Q ®z1 7).

Moreover, H,(G;Z)= H(P®pgZ) and H,(H;Z) = (Q ®zx Z). As each
P,®z¢Z is a free Z-module, the proposition follows from the Kiinneth for-
mulafor complexes. <

Exercise 6.1.7 (kG-modules) Let k be a field, considered as a triviadl mod-
ule. Modify the above proof to show that Hn(G x H; k) =D Hp(G; k) Q«
H,_,(H;K) for dl n.

Cohomology Cross Product 6.1.14 Keeping the notation of the preceding
proposition, there is a natural homomorphism of tensor product double com-
plexes:

w:Homg (P, Z) ® Homy(Q, Z) — Homgxy (P ®7 O, 7),
p(f @ fHx ®y) =fxX)f'(¥), x€ Pp,yeQyq.

The cross product x: HP(G;Z)® Hi(H;Z)— HPT4(G x H; Z) is the
composite obtained by taking the cohomology of the total complexes.

HP(G;Z7)® HYI(H;Z) —s HPTM[Homg(P,Z) @ Hompy(Q, 7)1,

x| Lu

HPY(G x H;2) == HP"[Homgxu(P® Q, 7))
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Exercise 6.1.8 Suppose that each P, is a finitely generated ZG-module. (For
example, this can be done when G is finite; see section 6.5 below.) Show in
this case that w is an isomorphism. Then deduce from the Kiinneth formula
3.6.3 that the cross product fits into a split short exact sequence:

0—>@H”(G;Z)®H"(H;Z)—X+H”(G x H:; )

ptq
=n

- @ TorZ(HP(G; Z), HY(H; 7)) — 0.

r+q
=n+1

Exercises 6.1.9

1. Show that the cross product is independent of the choice of P and Q.
2.1f H = 1, show that cross product with 1 € H%(1;Z) is the identity map.
3. Show that the cross product is associative in the sense that the two maps

HP(G,7)® HI(H,;Z)® H'(I;Z) - H"TY (G x H x I;Z)
given by the formulas (x X y) X z and x x (y X 2) agree.

Exercise 6.1.10 Let k be a commutative ring.

1. Modify the above construction to obtain cross products H”(G:; k) ®x
HY(H;k) — H”T9(G x H; k). Then verify that this cross product is
independent of the choice of P and Q, that it is associative, and that the
cross product with e H%( 1; k) = k is the identity.

2. If kis a fidd, show that H"(G x H; k) =P HP(G; k) @ H" P (H; k)
fordl n.

We will return to the cross product in section 6.7, when we introduce the

restriction map H*(G x G) — H*(G) and show that the cross product makes
H*(G; Z) into aring.

Hyperhomology 6.1.15 If A, is a chain complex of G-modules, the hyper-
derived functors L;(—¢)(A,) of 5.7.4 are written as H,;(G; A) and called
the hyperhomology groups of G. Similarly, if A* isacochain complex of G-
modules, the hypercohomology groups H(G; A*) are just the hyper-derived
functors R (—%)(A*). The generdities of Chapter 5, section 7 become the
following facts in this case. The hyperhomology spectral sequences are

YE? = Hp(G; Hy(A)) = Hpiy(G; A); and
'E2, = Hy(Hy(G; Ay)) = Hpy4(G; A) when A, is bounded below,
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and the hypercohomology spectra segquences are
g = HP(G; H1(A*) = HP4(G; A*), weakly convergent; and
'EPT = HP(HY(G; A%)) = HPH(G; A*) if Ais bounded below.

In particular, suppose that A is bounded below. If each A; isaflat ZG-module,
then H;(G; A,) = H;((A4)g); if eech Al is a projective ZG-module, then
Hi (G; A*) = HI((A%)9).

Exercise 6.1.11 Let T be the infinite cyclic group. Show that there are short
exact sequences

0 — Hy(A)T — Hy(T; A) — Hy (AT — 0;
0 - HI Y (A" 7 > HY(T; A*) - H?(A"T - 0.

Exercise 6.1.12 Let k be a commutative ring and G a group such that all
the k-modules H,(G; k) are flat. (For example, this is true for G = T.)
Use the hypertor spectral sequence (5.7.8) to show that H,(G x H; k) =
@ H,(G; k) ® Hp—p(H; k) for dl nand H.

6.2 Cyclic and Free Groups

Cyclic and free groups are two classes of groups for which explicit calcula-
tions are easy to make. We first consider cyclic groups.

Calculation 6.2.1 (Cyclic groups) Let C,, denote the cyclic group of order
m on generator o. The norm in ZCp, isthedement N =1+ o+ o +.-- +
6" lso0=0™ —1=(a—1)NinZC,. | clam tha the trivia C,,-module
Z has the periodic free resolution
0«2 70, & 20, 20, T2, &
Indeed, since Z-N =(ZG)¢ and 3= (a€ZG:Na = 0) by exercise 6.1.3,
there are exact sequences

0<—Z-N<£—ZG(—J<—O and 0(—32;IZC,”<—Z-N<—O.

The periodic free resolution is obtained by splicing these sequences to-
gether. Applying ®z¢A and Homg (—, A) and taking homology, we find the
following result:
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Theorem 6.2.2 If A is a module for the cyclic group G = Cm, then

A/(c— A ifn=0
H,(Cm; A) 3 A°/NA ifn=1,3,5,7,..¢;
{facA:Na=0}/(c —1DA ifn=2,4,6,8,...
AC ifn=0
H"CniA)=1{ (@a€A:Na=0}/(c— DA ifn=13,57,...
AC/NA ifn=2,4,6,8, ...

Exercise 6.2.1 Show for G = C,, that when H'! (G; A) = 0 there is an exact
sequence

0 AG > A% AN, A% 5 H2(G: A) > 0.

Example 6.2.3 Taking A = Z we find that

Hy(Cn; Z)=1{Z I m

ifn=1,3,57,..};
0 ifn=0ifn=2,4,6,8,...
Z ifn=0

HYCm;Z) =40 ifn=1,3,5.7,...

Zim ifn=2,4,6,8,...

Exercise 6.2.2 Calculate Hi(Cim X Cy;Z) and H*(Cin X Cr; Z).

Definition 6.2.4 (Tate cohomology) Taking full advantage of this periodicity,
we set

=~ AY/NA ifneZiseven]
H"(Cp; A) = . ) .
(Cm; A) [{aeA:NA:O}/(a—l)A ifneZisodd

More generally, if G is afinite group and A is a G-module, we define the Tate
cohomology groups of G to be the groups

H"(G; A) ifn>1
~ AC/NA ifn=0
n . —
H'(G; 4) = [aeA:Na=0}/JA ifn=—1
Hy_4(G; A) ifn< -2
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Exercise 6.2.3 If G is afinite group and 0 - A —-B — C — 0 is an exact
sequence of G-modules, show that there is a long exact sequence

H"'(G: C) - H™G: A) — H"(G; B) — H"(G; C) > H" (G A) ---.

Application 6.2.5 (Dimension-shifting) Given a G-module A, choose a short
exact sequence 0 — K — P — A — 0 with P projective. Shapirois Lemma
(6.3.2 below) implies that H*G, P) =0 for al x€ Z. Therefore fl”(G;A) =
H (G K). This shows that every Tate cohomology group H"(G; A) deter-
mines the entire theory.

Proposition 6.2.6 Let G be the free group on the set X, and consider the
augmentation ideal 3 of ZG. Then 3 is a free ZG-module with basis the set
X—-1={x—1:xeX}.

Proof We have seen that 3 is a free abelian group with Z-basis{g—1: g€ G,
g# 1). We claim that another Z-basisis {g(x—1): g€ G, x€ X}. Every g€
G may be written uniquely as a reduced word in the symbols {x,x~!: x e X};
write G(x) (resp. G{x ")) for the subset of al ge G ending in the symbol x
(resp. in x~1) so that G — {1} is the digjoint union (over al x e X) of the sets
G(x) and G(x~1). The formulas

gx—D=gx-1+(g-1) ifgxeGx)
@' =) =-(x Hx-1+ -1 if gx'eGGTh

and induction on word length allow us to uniquely rewrite the basis {g—1:
g # 1) in terms of the set {g(x — 1)}, and vice versa. Therefore {g(x—1) :
geG, xeX}isaZ-basisof 3,and X —1={x—1:xe X} isazZG-basis. ¢

Corollary 6.2.7 If G is a free group on X, then Z has the free resolution
0 >3->72G—->72—-0.

Consequently, pdg(Z) =1, that is, H,(G;A) = H"(G; A) =0 for n #0, 1.
Moreover, Ho(G;Z)=H%G;Z) =7, while

H(G: D=7 and H‘(G;Z)EHZ.

xeX xeX

Proof H,(G;A) is the homology of 0 = 3®zc A— A— 0, and H*(G; A)
is the cohomology of 0 — A — Homg(3, A) — 0. For A = Z, the differen-
tials are zero. <&
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Remark Conversely, Stallings [St] and Swan [SwCd1] proved that if H"(G,A)
vanishes for al n#0, I and al G-modules A, then G is a free group.

Exercise 6.2.4 Let G be the free group on {s,t}, and let T € G be the free
group on {t}. Let Z' denote the abelian group Z, made into a G-module (and a
T-module) by the formulas s-a=t-a=-a.

1. Show that Hy(G,Z") = Hy(T, zi) = Z/2.
2. Show that H(T,Z’)=0 but H; (G, Z)=Z.

Free Products 6.2.8 Let GxH denote the free product (or coproduct) of the
groups G and H. By [BAII, 2.91, every element of GxH except 1 has a unique
expression as a ireducedi word, either of the form gih1g2k2g3. .. or of the
form hi1g1hag2hs--- with al g;e G and al h;eH (and al g;, h;# 1).

Proposition 6.2.9 Let Jg, Ty, and Jg«n denote the augmentation ideals of
ZG,ZH,and A =Z(G*H), respectively. Then

J6+u = (J6 Bz A) & Ty Qzn A).

Proof As a left ZG-module, A = Z(GxH) has a basis consisting of {1}
and the set of al reduced words beginning with an element of H. Therefore
J6 ®z¢ A has a Z-basis B consisting of the basis {g— 1|g€ G, g#!1]} of
J¢ and the set of al terms

(g = D{(hig1ha---) = (gh1githa---) — (higiha -+ -).
Similarly, Jy®zy A has a Z-basis B, consisting of {A— 1) and the set of
al terms
(h—=1)(gihi1g2-+) = (hgih182--+) — (g1h182 -+ ).

By induction on the length of a reduced word w in GxH, we see that w — 1
can be written as a sum of termsin B; and B;. This proves that B=858; U B;
generates Jg«x- IN any nontrivial sum of elements oft?, the coefficients of the
longest words must be nonzero, so B is linearly independent. This proves that
B forms a Z-basis for 3¢.H, and hence that J¢.p has the decomposition we
described. <

Corollary 6.2.10 For every left (GxH)-module A, and n > 2:
H,(GxH; A) =H,(G; A) @ H,(H; A);
HY"(G*H; A) =H"(G; A) ® H"(H; A).
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Remark When n = 0, the conclusion fails even for A = Z. We gave an exam-
ple above of a (T * T)-module Z’ for which the conclusion fails when n = 1.

Proof We give the proof of the homology assertion, the cohomology part
being entirely analogous. Write A for Z(GxH). Because Tor (A, A) = 0 for
n> 1, we see that Tor}(Z, A) = Tor® | (Jg.m. A) for n > 2. Hence in this
range
H,(GxH; A) = Tor®(Z, A) = Tor® | (3Gxn, A)
= Toi_ (3¢ ®z6 A, A) @ Torp_ (I @z A, A).

Since A isfreeover ZG and ZH, base-change for Tor (3.2.9 or 5.6.6) implies
that

Tor} (36 ®z¢ A, A) =Tor?% (Jg, A) = TorZ8(Z, A) = H.(G; A).
By symmetry, Tor’ | (3y®znA,A)=H,(H;A). &

Exercise 6.2.5 Show that if A is a trivid GxH-module, then for n = 1 we
also have
Hi(GxH; A) = H1(G; A) @ Hi(H; A);

HY(GxH:; A =H'(G; A) @ H'(H; A).

6.3 Shapirois Lemma

For actually performing calculations, Shapirois Lemma is a fundamental tool.
Suppose that H is a subgroup of G and A is a left ZH-module. We know
(2.6.2) that ZG ®zy A and Hompg(ZG, A) are left ZG-modules. Here are
their names:

Definition 6.3.1 ZG ®zy A is caled the induced G-module and is written
Indf,(A). Similarly, Hom g (ZG, A) is called the coinduced G-module and is
written Coind$, (A).

Shapirois Lemma 6.3.2 Let H be a subgroup of G and A an H-module.
Then

H.(G;Ind$(A))= H,(H; A); and H*(G;Coind$(A)) = H*(H; A).
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Proof Note that ZG is a free ZH-module (any set of coset representatives
will form a basis). Hence any projective right ZG-module resolution P —Z is
also a projective ZH-module resolution. Therefore the homology of the chain
complex

P ®76 (ZG @7y A) = P Qzy A
is both
TorZ%(Z,2G Q7 A) = H.(G; Ind$(A))

and TorZH(Z, A) = H,(H; A). Similarly, if P —Z is a projective left ZG-
module resolution, then there is an adjunction isomorphism of cochain com-
plexes:

Homg (P, Hompy (ZG, A)) =Hompy (P, A).
The cohomology of this complex is both

Ext}(Z, Homy (ZG, A)) = H*(G; Coind$(A))
and  Exth, (Z, A) = H*(H; A). o

Corollary 6.3.3 (Shapirois Lemma for H = 1) If A is an abelian group, then

HW(G:ZG ®z A) = H*(G:Homap(ZG. A)) = {A 1f*=0]_

0 if*#0

Lemma 6.3.4 Ifthe index [G : H] is finite, Ind$,(A) = Coind$; (A).

Proof Let X be a set of left coset representatives for G/H, so that X forms a
basis for the right H-module ZG.Indf,(A) is the sum over X of copiesx @ A
of A, with gx®a) =y ® haif gx =yh in G. Now X~ '={x"1:xe X)
is abasis of ZG as a left H-module, so Coindg(A) is the product over X of
copies myA of A, where ma represents the H-map from ZG to A sending
x'toaeAand z71to O for al z #x in X. Therefore if gx = yh, that is,
y~lg=hx~!, the map g(ma) sends y~' to

(mea)(y " 'g) = (mea)(hx™ ) = h - (mea)(x™") = ha

and z7't0 0if z#£ y in X. That is, g(w,a) = my(ha). Since X = [G: H] is
finite, the map Ind,G{(A) — Coindfl(A) sending X ® a to m.a is an H-module
isomorphism. &
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Corollary 6.3.5 If G is a finite group, then H*(G;ZG ®7 A) = 0 for *# 0
and all A.

Corollary 6.3.6 (Tate cohomology) If Gis finite and P is a projective G-
module,

H*(G; P)=0 forall*.

Proof It is enough to prove the result for free G-modules, that is, for mod-
ules of the form P =ZG ®z F, where F is free abelian. Shapirois Lemma
gives vanishing for *# 0, -1. Since P°=(ZG)°® F=N - P, we get
HYG; P) = 0. Finally, H~'(G; P) = 0 follows from the fact that N = #G
on the free abelian group Pg = P/JP=F. <&

Hilbertis Theorem 90 6.3.7 (Additive version) Let K ¢ L be a finite Galois
extension of fields, with Galois group G. Then L is a G-module, L]
K. and

H*(G; L) =H(G: L) = 0 for =% O.

Proof The Normal Basis Theorem [BAI, p. 283] asserts that thereisan x e L
such that the set [g(X) : g € G) of its conjugates forms a basis of the K-vector
space L. Hence L = ZG ®z K as a G-module. We now cite Shapirois Lemma.

<

Example 6.3.8 (Cyclic Galois extensions) Suppose that G is cyclic of order
m, generated by o. The trace tr(x) of an dement x € L is the element x +
ox+---+ o™ lxof K. In this case, Hilbertis Theorem 90 states that there is
an exact sequence

O——)K—>Lc—_;Ll>K—>O.

Indeed, we saw in the last section that for x % 0 every group H.(G;L) and
H*(G; L) is either K/tr(L) or ker(tr)/(c — K.

As an application, suppose that char(K) =p and that [L : K] = p. Since
tr(l)=p 1l =0, thereis an x €L such that (a — 1)x = 1, that is, ox =
x + 1. Hence L = K(x) and x? — X € K because

o(xP —x)=(x+1DP - (x+1) = xP-x
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Remark If G isnot cyclic, we will see in the next section that the vanishing of
H!(G; L) is equivalent to Noetheris Theorem [BAI, p. 287]that if D: G — L
is a map satisfying D(gh) = D(g) + g . D(h), then there is an x € L such that
D@ =g.x—x

Application 6.3.9 (Transfer) Let H be a subgroup of finite index in G. Con-
sidering a G-module A as an H-module, we obtain a canonical map from A to
Hompy(ZG, A) = Coind%(A) = Ind%(A) and from Coind%(A)=7G Qzy
Ato A. Applying Shapirois Lemma, we obtain transfer maps H.(G; A) —
H,(H;A) and H*(H; A) — H*(G; A). We will return to these maps in exer-
cise 6.7.7 when we discuss restriction.

6.4 Crossed Homomorphisms and H'!

If Ais abimodule over any ring R, aderivation of R in A is an abelian group
homomorphism D: R — A satisfying the Leibnitz rule: D(rs) = rD(s) +
D(r)s. When R = ZG and A is a left ZG-module, made into a bimodule
by giving it a trivia right G-module structure, this definition simplifies as
follows:

Definition 6.4.1 A derivation (or crossed homomorphism) of G in aleft G-
module A is aset map D: G — A satisfying D(gh) = gD(h) + D(g). The
family Der(G, A) of all derivations is an abelian group in an obvious way:
(D + Di)(g) = D(8) + Di(s).

Example 6.4.2 (Principal derivations) If ae A, define D,(g) =ga—a; D,
is a derivation because

D,(gh) = (gha — ga) +(ga — a) = gD, (h) + Du(g).

The D, are called the principal derivations of G in A. Since D, + Dy =
Da+b), the set PDer(G, A) of principal derivations forms a subgroup of
Der(G, A).

Exercise 6.4.1 Show that PDer(G, A) =A/AC.

Example 6.4.3 If ¢:3— Ais a G-map, let D,: G — A be defined by
Dy(g) = ¢(g— 1). Thisis a derivation, since

D,(gh) = (gh— 1) = ¢(gh—g) + ¢(g—1) = gDy(h) + D,(9).
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Lemma 6.4.4 The map ¢ +— D, is a natural isomorphism of abelian groups

Homg (3, A) = Der(G, A).

Proof The formula defines a natural homomorphism from Homg (3, A) to
Der(G, A), so it suffices to show that this map is an isomorphism. Since {g —
1:g+#1} forms a basis for the abelian group 3, if D,(g) = 0 for dl g, then
¢ = 0. Therefore the map in question is an injection. If D is a derivation,
define ¢(g— 1) = D(g) € A. Since {g— 1: g1} forms a basis of 3, ¢
extends to an abelian group map ¢: 3 — A. Since
p(gh— 1)) = p(gh— 1) —p(g— 1)
= D(gh)— D(g) = ¢D(h)
= gp(h—1),

¢ isa G-map. As Dy, = D, the map in question is also a surjection. <
Theorem 6.45 H!(G;A) = Der(G, A)/PDer(G, A).

Proof The sequence 0 — 3 —ZG — Z — 0 induces an exact sequence
0 — Homg(Z, A) — Homg(ZG, A) — Homg(J, A) —>ExtlZG(Z,A)—> 0.
AS < A — Der(G, A) — HYG;A)

Now A — Homg(J, A) sends a € A to the map ¢ sending (g — 1) to (g —1)a.
Under the identification of Homg(J, A) with Der(G, A), ¢ corresponds to
the principal derivation D, = D,. Hence the image of A in Der(G, A) is
PDer(G, A), as clamed. <

Corollary 6.4.6 If A is a trivial G-module,
HY(G; A) = Der(G, A) =Homgroups(G, A).
Proof PDer(G, A) = A/A% = 0 and a derivation is a group homomorphism.
0

Hilhertis Theorem 90 6.4.7 (Multiplicative version) Let K c L be a finite
Galois extension of fields, with Galois group G. Let L* denote the group of
units in L. Then L* is a G-module, and H!(G;L*) = 0.
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Proof Using multiplicative notation, a derivation is a map 8: G — L* such
that 8(gh)/6(g) = g - 6(h). These are “Noether’s equations”; the usual Theo-
rem 90 [BAI, p. 286] states that if 6 satisfies Noether’s equations then 8(g) =
(g - x)/x for some x € L*, that is, # is a principal derivation. &

Example 6.4.8 (Cyclic Galois extensions) Hilbert originally proved his The-
orem 90 for cyclic field extensions in his 1897 report, Theorie der Alge-
braische Zahlkorper. Let K C L be a cyclic Galois extension of fields, with
Galois group Cp,. The norm Nx of an element x € L is the product [g(x);
as HY(Cp; L*) ={x : Nx = 1}/(c — 1)L* (see 6.2.2), we may rephrase
Hilbert’s Theorem 90 as stating that whenever Nx = 1, there is a y € L such
that x = (0'y)/y. Since H?(Cpy; L*) = L*C/{Nx : x € L*} = K*/NL*,

1=K 73 1Y ks B2, L) — 1

is exact. (See exercise 6.2.1.) For the cyclic extension R  C it is easy to cal-
culate that H 2(Cz; C*) = Z/2, so the higher analogue of the additive version
of Theorem 90 fails for H*(G; L*).

Remark The group H%(G; L*) is usually nonzero. We will return to this topic
in 6.6.11, identifying H?(G; L*) with the relative Brauer group Br(L/K)
of all simple algebras A with center K and dimg A = n2, n=|[L: K], such
that A ®x L is the matrix ring M, (L). The nonzero element of Br(C/R) =
H?*(Cy; C*) = Z/2 corresponds to the 4-dimensional quaternion algebra H,
which has center R and H ® g C = M>(C).

In order to indicate the historical origins of the terminology “crossed homo-
morphism,” we introduce the semidirect product A x G of a group G with a
G-module A. A x G is a group whose underlying set is the product A x G,
and whose multiplication is given by the formula

(av g) . (b’ h) = ((l + gb’ gh)

The semidirect product contains A = A x 1 as a normal subgroup. It also
contains the subgroup 0 x G, which maps isomorphically onto the quotient
G = (A xG)/A.

Definition 6.4.9 If ¢ is an automorphism of A x G, we say that o stabilizes
A and G if 0(a) = a for a € A and the induced automorphism on G =< (A x
G)/ A is the identity.
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Exercise 6.4.2 If D is a derivation of G in A, show that op, defined by

GD(a7 g) = (a + D(g)v g)s

is an automorphism of A x G stabilizing A and G, and that Der(G, A) is iso-
morphic to the subgroup of Aut(A xG) consisting of automorphisms stabiliz-
ing A and G. Show that PDer(G, A) corresponds to the inner automorphisms
of A x G obtained by conjugating by elements of A, with the principal deriva-
tion D, given by D,(g) = a'ga. Conclude that H!(G: A) is the group of
outer automorphisms stabilizing A and G.

Example 6.4.10 (Dihedra groups) Let C; act on the cyclic group Zz/m = C,y,
by a(a) = -a. The semidirect product C,,xC3 isthe dihedral group D,
of symmetries of the regular m-gon. Our calculations in section 6.2 show
that H'(Ca; C) = Cp/2Cp. If m is even, D,, has an outer (= not inner)
automorphism with ¢(0, 8 = (1, a). If mis odd, every automorphism of D,,
is inner.

6.5 The Bar Resolution

There are two canonical resolutions B, and BY of the trivid G-module Z by
free left ZG-modules, called the normalized and unnormalized bar resolu-
tions, respectively. We shall now describe these resolutions.

%) 0Z<— By B < B & ...
(%) 0 7 Bt prdprd

By and By are ZG. Letting the symbol [ ] denote 1 € ZG, the map €: By —Z
sends []to 1. For n> 1, B¥ is the free ZG-module on the set of all symbols
[g1® - ®gn] With g;€ G, while B,, is the free ZG-module on the (smaller)
set of al symbols|[g;]|. .. |g,] with the g;€ G —{1}. We shall frequently iden-
tify B, with the quotient of BY by the submodule S,, generated by the set of all
symbols [g1® . . . ® g,] with some g; equal to 1.

Definition 6.5.1 For n> 1, define the differential d: By — B, _,tobed =
?_o(—1)id;, where:

d(g1®... ® gD = g1l£2® .. . ® gul;

G(g1®. . RgD=[g1® - ®gg+1Q® --®g, fori=l,...,n-1;

h(g1®... g =[21®.. ®gu1l
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The differential for B, is given by formulas similar for those on B¥, except
thatfori=1,...,n—1

d | leil---1gigi+1l---1gn]l When gigit1 # 1
(g1l -+ - 1gn]) = 0 when gigi 1= L.

To avoid the clumsy case when g;gi+1 = 1, we make the convention that
[g1l.--lga]=0if any g; = 1. Warning: With this convention, the above for-
mula for d; ([g11..-]) does not hold when g; or g;+1 = 1; the formula for the
alternating sum d does hold because the d; and d;— terms cancel.

Examples 6.5.2

1. The image of the map d: Bj— By is the augmentation ideal 3 because
dlg) =dl]1-[]= (@ —DL]. Therefore (x) and (x*) are exact at Byp.

2. d([glh]) = glh] —gh] + [g].

3. d([fIglh)) = flglhl —[fglh] + [flghl - [flg].

4. If G=Cy, then B,=ZG for dl non [a|--|o] and (x) is familiar from
6.2.1:

02262726 76

Exercises 6.5.1

1. Show that d o d =0, so that By is a chain complex. Hint: If i <j— 1,
show that didj=d; 1d;.

2. Show that d(S,) liesin S,_1, so that S, is a subcomplex of BY.

3. Conclude that B, is a quotient chain complex of Bj.

Theorem 6.5.3 The sequences (#) and (%) are exact. Thus both B, and B
are resolutions of Z by free left ZG-modules.

Proof It is enough to prove that (x) and (xx) are split exact as chain com-
plexes of abelian groups. As the proofs are the same, we give the proof in the
B, case. Consider the abelian group maps s, determined by

s_1:Z — By, s =11
Sn: Bp — Bpt1,  sa(golgil---1gn)) = lgolgil - - - 1gn].

Visibly, es_; = 1 and dsp + s_i€ is the identity map on By. If n> 1, the
first term of ds,(golg1l. .. lgn])isgolgil. .. |gn], and the remaining terms are
exactly the terms of s,_1d(golg1l- - 1gn]) With a sign change. This yields
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the final identity ds, + s,—1d = 1 needed to show that {s,} forms a chain
contraction of (x). <&

Application 6.5.4 (Homology) For every right G-module A, H,(G; A) is the
homology of the chain complex A ® B,. (If A is a left G-module, we must
take the homology of B, ® A, where B, is the mirror image bar resolution.)
In particular, we see that H;(G; Z) is the quotient of the free abelian group on
the symbols [g], g € G, by the relations that [1] =0 and [ f] + [g] = [ fg] for
all f, g € G. This recovers the calculation in 6.1.11 that

H((G; Z)=G/IG, G].

Application 6.5.5 (Cohomology) If A is a left G-module, H*(G; A) is the
cohomology of either Homg (B, A) or Homg(B., A). An n-cochain is a set
map ¢ from G" =G x --- x G to A; elements of Homg (B, A) are just n-
cochains. A cochain ¢ is normalized if ¢(g1, ---) vanishes whenever some
gi = 1; these are the elements of Homg(B,, A). The differential dg of an n-
cochain is the (n + 1)-cochain

(dp)(80. -+ 8n) = g0P(&1,+» 8n) + I_(—=1o(--, gigivt, ")
+ ‘P(gO, Tt gn—l)-

The n-cochains such that dg = 0 are n-cocycles, and the n-cochains d¢ are
called n-coboundaries. We write Z"(G; A) and B"(G; A) for the groups of all
n-cocycles and n-coboundaries, respectively. Thus H"(G; A) = Z*(G; A)/
B"(G; A).

Example 6.5.6 A O-cochain is a map 1 — A, that is, an element of A. If
a € A, then da is the map G — A sending g to ga — a. Thus a is a O-cocycle
iff a € AC, and the set B!(G; A) of 1-coboundaries is the set PDer(G, A) of
principal derivations.

The set Z‘(G; A) of l-cocyles is Der(G, A), because a l-cocyle is a
function D with D(1) =0 and gD(h) — D(gh) + D(g) = D(d[g|h]) =0.
Therefore, the bar resolution provides a direct proof of the isomorphism
HY(G; A) = Der(G, A)/PDer(G, A) of 6.4.5.

Example 6.5.7 B%(G; A)isthesetofall : G x G — A suchthaty (1, g) =
¥ (g, 1) and

v(f.e)=BUWlflgh) = [ B(g) —B(fe)+B(f) forsomep:G— A.
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Z2(G; A) is the set of al 2-cochains ¥: G x G — A such that ¥ (1,g8)=
¥(g, 1) and

f v h) —v(fe.h)+y(f,gh) —¥(f,8) =0 forevery f,g,h €G.

Theorem 6.5.8 Let G be a finite group with m elements. Then for n # 0 and
every G-module A, both H,(G; A) and H*(G; A) are annihilated by m, that
is, they are Z/m-modules.

Proof Let  denote the endomorphism of B, which is multiplication by (m —

N) on By and multiplication by m on B,,n # 0. We clam that # is null

homotopic. Applying A® or Hom(-, A), will then yield a null homotopic

map, which must become zero upon taking homology, proving the theorem.
Define v,: B, — Bp+1 by the formula

w(lgr] ... 12D = (=" il .. lgnlgl.

geG

Setting w=[g1l...|gn] and e = (- "1, we compute for n # 0

dvn(@)=€) (g1l 1g] + ) _(~D'[--lgigiril--1g]- @ [-lgacrlgngl+ @ W]
vp-1d(@) =—€ Y (gl lgl+ D (=1l lgigitl -~ 18] — €[~ Ign-1lgl}.

As the sums over al ge Gof [-..|gngl and [-. . |g] agree, we see that
(dv + vd)(®) is €Y. @ =mw. Now dv([]) = d(- Xlgl) = (m — M)[],
where N = 3_ g isthe norm. Thus {v,} provides the chain contraction needed
to make n null homotopic. &

Corollary 6.5.9 Let G be a finite group of order m, and A a G-module. If A
is a vector space over Q, ora Z[%]-module, then H,(G; A) = H*(G; A) =
for n #£ 0. (We had already proven this result in 6.1.10 using a more abstract
approach.)

Corollary 6.5.10 If G is a finite group and A is a finitely generated G-
module, then H,(G:; A) and H"(G; A) are finite abelian groups for all n # 0.

Proof Each A ®zs B, and Homg(B,, A) is a finitely generated abelian
group. Hence Hn(G; A) and H"(G; A) are finitely generated Z/m-modules
when n #0. '
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Shuffle Product 6.5.11 When G is an abelian group, the normalized bar
complex By is actualy a graded-commutative differential graded algebra (or
DG-algebra; see 4.5.2) under a product called the shuffle product. If p> 0 and
g>0 are integers, a (p,q)-shuffle is a permutation o of theset {1, .-, p+ ¢}
of integers in such a way that o(l)< a(2) <---<o(p)and o(p + 1) <
---<a(p+q). The name comes from the fact that the (p, q)-shuffles de-
scribe al possible ways of shuffling a deck of p + g cards, after first cutting
the deck between the p and (p +1)*' cards.
If G is any group, we define the shuffle product x: B, ®z By — Bpy4 by

algil--1gpl * blgp+il - Igp+ql = Z(—l)"ab[ga—ulga-'zl 181+
(o2

where the summation is over al (p, g)-shuffles o. The shuffle product is
clearly bilinear, and [ 1*[g1]---1g41=[gil---|g4], s0 B« is a graded ring with
unit [ ], and the inclusion of ZG = By in B, is a ring map.

Examples 6.5.12 [g] *[k] =[g|h]—[h|g], and

Lf1*[glhl = [fIglh) =gl fIn] + [glh|f].

Exercise 6.52

1. Show that the shuffle product is associative. Conclude that B, and Z ®z¢g
B, are associative rings with unit.

2. Recall (from 4.5.2) that a graded ring R, is called graded-commutative if
X *y=(—=1)?y xx forallx € R, and y € R,. Show that B, is graded-
commutative if G is an abelian group.

Theorem 6.5.13 If G is an abelian group, then B, is a differential graded
algebra.

Proof We have already seen in exercise 6.5.2 that B, is an associative graded-
commutative algebra, so al that remains is to verify that the Leibnitz identity
45.2 holds, that is, that

dxxvy) = (dx) *y + (—=1)Px * dy,

where x and y denote algi|. .lgp] and bigp+i1l-18p+ql, respectively.
Contained in the expansion of xxy, we find the expansions for (dx)*y and
(—=1)’xxdy. The remaining terms are paired for each i <p <j, and each
(p, g)-shuffle o which puts i immediately just before j, as

(=1)%ab[---|gig;l---] and (-1)°H'abl- - - |gjgil - 1.
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(The terms with j just before i arise from the composition of o with a trans-
position.) As G is abelian, these terms cancel. &

Corollary 6.514 For every abelian group G and commutative ZG-algebra
R, H«(G; R) is a graded-commutative ring.

Proof B.®z¢ R is a graded-commutative DG-algebra (check this!); we
saw in exercise 4.5.1 that the homology of such a DG-agebra is a graded-
commutative ring. &

6.6 Factor Sets and H2

The origins of the theory of group cohomoiogy go back-at least in nascent
form-to the landmark 1904 paper [Schur]. For any field k, the projective
linear group PGL,(k) is the quotient of the general linear group G L,(k)
by the diagona copy of the units k* of k. If G is any group, a group map
p:G— PGL,(k)iscaled aprojective representation of G. The pullback

E={(a,8)eGLy(k) x G : & = p(g)]
is a group, containing k* = k* x 1, and there is a diagram

1 — ¥ — E — G — 1

I! Lo e

1 — k* —> GLu(k) —> PGL,(k) —> 1.

Schuris observation was that the projective representation p of G may be
replaced by an ordinary representation o’ if we are willing to replace G by the
larger group E, and it raises the issue of when E is a semidirect product, so
that there is a representation G < E — G L, (k) lifting the projective repre-
sentation. (See exercise 6.6.5.)

Definition 6.6.1 A group extension (of G by A) is a short exact sequence
0>A—>E-5SGo1
of groups in which A is an abelian group; it is convenient to write the group

law in A as addition, whence the term “0’” on the left. The extension splits if
n:E — G hasasectiono: G — E.
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Given a group extension of G by A, the group G acts on A by conjugation
in E; to avoid notational confusion, we shall write éa for the conjugate gag-’
of ain E. This induced action makes A into a G-module.

Exercise 6.6.1 Show that an extension 0 —+ A — E — G — 1 splits if and
only if E is isomorphic to the semidirect product A x G (6.4.9).

Exercise 6.6.2 Let G=Z/2 and A = Z/3. Show that there are two exten-
sions of G by A, the (split) product Z/6 = A x G and the dihedral group Ds.
These extensions correspond to the two possible G-module structures on A.

Exercise 6.6.3 (Semidirect product) Let A be a G-module and form the split
extension

0 A5 AXxG—>G— 1.
Show that the induced action of G on A agrees with the G-module structure.

Extension Problem 6.6.2 Given a G-module A, we would like to determine
how many extensions of G by A exist in which the induced action of G on A
agrees with the given G-module structure, that is, in which 8a =g a.

In order to avoid duplication and set-theoretic difficulties, we say that two
extensions 0 - A — E;— G — 1 are equivalent if there is an isomorphism
¢:E1=E; so

0 — A — EfL — G — 0

() ||

0 — A — E; — G — 0

commutes, and we ask for the set of equivalence classes of extensions. Here is
the main result of this section:

Classification Theorem 6.6.3 The equivalence classes of extensions are in
1-1 correspondence with the cohomology group H(G; A).

Here is the canonical approach to classifying extensions. Suppose given an
extension 0 — A — E —> G — 1; choose a set map o: G — E such that
a(1) is the identity element of E and mo(g) = g for dl g € G. Both o(gh)
and o (g)o (h) are dlements of E mapping to gh € G, so their difference liesin
A. We define

[g,h] = a(g)o(hya(gh)™".
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Note that [g, h] is an element of A that depends on our choice of E and cr.

Definition 6.6.4 The set function [ ]: G x G — A defined above is called the
factor set determined by E and cr.

Lemma 6.65 1'f two extensions 0 — A — E; — G — 1 with maps 0;: G —
E; yield the same factor set, then the extensions are equivalent,

Proof The maps o; give a concrete set-theoretic identification £ = A x G =
E>;we claim that it is a group homomorphism. Transporting the group struc-
ture from Ejto A x G, we see that the products (a, 1)-(b, 1) = (a + b, 1),
@1D.(0,9=( g,ad (0,9 -(a1l)=(ga g) ae fixed. Therefore the
group structure on A x G is completely determined by the products (1, g) .
(1, h), which by congtruction is ([g, h], gh). By symmetry, this is aso the
group structure induced from E,, whence the claim. <

Corollary 6.6.6 Zf E were a semidirect product and o were a group homo-
morphism, then the factor set would have [g,h] = 0 for all g, h € G. Hence if
an extension has [ ]=0 as a factor set, the extension must be split.

Recall (6.5.7) that a (normalized) 2-cocycle isafunction[]:GxG— A
such that

1. [g,11=1[1,g]l=0forallgeG.
2. flg, hl—[fg. hl+[f, ghl—1f.gl=0 forallf g, heG.

Theorem 6.6.7 Let A be a G-module. A set function [ ]:GxG— Aisa
factor set iff it is a normalized 2-cocycle, that is, an element of Z2(G, A).

Remark Equations (1) and (2) are often given as the definition of factor set.

Proof If []is a factor set, formulas (1) and (2) hold because ¢ (1) = 1 and
multiplication in E is associative (check thig!).

Conversely, suppose given a normaized 2-cocycle, that is, a function [ ]
satisfying (1) and (2). Let E be the set A x G with composition defined by

(a,g)-(b,h)=(a+(g b)+Ig hl gh).
This product has (0,1) as identity element, and is associative by (2). Since

@8- (—g ' -a—g ' [g.g L gTHh =@,
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E is a group. Evidently A x 1 is a subgroup isomorphic to A and E/A x 1
isG. ThusO0 > A —-E — G — 1is an extenson, and the factor set arising
from G = 0x G E is our original function []. (Check this!) <

Change of Based Section 6.6.8 Fix an extenson 0 > A —>E 56— 1.
A based section of m isamap o:G — E suchthato(l)=1and mo(g) =g
for all g. Let o’ be another based section of . Since ai(g) is in the same coset
of A as a(g), there is an element /3(g) € A so that ai(g) = B(g)o(g). The
factor set corresponding to o’ is

[g,h) = B(g)a (g)B(h)a (h)a (gh) ™ B(gh) ™!

= B(g) + 0@BMWo @ + o (@)oo (gh)™! - Bgh)
=lg. K1+ B(g) ~Algh) + 5. B(h).

The difference [g, h]i —[g,A] is the coboundary dB(g,h) = B(g) — B(gh) +
g- B(h). Therefore, athough the 2-cocyle[] is not unique, its class in
H*(G; A) = Z*(G, A)/B*(G, A) is independent of the choice of based sec-
tion. Therefore the factor set of an extension yields a well-defined set map W
from the set of equivalence classes of extensionsto the set H2( G; A).

Proof of Classification Theorem Analyzing the above construction, we see
that the formula ai(g) = B(g)o(g) gives a |-I correspondence between the
set of al possible based sections o’ and the set of al maps 8: G — A with
B(1). If two extensions have the same cohomology class, then an appropriate
choice of based sections will yield the same factor sets, and we have seen that
in this case the extensions are equivalent. Therefore W is an injection. We have
also seen that every 2-cocycle [ ]isafactor set; therefore W is onto. <o

Exercise 6.6.4 Let p: G — H be a group homomorphism and A an H-
module. Show that there is a natural map Z2p on 2-cocycles from Z2(H, A)
to Z2(G, A) and that Z%p induces a map p*: H*(H; A) — H?*(G; A). Now
let 0 > A— E - H — 1 be an extension and let Ei denote the pullback

Exg G={E gecExG: ne = p(g)]. Show that p* takes the class of
the extension E to the class of the extension E 1 .

0 — A — E — G — 1

| ! Lo

0 — A — E — H — 1
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Exercise 6.6.5 (Schur) For any field k and any n, let y denote the class
in H2(PGL,(k); k*) corresponding to the extension 1 — k* — G L, (k) —
PGL,(k)—1.1f p. G—> PGL,(k) is a projective representation, show that
p lifts to a linear representation G — G L,(k) if and only if p*(y) =0in
H*(G; k*).

Exercise 6.6.6 If k is an algebraically closed field, and w,, denotes the sub-
group of k* consisting of al m' roots of unity in k, show that H2(G; ) =
H?*(G; k*) for every finite group G of automorphisms of k order m. Hint: Con-

sider the iKummer sequence 0 —» i, — k* —> k* — 1.

Theorem 6.6.9 (Schur-Zassenhaus) If m and n are relatively prime, any ex-
tension 0 - A — E — G — 1 of a group G of order m by a group A of order
n is split,

Proof If A isabelian, the extensions are classified by the groups H?(G; A),
one group for every G-module structure on A. These are zero as A is al[%]-
module (6.1.10).

In the generd case, we induct on n. It suffices to prove that E contains
a subgroup of order m, as such a subgroup must be isomorphic to G under
E — G. Choose a prime p dividing n and let S be a p-Sylow subgroup of A,
hence of E. Let Z be the center of §; Z# 1 [BAI, p. 75]. A counting argument
shows that m divides the order of the normaizer N of Z in E. Hence there is
an extenson 0 — (ANN) - N— G — 1 If N £E, this extension splits
by induction, so there is a subgroup of N (hence of E) isomorphic to G. If
N = E, then Z < E and the extension 0 — A/Z — E/Z - G — 1 is split by
induction. Let Ei denote the set of all x € E mapping onto the subgroup G’
of E/Z isomorphic to G. Then Ei is a subgroup of E,and0 —-Z — Ei —
Gi — lisanextension. AsZ isabelian, thereis a subgroup of Ei, henceof E,
isomorphic to Gi. ¢

Application 6.6.10 (Crossed product agebras) Let L/K be a finite Galois
field extenson with G = Gal(L/K). Given a factor set [ ] of Gin L*, we
can form a new associative K-agebra A on the left L-module L[G] using the
icrossedi  product:

(D agg)x(O_bug) = ) g, hlag(g . ba)(gh). (ag. baeL).

geG heG g.h

It is a straightforward matter to verify that the factor set condition is equivalent
to the associativity of the product x on A. A is caled the crossed product
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algebra of L and G over K with respect to []. Note that L is a subring of
A and that dimg A = n2, where n = [L : K]. As we choose to not become
sidetracked, we refer the reader to [BAII, 8.4] for the following facts:

1. A is a smple ring with center K and A ®x L = M,(L). By Wedder-
bumis Theorem there is a division agebra A with center K such that
A= My(A).

2. Every simple ring A with center K and A ®x L = M,(L) is isomorphic
to a crossed product algebra of L and G over K for some factor set | .

3. Two factor sets yield isomorphic crossed product agebras if and only if
they differ by a coboundary.

4. The factor set [ ]= 1 yields the matrix ring M,(K), where n = [L: K].

5 If A and Ai correspond to factor sets []1and [1, then A ®k Al =
M, (A", where AT corresponds to the factor set [1+[ ]’

Definition 6.6.11 The relative Brauer group Br(L/K) isthe set of all sm-
ple algebras A with center K such that A ®x L = M,(L), n = [L : K]. By
Wedderbumis Theorem it is also the set of division algebras A with center K
and A ®k L = M,.(L), 2 = dimg A. By (1)-(3), the crossed product algebra
construction induces an isomorphism

H*(Gal(L/K); L*) —> Br(L/K).

The induced group structure [A][Af] = [AT] on Br(L/K) is given by (4)
and (5).

Crossed Modules and H?> 6.6.12 Here is an elementary interpretation of
the cohomology group H3(G; A). Consider a 4-term exact sequence with A
central in N

(*) 0>A->N-5SEL G,

and choose a based section o: G — E of m; as in the theory of factor sets,
the map [ 1: G x G — ker(r) defined by [g, 7] = o(g)a(h)o (gh)~! satisfies
a nonabelian cocycle condition

Lf,gllfg, h1="Plg, h] [f, ghl,

where ?‘f)[g, h] denotes the conjugate o (f)lg, hlo (f)~'. Since ker(r) =
a(N), we can lift each [ f, g] to an element [[ £, g]] of N and ask if an analogue
of the cocycle condition holds-for some interpretation of °‘/[[g, h]]. This
leads to the notion of crossed module.
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A crossed module is a group homomorphism «: N — E together with an
action of E on N (written (e, n) — “n) satisfying the following two condi-
tions:

1. ForalmneN,*My=mnm1

2. ForalecE, neN, an) = ex(n)e!

For example, the canonical map N - Aut(N) is a crossed module for any
group N. Crossed modules aso arise naturaly in topology: given a Serre
fibration F— E — B, the map m1(F)— m1(E) is a crossed module. (This
was the first application of crossed modules and was discovered in 1949 by
J. H. C. Whitehead.)

Given a crossed module N —= E, we set A = ker(e) and G = coker(a); G
is a group because a(N) is normal in E by (2). Note that A is in the center of
N and G acts on A, so that A is a G-module, and we have a sequence (x).

Returning to our original situation, but now assuming that N — Eis a
crossed module, the failure of [[ f, g]] to satisfy the cocycle condition is given
by the function ¢: G* — A defined by the equation

c(f, g WILS gl fg. A1 = " Pllg, k1l [1f, ghl).

The reader may check that ¢ is a 3-cocyle, whose class in H3(G; A) is inde-
pendent of the choices of o and [[f, g]]. As with Yoneda extensions (3.4.6),
we say that (x) iselementarily equivalent to the crossed module

0>A—>N—>E —-»>G->1

if there is a morphism of crossed modules between them, that is, a commuta
tive diagram compatible with the actions of E and Ei on N and N’

0_“)A—>N—(¥—-)E—)G—)]

I| ! ! |

0 —> A — N — E — G — 1.

Since our choices of aand [[ £, g]] for (%) dictate choices for Ni — Ei, these
choices clearly determine the same 3-cocycle c. This proves half of the fol-
lowing theorem; the other half may be proven by modifying the proof of the
corresponding Y oneda Ext Theorem in [BX, section 7.51.

Crossed Module Classification Theorem 6.6.13 Two crossed modules with
kernel A and cokernel G determine the same class in H>(G; A) if and only if
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they are equivalent (under the equivalence relation generated by elementary
equivalence). In fact, there is a I-l correspondence for each G and A:

[ equivalence classes of crossed modules

a ]<—> dements of H3(G; A).
0A—->N—>FE->G—>1

6.7 Restriction, Corestriction, Inflation, and Transfer

If Gisfixed, Hi(G;A) and H*(G; A) are covariant functors of the G-module
A. We now consider them as functors of the group G.

Definition 6.7.1 If p: H — G is a group map, the forgetful functor p* from
G-mod to H-mod is exact. For every G-module A, there is a natura surjec-
tion (p*A)y — Ag and a natural injection A — (p*A)#. These two maps
extend uniquely to the two morphisms p, = corg (called corestriction) and
p* = res? (cald testriction) of S-functors:

cory: Hy(H; p*A) —» H.(G; A)  and res%: H*(G; A) — H*(H; p*A)

from the category G-mod to Ab (2.1.4). Thisis an immediate consequence of
the theorem that H.(G; A) and H*(G; A) are universal §-functors, once we
notice that T,(A) = Hy(H; p*A) and T*(A) = H*(H; p*A) are Sfunctors.

Subgroups 6.7.2 The terms restriction and corestriction are normally used
only when H is a subgroup of G. In this case ZG is actudly a free ZH-
module, a basis being given by any set of coset representatives. Therefore
every projective G-module is aso a projective H-module, and we may use
any projective G-module resolution P — Z to compute the homology and co-
homology of H. If A is a G-module, we may cdculate corg as the homology
H,(a) of the chain map ¢: P ®y A — P ®¢ A; smilarly, we may calculate
res as the conomology H*(B) of the map f:Homg(P, A) —Homp (P, A).

Exercise 6.7.1 Let H be the cyclic subgroup C,, of the cyclic group Cyn.
Show that the map corf,:H*(Cm;Z) — Hy(Cpin; Z) is the natura inclusion
Z/m<>Z/mn for x odd, while res$;: H*(Cyun; Z) > H*(C; Z) is the natu-
ral projection Z/mn — Z/m for % even. (See 6.2.3.)

Inflation 6.7.3 Let H be a norma subgroup of G and A a G-module. The
composites

inf: H*(G/H; A")=> H*(G; A") > H*(G; A) and



190 Group Homology and Cohomology

coinf: Hy(G; A) — Hy(G; Ap) —> H(G/H; Ag)
are called the inflation and coinflation maps, respectively. Note that on H? we
have inf: (A#)%/H = AS and on Hy we have coinf: Ag=(An)G,n-

Example 6.7.4 If Ais trivia as an H-module, inflation = restriction and
coinflation = corestriction. Thus by the last exercise we see that (for * odd) the
map coinf: Hy(C; Z) — H(Cpyp; Z) is the natural inclusion Z/m <> Z/mn,
while (for * even) inf: H*(Cpup; Z) — H*(Cy; Z) is the natural projection
Z/mn—Z/m.

Exercise 6.7.2 Show that the following compositions are zero for i # 0:

res

H*(G/H; AT ™ 56 A) ™5 H*(H: A);

Ho(H; A) =5 H (G A) 2% H.(G/H: Ap).
In general, these sequences are not exact, but rather they fit into a spectra
sequence, which is the topic of the next section. (See 6.8.3.)

Functoriality of H, and Corestriction 6.7.5 Let C be the category of pairs
(G, A), where G is a group and A is a G-module. A morphism in C from
(H,B) to (G, A) is a pair (0: H— G, ¢: B — p*A), where p is a group
homomorphism and ¢ is an H-module map. Such a pair (p, ¢) induces a map
cor$ 0 ¢: H,(H; B)— H.(G; A). It follows (and we leave the verification as
an exercise for the reader) that H. is a covariant functor from C to Ab.

We have dready seen some examples of the naturality of H,. Corestriction
is H, for (p, B = p*A) and coinflation is H, for (G — G/H, A — AR).

Functoriality of H* and Restriction 6.7.6 Let D be the category with the
same objects as C, except that a morphism in D from (H, B) to (G, A) isa
pair (p: H — G ¢: p*A— B). (Note the reverse direction of ¢!) Such a pair
(p,¢) induces a map ¢ o res$: H*(G; A) — H*(H; B). It follows (again as
an exercise) that H* is a contravariant functor from D to Ab.

We have aready seen some examples of the naturality of H*. Restriction is
H* for (o, p*A = B) and inflation is H* for (G — G/H, A" — A). Conju-
gation provides another example:

Example 6.7.7 (Conjugation) Suppose that H is a subgroup of G, so that
each g € G induces an isomorphism o between H and its conjugate gHg ™.
If Alis a G-module, the abelian group map pg: A — A (a > ga) is actualy
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an H-module map from A to p*A because wg(ha) = gha = (ghg~')ga =
p(h)uga for dl h e H and a € A. In the category C of 6.7.5, (p, ug) is
an isomorphism (H, A) =(gHg !, A). Similarly, (p, ;") is an isomor-
phism (H, A) =(gHg™!, A) in D. Therefore we have maps H.(H;A) —
H,(gHg™';A) and H*(gHg™'; A) > H*(H; A).

One way to compute these maps on the chain level is to choose a projec-
tive ZG-module resolution P — Z. Since the P; are also projective as ZH-
modules and as Z[gHg~']-modules, we may compute our homology and
cohomology groups using P. The maps jg:P;— P; (p = gp) form an H-
module chain map from P to p*P over the identity map on Z. Hence the map
H.(H;A) > H,(gHg ' A)is induced from

PO®nA— P®uu,1 A, xQar> gx®ga.
Similarly, the map H*(gHg~'; A) — H*(H; A) is induced from

Hompy (P, A) »>Hom,y,-1(P, A), ¢ (p Hg(p(gilp)).

Theorem 6.7.8 Conjugation by an element g€ G induces the identity auto-
morphism on H,(G;Z) and H*(G; Z).

Proof The maps P ® Z— P ® Z and Homg (P, Z) — Homg(P, Z) are the
identity. <

Corollary 6.7.9 If H is a normal subgroup of G, then the conjugation action
of G on Z induces an action of G/H on H,(G;Z) and H*(G;Z).

Example 6.7.10 (Dihedral groups) The cyclic group C. is a norma sub-
group of the dihedral group D,,(6.4.10), and D,/ C,, = C>. To determine the
action of C, on the homology of Cy,, note that there is an element g of Dy,
such that gag-i = o~!. Let p:Cp — Cp, be conjugation by g. If P denotes
the (a—1, N) complexof 6.2.1, consider the following map from P to p* P :

1—o N 1-0 N -0
0««— 72 «— 726G «— 7IG «— 1IG «— IZG «— IG «— ZG ---

“ " _“l 7°l "zl ”zl (_")31

1-g~! N 1—o~! N 1-0-~
0«—7 «— 7G «—— 2G «— 7G «—— ZG «— IG «—— G

An easy calculation (exercise!) shows that the map induced from conjugation
by g is multiplication by (-1)i on Ha; -1(Cm;Z) and H¥(Cp; 7).
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67.1 Cup Product

As another application of the naturality of H*, we show that H*(G;Z) is an
associative graded-commutative ring, a fact that is familiar to topologists.

In 6.1.14 we constructed across product map x from H*(G;Z)QH*(H;Z)
to H*(G x H; Z). When G = H, composition with the restriction A* =
res& ¢ dong the diagonal map A: G — G x G gives a graded bilinear prod-
uct on H*(G;Z), caled the cup product. If x,y € H*(G;Z), the cup product
xUyisjust A*(x x y).

Exercise 6.7.3 (Naturality of the cross and cup product) Show that the
cross product is natural in G and H in the sense that (p*x) x (o*y) =
(px o) (x xy)in HPY9(G' x Hi; Z) for every p: GI — Gand o: Hi — H,
xeHP(G;Z),andy € H1( H; Z). Conclude that the cup product is natural in
G, that is, that (p*x1) U (p*x2) = p*(x1 U x2).

Theorem 6.7.11 (Cohomology ring) The cup product makes H*(G;Z) into
an associative, graded-commutative ring with unit. The ring structure is natu-
ral in the group G.

Proof Since the composites of A withthe magps A x 1, 1 X A: Gx G —
G x G x G are the same, and the cross product is associative (by exercise
6.1.9),

xUUD=xUAY Y x2) = A%(x x A*(y x 2))
=A*IXA*(x Xy x 2 = AA xD*(xxyxz)
=AYA*(x XY) X)) =A*xxy)Uz=x Uy Uz

If 7: G — 1 is the projection, the compositions (1 x #) A and (;rx 1) A are
the identity on H*(G; Z), and the restriction 7* sends 1 e H%(1;Z)to 1 €
HY%G; 7)== 7. Since we saw in exercise 6.1.9 that the cross product with
1e H%G;2) is the identity map,

xUL=A*xxn() = A*(Ixm)*(xx 1) =xx1=x,

and 1 U x = x similarly. Hence the cup product is associative with unit 1.

To see that the cup product is graded-commutative, it suffices to show that
the cross product (with G = H) is graded-commutative, that is, that y x x =
(—D¥x xyforx e H(G;Z) and y e HI (G;Z). This is a consequence of
the following lemma, since if 7 is the involution t(g,k)=(h,g) on G x G,
we have y U x = A*(y X x) = A*t*(x X y). <&
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Lemma 6.7.12 Let 7: G x H — H x G be the isomorphism (g, h) = (h, g)
and write t* for the associated restriction map H*(H x G, Z) — H*(G x
H,7Z). Then for xeHP(G;Z) and yeH9(H;Z), we have t*(yx X) =
(—DPI(x x ).

Proof Let P —Z be a free ZG-resolution and Q — Z a free Z H-resolution.
Because of the sign trick 1.2.5 used in taking total complexes, the maps a ®
b= (—1)b® afrom P,®Q,t0 0, ® P, assemble to give a chain map
. Tot( P ® Q) — Tot( Q ® P) over z. (Check this!) This gives the required
factor of (- 1)P4, because t* is obtained by applying Hom(-, Z) and taking
cohomology. <

Exercise 6.7.4 Let Be H¥(Cm;Z)=Z/m be a generator. Show that the ring
H*(Cp; Z) is the polynomia ring Z[B], modulo the obvious relation that
mpB =0.

Exercise 6.7.5 This exercise uses exercise 6.1.10.

1. Show that there is a cup product on H*(G; k) for any commutative ring
k, making H* into an associative, graded-commutative k-algebra, natural
inG.

2. Suppose that k=Z/m and G = C,;, with m odd. Show that the graded
algebra H*(Cyy;Z/m) is isomorphic to the ring Z/m[o, 1/(c% = Bo =
0), with oe H' and Be HZ.

Coalgebra Structure 6.7.13 Dua to the notion of a k-algebra is the notion
of a coalgebra over a commutative ring k. We call a k-module H acoalge-
bra if there are module homomorphisms A: H — H ®; H (the coproduct)
and ¢: H — k (the counit) such that both composites (e ® )A and (1 @ )A
(mapping H - H ® H — H) are the identity on H. We say that the coal-
gebra is coassociative if in addition (A @ DA=(1®A) A asmapsH —
H®H —>H®HQ®H. For example, H=kG is a cocommutative coalge-
bra; the coproduct is the diagona map from kG to k(G x G) =kG ® kG and
satisfies A(g) = g ® g, while the counit is the usual augmentation e(g) = 1.
More examples are given below in (9.10.8).

Lemma 6.7.14 Suppose that k is afield, or more generally that H.(G;K) is
flat as a k-module. Then H,(G; k) is a cocommutative coalgebra.

Proof Recall from exercises 6.1.7 and 6.1.12 that H,(G x G; k) is isomor-
phic to H, (G; k) @« H«(G; k), so the diagonal map A: G — G x G induces
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amap A, HJ(G; k) = H,(G; k) @, Hi(G; k). The projection ¢:G— 1 in-
duces amap &, from H,(G; k) to H,(1; k) = k. Since (eXx1)A=(1x e)A as
mapsG > G xG—> Gand (A x D)A=(1 xA)AasmapsG —> G x G —
G x G x G, we have the required identities (¢, @ 1)A, = (1 ® g,) A, and
(A ®@ DAL= (1 Q A A, <&

Definition 6.7.15 (Hopf algebras) A bialgebra is an algebra H, together with
algebra homomorphisms A and ¢ making H into a cocommutative coalgebra.
We cal H aHopfalgebra if in addition there is a k-module homomorphism
S: H — H (called the antipode) such that both maps x (s ® )A and x(1 ®
s)A (from H - H®H - H®H — H) equal the the projection H SN
k< H.

For example, the involution s(g) = g~! makes kG into a Hopf agebra,
because (s®@1)A(g) =g '®gand (1 ®5)A(g) =g®g~!. We will see
another example in exercise 7.3.7.

Exercise 6.7.6 Suppose that G is an abelian group, so that the product
n:Gx G — G is a group homomorphism and that k is a field. Show that
H,(G;k) and H*(G; k) are both Hopf algebras.

Transfer Maps 6.7.16 Let H be a normal subgroup of finite index in G, and
let A be a G-module. The sum _ ga over the right cosets { Hg) of H yields
a well-defined map from A to Ax. This map sends (ga — a) to zero, so it
induces a well-defined map tr: Ag— Ag. Since H,(G; A) is a universal §-
functor, tr extends to a unique map of §-functors, caled the transfer map:

tr : H(G; A) - H.(H; A).

Similarly, the sum 3" ga over the left cosets {gH} of H yieds a well-
defined map from A¥ to A. The image is G-invariant, so it induces a well-
defined map tr: A¥ — AC. This induces a map of §-functors, also called the
transfer map:

tr :H*(H; A) — H*(G; A).

Lemma 6.7.17 The composite corg o tr is multiplication by the index [G :

H] on H.(G; A). Similarly, the composite tr o resg is multiplication by [G :

H] on H*(G; A).

Proof In Ag and A®, the sums over the cosets are just Y. ga=(} g)-a=
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[G: H]-a. The corresponding maps between the S-functors are determined by
their behavior on Ag and A, so they must also be multiplication by [G : H].

<

Exercise 6.7.7 Show that the transfer map defined here agrees with the trans-
fer map defined in 6.3.9 using Shapirois Lemma. Hint: By universality, it suf-
fices to check what happens on Hy and H°.

Exercise 6.7.8 Use the transfer maps to give another proof of 6.5.8, that
when G is a finite group of order m =[G :1] multiplication by m is the zero
map on H,(G; A) and H"(G; A) for n # 0.

6.8 The Spectral Sequence

The inflation and restriction maps fit into a filtration of H*(G; A) first studied

1946 by Lyndon. The spectral sequence codifying this relationship was
found in 1953 by Hochschild and Serre. We shall derive it as a special case
of the Grothendieck spectral sequence 5.8.3, using the following lemma.

Lemma 6.8.1 If H is a normal subgroup of G, and A is a G-module, then
both Ay and A¥ are G/H-modules. Moreover, the forgetful functor o" from
G/H-mod to G-mod has — g as left adjoint and —¥ as right adjoint.

Proof A G/H-module is the same thing as a G-module on which H acts triv-
idly. Therefore Ay and A" are G/H-modules by construction. The universal
properties of A¥ — A and A — Ay trandate into the natural isomorphisms

Homg (A, p* B) Homg,n(An,B) and
Homg(p"*B, A) = Homg, (B, A®),

which provide the required adjunctions. <

Lyndon/Hochschild-Serre Spectral Sequence 6.8.2 For every normal sub-
group H of a group G, there are two convergent first quadrant spectral se-
guences:

E}, = Hy(G/H; Hy(H; A)) = Hpp14(G; A);

ES? = HP(G/H; HY(H; A) = HP14(G; A).
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The edge maps H.«(G; A) = H.(G/H; An) and Hy«(H;A)G/a—> Hx(G;A)
inthe first spectral sequence are induced from the coinflation and corestric-
tion maps. The edge maps H*(G/H;A")— H*(G; A) and H*(G; A) —
H*(H; A)¢/H in the second spectral sequence are induced from the inflation
and restriction maps.

Proof We claim that the functors —g and —¢ factor through G/H-mod as
follows:

_H
G-mod — G/H-mod G-mod — G/H-mod

6\ / ~G/H -GN\ W ~G/H
Ab Ab

To see this, let A be a G-module; we saw in the last lemma that Ayx and
A" are G/H-modules. The abelian group (An)g,u is obtained from A by
first modding out by the relations ha —a with h € H, and then modding
out by the relations ga—a for ge G/H. If g is the image of g € G then
ga—a=ga—a, sowe see that (Ap)g/niSA/TJA= Ag.

Similarly (A¥)%4¥obtained from A by first restricting to the subgroup
of dl a € A with ha = a, and then further restricting to the subgroup of al
a with ga = a for ge G/H. If g is the image of g € G, ga = ga. Thus
(AH)G/H — AG.

Finaly, we proved in Lemma 6.8.1 that — g is left adjoint to an exact func-
tor, and that — is right adjoint to an exact functor. We saw in 2.3.10 that this
implies that — preserves projectives and that — preserves injectives, so that
the Grothendieck spectral sequence exists. The description of the edge maps is
just atrandation of the description given in 5.8.3. O

Low Degree Terms 6.8.3 The exact sequences of low degree terms in the
Lyndon-Hochschild-Serre spectral sequence are

coinf coinf

Hy(G: A) 28 Hy(G/H Av) =5 Hy(H; A n <5 BV (G A) 5 H(G/H; An) — 0;

inf

0 - H'(G/H; AT ™ H\(G: A) =5 H'(H; A" % HAG/H; AT 25 H2(G; A)

Example 6.8.4 If H isin the center of G, G/H acts trividly on H.(H; A)
and H*(H; A), so we may compute the E? terms from H,(H;Z) and Uni-
versal Coefficient theorems. For example, let G be the cyclic group C»,, and
H = C,, form odd. Then H,(C3; H;(C,s; Z)) vanishes unlessp =0 or q = 0.
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The groups Z/2 lie along the x-axis, and the groups Z/m lie aong the y-axis.
The spectral sequence collapses at E? to yield the formulafor Hy(Cam; Z) that
we derived in 62.3.

0 0
G - sz G = DZm
ZIm 0 ZIm 0
0 0 O 0 0 O
ZIm 0 0 O 0 0 0 O
Z Zi2 0 Z12 0 Z ZI2 0 Z1R2 0

Example 6.8.5 (Dihedral groups) Let G be the dihedral group D2y = Cm ™
C; and set H =C,. If mis odd, then once again Hp(Cz; Hy(Cr)) vanishes
unless p =0 or g = 0. As before, the groups Z/2 lie along the x-axis, but
aong the y-axis we now have H;(Cy)c,. From our calculation 6.7.10 of the
action of Cz on Hy(Cpy) we see that Hy(Cm)c, is zero unless q = 0, when it is
Z,or g=3 (mod 4), when it is Z/m. Summarizing, we have computed that

Zz ifn=0

Z/2  if n= 1 (mod4)
Z/2m if n = 3 (mod4)|’
0 otherwise

Hy(Dym; Z) =

Example 6.8.6 (Gysin sequence) A central element ¢ of infinite order in G
generates an infinite cyclic subgroup T. As in 5.3.7 the spectral sequence
collapses to the long exact 16ysini sequence for every trivial G-module k:

coinf

CHy(G: K) ™ H(G/T; K) =2 Hyo(G/T; K) —> Hy—1(G; K) - - -

Exercise 6.8.1 The injinite dihedral group D« is the semidirect product T x
(2, where o0 € C; acts as multiplication by -1 on the infinite cyclic group
T (oto~'=1+7"1). Show that o acts as multiplication by -1 on Hy(T; Z), and
deduce that

Z ifn=0
Hy(Doo; )= 3 Z2 Z/2 ifn=1,3,5,7,...
0 if n=2,4,6,8, ..
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Hint: By naturality, H,(C>) is a summand of H«(Doo).

Presentations 6.8.7 A presentation of a group by generators and relations
amounts to the same thing as a short exact sequence of groups ! >R — F —
G — 1, where F is the free group on the generators of G and R is the normal
subgroup of F generated by the relations of G. Note that R is also a free
group, being a subgroup of the free group F. The spectral sequence of this
extension has E,%q =0forq#0,1and H,(F;Z)=0for n# 0, 1. Therefore
the differentials H,12(G;Z) — H,(G; Hi(R)) must be isomorphisms for n >
1, and we have the low degree sequence

R F G
— — —
R.E s [F,F] [G,G]

0 - HyG;Z)— 0.

The action of G on R/[R/R]isgivenby g-r = frf~!, where feF liftsg e
Gandr €R. The following calculation shows that (R/[R/R})¢ = R/[F, R]:

Q-1 .r=frft —r=fr v =111

By inspection of the low degree sequence, we see that we have proven the
following result, which was first established in [Hopf].

Hopfis Theorem 6.8.8 If G = F/R with F free, then Hz(G;Z)EE%F,;—]F—J.

6.9 Universal Central Extensions

A central extension of G is an extension 0 — A — X > G — 1 such that
Aisin the center of X. (If 1-cand A are clear from the context, we will just
say that X is a centra extension of G.) A homomorphism over G from X

to another central extension 0 »B —»>Y —>G —1of Gisamap F: X —
Y such that = = zf. X is called a universal central extension of G if for

every central extension 0 - B — Y —> G — 1 of G there exists a unique
homomorphism f from X to Y over G.

0—> A — X -5 G — 1
i UE T
0——>B——>Y—f—>G——>1

Clearly, a universal central extension is unique up to isomorphism over G,
provided that it exists. We will show that a necessary and sufficient condition
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Hint: By naturaity, H,.(C>) isasummand of H,(Dy).

Presentations 6.8.7 A presentation of a group by generators and relations
amounts to the same thing as a short exact sequence of groups1 - R —F —
G — 1, where F is the free group on the generators of G and R is the normal
subgroup of F generated by the relations of G. Note that R is dso a free
group, being a subgroup of the free group F. The spectral sequence of this
extension has E}, = 0 for g 0, 1 and H,(F:Z) = 0 for n+# 0, 1. Therefore
the differentials H,,4+2(G;Z)— H, (G; H{(R)) must be isomorphisms for n >
1, and we have the low degree sequence

IR F G
0— Hy(G; 1) —{R:. a . - [F, F] - (G, G] -0

The action of G on R/[R/R]isgivenby g-r= frf~! where feFliftsge
G and r e R. The following calculation shows that (R/[R/R])¢ = R/|F, R]:

(=D -r=frf 't —r=frfrt=1(f 1.

By inspection of the low degree sequence, we see that we have proven the
following result, which was first established in [Hopf].

Hopfis Theorem 6.8.8 If G = F/R with F free, then Hy(G;2)= 27511,

6.9 Universal Central Extensions

A central extension of G is an extension 0 — A — X —> G — 1 such that
A isin the center of X. (If = and A are clear from the context, we will just
say that X is a central extension of G.) A homomorphism over G from X

to another central extension 0 >B —Y—->G — 1 of Gisamap f: X —
Y such that = =7f. X is caled a universal central extension of G if for

every central extension 0 — B — Y — G — 1 of G there exists a unique
homomorphism f from X to Y over G.

0—>A—>X—H>G—>1
! 2
0 — B — ¥ —> G — 1

Clearly, a universa central extension is unique up to isomorphism over G,
provided that it exists. We will show that a necessary and sufficient condition
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for auniversal central extension to exist isthat G is perfect; recall that a group
G is perfect if it equals its commutator subgroup [G, GJ.

Example 6.9.1 The smallest perfect group is As. The universal central ex-
tension of As describes A as the quotient PSL,([Fs) of the binary icosahedra
group X = SLa(Fs) by the center of order 2, A = +(}%) [Suz, 2.91.

(59

0— n/2 — 5 SLy(Fs) —> PSLy(Fs) — 1.

Lemma 6.9.2 If G has a universal central extension X, then both G and X
are perfect.

Proof If X is perfect, then so is G. If X is not perfect, then B = X/[X, X] is
anonzero abelian group, 0 --B-—->Bx G — G — 1 is a central extension,
and there are two homomorphisms X — B x G over G : (0, ) and (pr, n).

<&

Exercises 6.9.1

1L.1f0—->A—-X—>G— 1isany centrd extension in which G and X
are perfect groups, show that Hj (X; Z)=0 and that there is an exact
sequence

Hy(X;7) =5 Hy(G;Z) — A — 0.

2. Show that if G is perfect then central extensions0 > A —>X —>G — 1
are classified by Hom(H2(G:; Z), A). (Use exercise 6.1.5.)

Remark The above exercises suggest that H2(G; Z) has something to do with
universal central extensions. Indeed, we shall see that the universal centra
extenson 0 > A — X — G — 1 has A= H;,(G;Z). The group Hz(G;Z) is
called the Schur multiplier of G in honor of Schur, who first investigated the
notion of a universal central extension of afinite group G in [Schur].

As indicated in section 6.6, Schur was concerned with central exten-
sions with A = C*, and these are classified by the group H?*(G;C*) =
Hom(H,(G; Z), C*). Since G is finite, H*(G;C*) is the Pontrjagin dual
(3.2.3) of the finite group H»(G;Z). Hence the groups H?(G;C*) and
Hy(G;Z) are noncanonically isomorphic.

Construction of a Universal Central Extension 6.9.3 Choose a free group
F mapping onto G and let R c F denote the kernel. Then [R, F] is a horma
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subgroup of F, and the short exact sequence 1 -+ R — F — G — 1 induces
a central extension

O—R/[R,F1->F/[R,F] - G — 1.

Now suppose that G is perfect. Since [F, F] maps onto G, there is a surjection
from [F, F]/[R, F] to G; its kernel is the subgroup (R N [F, F1)/IR, F],
which Hopfis Theorem 6.8.8 states is the Schur multiplier Hx(G; Z). We shall
prove that

0—> (RN[F,F)/IR,F1— [F,Fl/IR,F]> G —1

isauniversa central extension of G.
Lemma 6.9.4 [F, F1/[R, F] is a perfect group.

Proof Since [F, F] and F both map onto G, any x € F may be written as
x = xir with xi e [F, F] and r e R. Writingy € F as yis with yi € [F, F] and
s€ R, we find that in F/[R, F]

X y]1 = 'G's)x'r) " 's) = [, yil.

Thus every generator [x, y] of [F, F1/[R, F] is a commutator of elements x’
and yiof [F, F]/[R, F]. <

Theorem 6.9.5 A group G has a universal central extension if and only if G
is perfect. In this case, the universal central extension is

(%) 0—>H2(G;Z)—>%%—”—>G—>l.

k]

Here 1- R - F — G —1is any presentation of G.

Proof If G has a universal centra extension, then G must be perfect by 6.9.2.
Now suppose that G is perfect; we have just seen that (x) is a central extension
and that [F, F]/[R, F] is perfect. In order to show that (x) is universa, let
0—B—Y—> G — 1 be another central extension. Since F is a free group,
the map F — G liftsto amap h: F — Y. Since th(R) = 1, h(R) is in the
central subgroup B of Y. Thisimpliesthat h ([ R, F]) = 1. Therefore h induces
amap

n:[F, F1/[R, F1< F/[R, El —>Y
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such that Tn = 7, that is, such that z is a homomorphism over G. The follow-
ing lemma shows that # is unique and finishes the proof that (x) is universal.

<&

Lemma 6.9.6 IfO—)A—»XLG—)landO—)B—)Y—»G% 1 are
central extensions, and X is perfect, there is at most one homomorphism f
from X to Y over G.

Proof If fi and f2 are two such homomorphisms, define a set map ¢: X — B
by the formula f1(x) = f2(x)¢(x). Since B is central,

fixx) = L)ex) L)) = HlxxNe(xX)e).

Hence ¢p(xx') = p(x)¢(x’), that is, ¢ is a group homomorphism. Since B is an
abelian group, ¢ must factor through X/[X, X] = 1. Hence ¢(x) = 1 for al x,
that is, f = fi. <&

Exercise 6.9.2 (Composition) If 0> B — Y 2> X —> 1 and 0 > A —
X => G- 1 are central extensions, show that the icompositioni 0 —
ker(mp)— Y 2% G — 1isacentra extension of G. If X is a universa cen-

tra extenson of G, conclude that every centra extenson 0 - B —>Y —
X — 1 splits.

Recognition Criterion 6.9.7 A central extenson 0 - A — X 61
is universal if and only if X is perfect and every centrd extension of X splits
asadirect product of X with an abelian group.

Proof The éonly ifi direction follows from the preceding exercise. Now sup-
pose that X is perfect and that every centra extension of X splits. Given
a central extension 0 > B —>Y — G — 1 of G, we can construct a ho-
momorphism from X to Y over G as follows. Let P be the pullback group
{(x,y)e X X Y : n(X) = r(y)}. Then in the diagram

do

0 — B — P —>» X — 1
I L I
O—->B—>Y—r>G——>1

the top row is a central extension of X, so it is split by amap o: X - P.
The composite f: X — P — Y is the homomorphism over G we wanted to
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congtruct. Since X is perfect, f is unique (6.9.6); this proves that X is a
universal central extension of G. <

Corollary 6.9.8 If 0—~A — X — G— 1is a universal central extension,
then

H\(X;Z) = Hy(X;Z) = 0.

Corollary 6.9.9 If G is a perfect group and H2(G;Z) = 0, then every central
extension of G is a direct product of G with an abelian group.

0 > A>AxG—->G—1

Proof Evidently 0 - 0— G =G — 1 is the universal central extension of
G. &

Example 6.9.10 (Alternating groups) It is well known that the aternating
groups A, are perfect if n> 5. From [Suz, 3.2] we see that

2/6 ifn=6,7
Hy(A; Dy = {Z/2 iifn=4,50rn>38
0 ifn=1,2,3

We have adready mentioned (6.9.1) the universal central extension of As.
In general, the regular representation A, — SO,_1 gives rise to a centra
extension

0—>27Z/2—> Ay — Ap— |
by restricting the central extension
0—>72/2— Spin, ,(R) - S0,—1— 1.
If n#£6,7, A, must be the universal central extension of A,.

Example 6.9.11 It is known {Suz,1.9] that if F is a fidd, then the spe-
cia linear group SL,(F) is perfect, with the exception of SL2(F2)= De and
SLy(F3), which is « group of order 24. The center of SL,(F) is the group
wn(F) of n'* roots of unity in F (times the identity matrix 7), and the quo-
tient of SL,(F) by p,,(F) is the projective special linear group PSL,(F).
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When F =, is afinite field, we know that H>(SL,(F,;);Z) = 0 [Suz, 2.9]. It
follows, again with two exceptions, that

0 = un(Fy) —> SLa(Fg) — PSLy(F,) — 1
is the universal central extension of the finite group PSL,([F,).

Example 6.9.12 The elementary matrix ei*j in GL,(R) is the matrix that co-
incides with the identity matrix except for the single nonzero entry A in the
(i, ]) spot. The subgroup E,,(R) of GL,(R) generated by the elementary ma-
trices is a perfect group when n > 3 because [e}}, ¢/}, 1= e} for i # k. We now
describe the universal central extension of E,(R).

Definition 6.9.13 Let R be any ring. For n > 3 the Steinberg group St,,(R) is
the group that is presented as having generators xi*j (A€eR,1<i,j<n)and
relations
Atp,
ij

A

2. [xikj,x}‘k]:xik“ for i # k; and

3. [x}j,x,’je]:lforj #Akand i #¢.

ALK
1. X=X

There is a homomorphism St,(R) — E,(R) sending x}; to e}; because these
relations are also satisfied by the elementary matrices. It is known [Milnor]
[Swan, p. 208] that St,(R) is actualy the universal central extension of E,(R)
for n> 5. The kernel of St,,(R) — E,(R) is denoted K2(#, R) and may be
identified with the Schur multiplier. The direct limit K2(R) of the groups
K>(n, R) is an important part of algebraic K-theory. See [Milnor] for more
details and computations.

6.10 Covering Spaces in Topology

Let G be a group that acts on a topological space X. We shal assume that
each trandation X — X arising from multiplication by an element g € G is
a continuous map and that the action is proper in the sense that every point
of X is contained in a small open subset U such that every trandate gU is
digoint from U. Under these hypotheses, the quotient topology on the orbit
space X/G is such that the projection p: X — X/G makes X into a covering
space of X/G. Indeed, every small open set U is mapped homeomorphically
onto its image in X/G.
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Example 6.10.1 Let Y be a connected, localy simply connected space, so
that its universal covering space ¥ — Y exists. The group G = 7y (Y) acts
properly on X = ¥, and Y /G =Y.

Lemma 6.10.2 If G acts properly on X, the singular complex S,(X) of X is
a chain complex of free ZG-modules, and S.(X)¢ is the singular complex of
X/G.

Proof Let B, denote the set of continuous maps o: A,, = X. G acts on By,
with go being the composition of ¢ with trandation by ge G. Since S,,(X)
is the free Z-module with basis B, S,,(X) is a G-module. Since translation
by g sends the faces of o to the faces of go, the boundary map d: S, (X)—
Sn—1(X) isaG-map, so S,(X) is a G-module complex.

Let 18], denote the set of continuous maps o”: A,, — X/G. The unique path
lifting property of a covering space implies that any o’: A,, > X/G may be
lifted to @ map o: A,, = X and that every other lift is go for some g€ G.
As the go are distinct, this proves that B= G x B’ as a G-set. Choosing one
lift for each o’ gives a map B’ — B, hence a basis for S,(X) as a free ZG-
module. This proves that the natural map from S,,(X) to S,(X/G) induces an
isomorphism S,(X)g = S, (X/G). >

Corollary 6.10.3 If G acts properly on X, Hy(X,Z) and H*(X, Z) are G-
modules.

Definition 6.10.4 (Classifying space) A CW complex with fundamental
group G and contractible universal covering space is called a classifying space
for G, or a model for BG; by abuse of notation, we will call such a space
BG, and write EG for its universa covering space. From the Serre fibration

G — EG — BG we see that
G ifi=1
(BG) = .
T(BG) [0 otherwise}

It is well known that any two classifying spaces for G are homotopy equiva
lent. One way to find amodel for BG isto find a contractible C W complex X
on which G acts properly (and cellularly) and take BG = X/G.

Theorem 6.10.5 Hy(BG; Z) = H,(G;Z) and H*(BG;Z)= H*(G; Z).

Proof Since H,(EG)= H,(point) is 0 for x# 0 and Z for * = 0, the chain
complex S.( EG) is a free ZG-module resolution of Z. Hence H.(G;Z) =
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H(S«(EG) ®76 Z) = Hi(S«(EG)g) = Hi(S+(BG)) = H«(BG; Z). Simi-
larly, H*(G; Z) is the cohomology of

Homg(S«(EG), Z) = Homap(S«(EG)g,Z) = Homap(S«(BG), Z),

the chain complex whose cohomology is H* (B G; 2). >

Remark The relationship between the homology (resp. cohomology) of G and
BG was worked out during World War Il by Hopf and Freudenthal (resp. by
Eilenberg and MacLane). MacL ane asserts in [MacH] that this interplay iwas
the starting point of homological algebra® Here are some useful models of
classifying spaces.

Example 6.10.6 The circle S' and the complex units C* are two models for

BZ; the extensions 0 -7 - R — $!— 1 and 0—>Zz—”i>(CEE>(C*—> 1

expressing R (resp. C) as the universal cover of S! (resp. C*) are well known.

Example 6.10.7 The infinite sphere Sco is contractible, and G = C; acts
properly in such a way that $°°/G = RP>. Hence we may take RP> as our
model for BCs.

Example 6.10.8 Let S be a Riemann surface of genus g# 0. The funda
mental group G = m1(S) has generators ay,---,ag, by,--,bg and the single
defining relation [al, by][az, b2]-[ag, bg] = 1. One knows that the univer-
sal cover X of § is the hyperbolic plane, which is contractible. Thus S is the
classifying space B G.

Example 6.10.9 Any connected Lie group L has a maxima compact sub-
group K, and the homogeneous space X = L/K is diffeomorphic to R
where d = dim(L) — dim(K). If " is a discrete torsionfree subgroup of L,
then TN K ={1},soT" acts properly on X. Consequently, the double coset
space '\X =T"\L/K is a modd for the classifying space BT".

For example, the specid linear group SL,(R) has SO, (R) as maximal
compact, S0 X =S0,(R)\ SL,(R)=R? where d =22 — 1. SL,(Z)isa
discrete but not torsionfree subgroup of SL,(R}). For N > 3, the principal con-
gruence subgroup I'(N) of level N is the subgroup of all matrices in SL,(Z)
congruent to the identity matrix modulo N. One knows that T (N) istorsion-
free, so X/TI'(N) isamodd for BI'(N).
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Theorem 6.10.10 Let G act properly on a space X with mp(X) = 0. Then for
every abelian group A there are spectral sequences

'E2, = Hy(G; Hy(X, A)) = Hp14(X/G, A);

HEl = HP(G; HA(X, A) = HPM(X/G, A).

Proof Let us write H.(G;—) for the hyperhomology functors L.(—¢) de-
fined in 6.1.15 (or 5.7.4). Since C = S,(X) ®z A is a chain complex of G-
modules, there are two spectral sequences converging to the group hyperho-
mology H.(G; C). Shapirois Lemma 6.3.2 tells us that H,(S,(X)®z A) is
0 for g #0and S,(X/G)®z A for g =0 (6.10.2). Hence the first spectra
sequence collapses to yield

[]-I]p(G; C) = H,,(S*(X/G) ® A) _—_Hp(X/G, A).
The second spectral sequence has the desired E? term
11E127q = Hy(G; H,C) = Hy(G; Hy(X, A)).

Similarly, if we write H*(G; -) for the group hypercohomology R*(—¢) and
D for Homap(S(X), A), there are two spectral sequences (6.1.15) converging
to H*(G; D). Since

D, = Hom(ZG ® S,(X/G), A) = Hom(ZG, Hom(S,(X/G), A)),

Shapirois Lemma tells us that the first spectral sequence collapses to yield
H*(G;D)=H*(X/G, A), and the second spectral sequence has the desired
E> term

HEPI — HP(G; HY(D)) = HP(G; HI(A)). o

Remark There is a map from X/ G to BG such that X — X/G — BG has
the homotopy type of a Serre fibration. The spectral sequences (6.10.10) may
then be viewed as special cases of the Serre spectral sequence 5.3.2.

6.11 Galois Cohomology and Profinite Groups

The notion of profinite group encodes many of the important properties of the
Galois group Gal(L /K) of aGalois field extension (i.e., an algebraic extension
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that is separable and norma but not necessarily finite). The largest Gaois
extension of any field K is the separable closure K; of K; K is the subfield
of the algebraic closure K consisting of al elements separable over K, and
Ks=K if char(K) = 0.

K is aso the union UL; of the partialy ordered set {L;:i€l} of dl finite
Gdlois field extensions of K. If K¢ L;c L;, the Fundamental Theorem of
finite Galois theory [BAI, 4.5] states that there is a natural surjection from
Gal(L ;/K) to Gal(L;/K) with kernel Gal(L;/L;). In other words, there is
a contravariant functor Gal(—/K) from the filtered poset I to the category of
finite groups.

Krullis Theorem 6.11.1 The Galois group Gal(K;/ K) of all field automor-
phisms of K jixing K is isomorphic to the inverse limit lim Gal(L;/ K) of finite
groups.

Proof Since the L; are splitting fields over K, any automorphism « of K|
over K restricts to an automorphism «; of L;. The resulting restriction maps
Gal(K;/K)—Gal(L;/K) are compatible and yield a group homomorphism
¢ from Gal(K/K) to the set l(iLnGal(Li/K) of al compatible families (¢;) e
NGal(L;/K). If a # 1, then a(x)# x for some xeK;= UL;;if xeL,,
then «; (X) = a(x) # X. Therefore ¢ (@) # 1, that is, ¢ isinjective. Conversely,
if we are given (¢;) in}i_xpGal(L,-/K), define o € Gal(K/K) as follows. If
x€Kj, choose L; containing x and set a(x) = «a;(x); compatibility of the «;’s
implies that «(x) is independent of the choice of i Since any x,yeK; liein
some L;,« is a field automorphism of Kj, that is, an element of Gal(K/K).
By construction, ¢ (e) = (¢;). Hence ¢ issurjective and so an isomorphism.
<

Example 6.11.2 If I, is afinite field, its separable and algebraic closures co-
incide. The poset of finite extensions IF, » of [, is the poset of natural numbers,
partially ordered by divisibility, and Gal(F,/F,) islim(Z/nZ) = 7=1],Z,.
For every prime p, let K be the union of al the F,» with (p, n) = 1; then
Gal(F,/K)isZ,.

There is a topology on Gal(K/K) =lim Gal(L;/K) that makes it into a
compact Hausdorff group: the profinite to&logy. To define it, recall that the
discrete topology on a set X isthe topology in which every subset of X is both
open and closed. If we are given an inverse system {X;} of topological spaces,
we give the inverse limit lim X; the topology it inherits as a subspace of the
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product I1X;. If the X; are al finite discrete sets, the resulting topology or
X =1lim X; is called the projinite topology on X. Since each Gal(L;/K) is:
finite discrete set, this defines the profinite topology on Gal(K/K). To show
that this is a compact Hausdorff group, we introduce the concepts of profinite
set and profinite group.

Profinite Sets 6.11.3 A projinite set isaset X that isthe inverse limit lim X;

of some system {X;} of finite sets, made into a topological space using the
profinite topology described above. The choice of the inverse system is not
part of the data; we will see below that the profinite structure is independent of
this choice.

The Cantor set is an interesting example of a profinite set; the subspace
{0,1,4,..., 1.y of R is another. Profinite groups like Z,, and Gal(K,/K)
form another important class of profinite sets.

Some elementary topologica remarks are in order. Any discrete space is
Hausdorff; as a subspace of [1X;, lim (_Xl- is Hausdorff. A discrete space is

compact iff it is finite. A topological space X is called totally disconnected
if every point of X is a connected component, and discrete spaces are totaly
disconnected.

Exercise 6.11.1 Suppose that {X;} is an inverse system of compact Hausdorff
spaces. Show that I(iﬂ X; is also compact Hausdorff. Then show that if each of

the X; is totally disconnected, lim X; is also totaly disconnected. This proves
one direction of the following theorem; the converse is proven in [Magid)].

Theorem 6.11.4 Profinite spaces are the same thing as totally disconnected,

compact Hausdor{f topological spaces. In particular; the projinite structure of

X = lim X; depends only upon the topology and not upon the choice of inverse
o

system {X;}.

Exercise 6.11.2 Let X be a profinite set.

1. Show that there is a canonical choice of the inverse system {X;} making
X profinite, namely the system of its finite topological quotient spaces.

2. Show that every closed subspace of X is profinite.

3. If X isinfinite, show that X has an open subspace U that is not profinite.

Definition 6.11.5 A projinite group isagroup G that is an inverse limit of fi-
nite groups, made into atopologica space using the profinite topology. Clearly



208 Group Homology and Cohomology

product T1X;. If the X; are all finite discrete sets, the resulting topology on
X =lim X; is called the profinite topology on X. Since each Gal(L;/K) isa
finite discrete set, this defines the profinite topology on Gal(K;/K). To show
that this is a compact Hausdorff group, we introduce the concepts of profinite
set and profinite group.

Profinite Sets 6.11.3 A projinite set isaset X that is the inverse limit Iim X;
of some system {X;} of finite sets, made into a topological space using the
profinite topology described above. The choice of the inverse system is not
part of the data; we will see below that the profinite structure is independent of
this choice.

The Cantor set is an interesting example of a profinite set; the subspace
{0, 1, §,..., L, ..} of R is another. Profinite groups like Z, and Gal(K/K)
form another important class of profinite sets.

Some elementary topological remarks are in order. Any discrete space is
Hausdorff; as a subspace of I1X;, Iir‘r(Q(,- is Hausdorff. A discrete space is

compact iff it is finite. A topological space X is called totally disconnected
if every point of X is a connected component, and discrete spaces are totally
disconnected.

Exercise 6.11.1 Suppose that { Xi} is an inverse system of compact Hausdorff
spaces. Show that I(ln X; is aso compact Hausdorff. Then show that if each of

the X; is totaly disconnected, Iim X; is also totally disconnected. This proves
one direction of the following theorem; the converse is proven in [Magid)].

Theorem 6.11.4 Profinite spaces are the same thing as totally disconnected,
compact Hausdorff topological spaces. In particular, the projinite structure of
X= I@ X; depends only upon the topology and not upon the choice of inverse
sy stem {X; }.

Exercise 6.11.2 Let X be a profinite set.

1. Show that there is a canonical choice of the inverse system (Xi) making
X profinite, namely the system of its finite topological quotient spaces.

2. Show that every closed subspace of X is profinite.

3. If X isinfinite, show that X has an open subspace U that is not profinite.

Definition 6.11.5 A profinite group is agroup G that is an inverse limit of fi-
nite groups, made into a topological space using the profinite topology. Clearly
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G is aprofinite set that is also a compact Hausdorff topologica group. In fact,
the converse is true: Every totally disconnected compact Hausdorff group is a
profinite group. A proof of this fact may be found in [Shatz], which we recom-
mend as a good generd reference for profinite groups and their cohomology.

Examples 6.11.6 (Profinite groups)

1. Any finite group is trivialy profinite.

2. The p-adic integers Z,, = leIZ/piZ are profinite by birthright.

3. Krullis Theorem 6.11.1 states that Gal(K/K) is a profinite group.

4. (Profinite completion) Let G be any (discrete) group. The projinite com-
pletion G of G is the inverse limit of the system of al finite quotient
groups G/H of G. For example, the profinite completion of G = Z is
7= 1(i£1(Z/nZ), but the profinite completion of G = Q/Z is 0. The ker-

nel of the natural map G — G is the intersection of all subgroups of
finite index in G.

Exercise 6.11.3 Show that the category of profinite abelian groups is dual to
the category of torsion abelian groups. Hint: Show that A is a torsion abelian
group iff its Pontrjagin dual Hom(A, Q/Z) is a profinite group.

Exercise 6.11.4 Let G be a profinite group, and let H be a subgroup of G.

1. If Hisclosed in G, show that H is also a profinite group.

2. If His closed and normal, show that G/H is a profinite group.

3. If His open in G, show that the index [G : H] is finite, that H is closed
in G, and therefore that H is profinite.

It is useful to have a canonical way of writing a profinite group G as the
inverse limit of finite groups, and thisis provided by the next result.

Lemma 6.11.7 If G is a projinite group, let I/ be the poset of all open normal
subgroups U of G. Then U forms a fundamental system of neighborhoods of
1, each G/ U is a finite group, and G =1limG/U.

—

Proof If G =1im G;, then the U; = ker(G — G;) are open norma subgroups
of G and the natura map G — lim G; factors through Iin<1_G/U,-. Since I(im is
left exact, this yields G ’=V(I|_m G/ U; and shows that {U;} (hence U) forms a

fundamental system of neighborhoods of 1. Hence every open subgroup U of
G contains some U;, and this suffices to show that G ELiLn{G/U:Ue U}

(Check this!) 0
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(The notation x; indicates an omitted term.) For example, if p = 2, then
duUu@xAy)=ux @y —uy®@x —u®[xyl

V,(g) with this differentia is called the Chevalley-Eilenberg complex. It is
sometimes also called the standard complex.

Exercise 7.7.1 Verify that d?= 0, so that Vj is indeed a chain complex of
Ug-modules. Hint: Writing d(6;) = 6;1 + 6;2, show that —6;;isthei =1 part
of 621 and that 82 = 0. Then show that —62 isthe i > 1 part of ;.

Theorem 7.7.2 V,(g) “skisa projective resolution of the g-module k.

Proof (Koszul) It suffices to show that H,(Vi(g)) =0 for n # 0.
Choose an ordered basis {e,} of g as a k-module. By the Poincaré-Birkhoft-
Witt Theorem (7.3.7), V,(g) is a free k-module with a basis consisting of terms

Ker® (6, A...Aem)a1<..<apand I =(B1, -, Bm) increasing.

We filter V,(g) by k-submodules, letting F,V, be the submodule generated by
terms () with m + n < p. Since [e;e;] is a linear combination of the ex in g,
thisis actualy afiltration by chain subcomplexes

0c FpVxCTFHIV,.C---C V,(g) = UFpV,.

This filtration is bounded below and exhaustive (see 5.4.2), so by 5.5.1thereis
a convergent spectral sequence

ESy =FpVpig/Fp-1Vpiq = Hpig(Vi(@)).

This spectral sequence is concentrated in the octantp>0,q<0,p + g> 0.
The first column is FoVi, which is zero except in the (0,0) spot, where EJ) is
FoVo =k

We claim that each column Eg* is exact for p # 0. This will prove that the
spectral sequence collapses at E!, with Ell,q =0for(p,q)# (0, 0),yieding
the desired computation: H, (V,) = 0 for n # 0.

Let A, be the free k-submodule of Ug on basis

{ey: I =(B1.---, By) Iisanincreasing sequence).

Then A, = F, Vo/Fy4—1 Vo and ES, = A_, ® AP*9g. Moreover, the formula
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for the differential in V, shows that the differential dO:E‘;,q—>qu_1 is given
by

n
Aa@enn . Aew)=01=Y (=) aey,@eq A .. AlgA. .. Acy,.

We saw in exercise 7.3.6 that A = Ag® A1®--- is a polynomial ring on the
indeterminates e, : A = k[ey, ez, -- -]. Comparing formulas for d, we see that
the direct sum @Eg* of the chain complexes Eg*is identical to the Koszul
complex

A® A'g = A" (®Aey) = K(x)

of 4.5.1 corresponding to the sequence x = (et, e2,--). Since x is a regular
sequence, we know from loc. cit. that

o0 oo
Hu(x, A) = H,(A® £*0) = D H,—p(E)) =DE, -,
=0 p=0

is zero for n # 0 and A/xA =k for n = 0. Since E}, =k, it follows that
E}, =0 for (p,q) #(0,0), & claimed. o

Corollary 7.7.3 (Chevalley-Eilenberg) If M is a right g-module, then the
homology modules H,(g, M) are the homology of the chain complex

*
M @ug Va(@) = M ®uy Ug®iA™g - M@k ATg.

If M is a left g-module, then the cohomology modules H*(g, M) are the coho-
mology of the cochain complex

Homy(V (g), M) = Homy(Ug ®« A*g, M) = Homg(A*g, M).

In this complex, an n-cochain f: A"g— M is just an alternating k-multilinear
function f(xiy,---, xy) of n variables in g, taking values in M. The cobound-
ary 8f of such an n-cochain is the (n + 1)-cochain

Sf Gen s xnp )= (=D i fGen o R )
+ Z(*l)i+jf([xi)€j],xl,...,_fei’...’}j’...).
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Application 7.7.4 (Cohomologica dimension) If g is n-dimensiona as a
vector space over a field k, then Hi(g, M) = Hi(g, M) = 0 for al i>n. In-
deed, Afg = 0 in this range. The following exercise shows that H" (g, M)#0
for some g-module M, so that g has cohomological dimension n = dimg(g).

Exercise 7.7.2 If kis afield and g is n-dimensional as a vector space, show
that Vg has global dimension n (4.1.2). To do this, we proceed in several steps.
First note that pdy¢(k) < n because V,(g) is a projective resolution of k.

1. Let A"g=k be given the g-module structure

n
[y, Xt A A xp] = Z XP A A [yxil A A xp.
i=1

Show that H"(g, A"g)= k. This proves that pdyg4(A”g)=nand hence
that gl. dim(Ug) > n.

2. Use the natural isomorphism Ext{,g(M, N) = H}", (g, Homy (M, N))
(exercise 7.3.5) and the Globa Dimension theorem 4.1.2 to show that
gl.dim(Ug) <n, and hence that g/.dim(Ug) = n.

Exercise 7.7.3 Use the Chevalley-Eilenberg complex to show that

Hs(sla, k) = H?(sly, k) = k.

Exercise 7.7.4 (1 -cocycles and module extensions) Let M be a left g-module.
If 0—> M — N—>k—0is a short exact sequence of g-modules, and ne N
is such that n(n) = 1, define - g — M by f(x) = xn. Show that fisal-
cocycle in the Chevalley-Eilenberg complex Homy(A*g, M) and that its class
[f] e H!(g, M) is independent of the choice of n. Then show that H!(g, M)
isin |-l correspondence with the equivalence classes of g-module extensions
of k by M. (Compare to exercise 7.4.5.)

Exercise 7.7.5 (2-cocycles and agebra extensions) Let M be a left g-module,
with g free as a k-module.

1 1If 0—>|\/|—>e—">g—>0 is an extension of Lie agebras, and o:g—
e is a k-module splitting of w, show that the Lie agebra structure on
e=M x g may be described by an alternating k-bilinear function f: g x
g — M defined by

lox), o] =o(xyD) + f(x,y), x.¥€q.
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Show that f is a 2-cocycle for the Chevalley-Eilenberg cochain complex
Homg{A*g, M). Also, show that if o’ is any other splitting of =, then
the resulting 2-cocycle f” is cohomologous to f. This shows that such
an extension determines a well-defined eement [f] € HZ, (g, M).

2. Using part (1), show directly that HZ2.(g, M) is in I-1 correspondence
with equivalence classes of Lie algebra extensions of g by M. Thisis
the same correspondence as we gave in section 7.6 by a more abstract
approach.

Exercise 7.7.6 If M isaright g-module and g € g, show that the formula
(M ®xtA .. Axp)g=[mgl®xiN---Axp
+Y m@x A Alngl A A Xy

makes M ® V,(g) into a chain complex of right g-modules. Then show that
the induced g-module structure on H,(g; M) is trivial.

7.8 Semisimple Lie Algebras

We now restrict our attention to finite-dimensional Lie algebras over afield k
of characteristic 0. We will give cohomological proofs of several main theo-
rems involving solvable and semisimple Lie algebras. First, however, we need
to summarize the main notions of the classical theory of semismple Lie alge-
bras.

Definitions 7.8.1 An idedl of g is called solvable if it is solvable as a Lie
algebra (see 7.1.7). It is not hard to show that the family of all solvable ideals
of g forms a lattice, because the sum and intersection of solvable ideals is a
solvable ideal [JLA, 1.71. If g is finite-dimensional, there is a largest solvable
ideal of g, called the solvable radical rad g of g. Every ided f of g contained
inrad g is a solvable ideal.

A Lie algebra g is called simple if it has no ideals except itself and O, and
if [g,9] #0(.e, g=Ig, g]). For example, sl, (k) is a smple Lie algebra for
n > 2 (as char(k) # 2).

A Lie algebra g is called semisimple if rad g = 0, that is, if g has no nonzero
solvable idedls. In fact, g is semisimple iff g has no nonzero abelian ideds; to
see this, note that the last nonzero term (rad g)*~" in the derived series for
rad g is an abelian ideal of g. Clearly simple Lie algebras are semismple.

Lemma 7.8.2 V¥ gisa finite-dimensional Lie algebra, then g/(rad g) is a
semisimple Lie algebra.
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Proof If not, g/ rad g contains a nonzero abelian ideal a = §/ radg. But
[a al =0, sof’ =[h,h] must lie inside rad g. Hence by’ is solvable, and there-
fore so ish. This contradicts the maximality of rad g. 2

Definition 7.8.3 (Killing form) If g is a Lie subalgebra of gl,, we can use ma-
trix multiplication to define the symmetric bilinear form B(x, y) = trace(xy)
on g. This symmetric form is ig-invariant? in the sense that for x,y,zeg
we have B([xy],z) = B(x,[yz]), or equivalently B([xyl,z)+ B(x,[zy]) = 0.
(Exercisel)

Now suppose that g is an n-dimensiona Lie algebra over k. Left multiplica-
tion by elements of g gives a Lie agebra homomorphism

ad: g — Lie(Endx(g)) = gl,,

cdled the adjoint representation of g. The symmetric bilinear form on g ob-
tained by pulling back g is caled the Killing form of g, that is, the Killing
form is k (x,y) = trace(ad(x)ad(y)). The importance of the Killing form is
summed up in the following result, which we cite from [JLA, 111.41:

Cartan’s Criterion for Semisimplicity 7.8.4 Let g be a finite-dimensional
Lie algebra over a field of characteristic 0.

1. g is semisimple if and only if the Killing form is a nondegenerate sym-
metric bilinear form on the vector space g.

2. IfgCgl, and g is semisimple, then the bilinearform B(x,y) = trace(xy)
is also nondegenerate on g.

Structure Theorem of Semisimple Lie Algebras 7.8.5 Let g be a jinite-
dimensional Lie algebra over afield of characteristic 0. Then g is semisimple
iff g=91xg2 X --- xg, is the jinite product of simple Lie algebras g;. In
particular, every ideal of a semisimple Lie algebra is semisimple.

Proof If the g; are sSimple, every ideal of g = g x---x g, is a product of g;’s
and cannot be abelian, so g is semisimple.

For the converse, it suffices to show that every minimal ideal a of a semisim-
ple Lie algebra g is a direct factor: g = ax b. Define b to be the orthogonal
complement of a with respect to the Killing form. To see that b is an ideal of
g, we use the g-invariance of «.foraea beb,andx eg,

k(a, [x, b]) = k([ax],b) =0

because [ax] € a. Hence [xb] € b and b is an ideal of g.
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To conclude, it suffices to show that a N b = 0, since thisimpliesg=ax b.
Now an b isanidea of g; since ais minimal either anb=aoranb=0.
If an b = a, then x([a1az], x) = k(ay,[azx]) = 0 for every aj,az€ a and
x € g. Since «is nondegenerate, this implies that {aja;] = 0. Thus a is abelian,
contradicting the semisimplicity of g. Henceanb =0, and wearedone. 0O

Corollary 7.8.6 If gis finite-dimensional and semisimple (and char(k) = 0),
then g =[g,g]. Consequently,

Hi(g, k) = H'(g, K = 0.

Proof If g = [g, g], then g?? = 0. On the other hand, we saw in 7.4.1 and 7.4.8
that Hi(g, k) = g*® and H'(g, k) = Homg(g?, k). 0

Corollary 7.8.7 If g Cgl, is semisimple, then g Csl, =[gl,,gl,].

Exercise 7.8.1 Suppose that k is an agebraicaly closed field of characteristic
0 and that g is a finite-dimensional simple Lie algebra over k.

1. Use Schuris Lemma to see that Homyg(g, g) = k.

2. Show that g = Hom(g, k) a g-modules.

3. If fg®g—kis any g-invariant symmetric bilinear form, show that f
is a multiple of the Killing form «, that is, f = a«x for some « € k.

4. If v is any k-vector space and f: g @ g — Vis any g-invariant symmet-
ric bilinear map, show that there is a ve V such that f(x,y) =« (x, y)v.

Exercise 7.8.2 (Counterexample to structure theorem in char. p #0) Let k
be a field of characteristic p # 0, and consider the Lie agebra gl,,n> 3.
Show that the only ideals of g, are s, = [gl,, gl,,] and the center k-1. If pin,
show that the center is contained inside sl,,. This shows that pgl, = gl,,/k-1
has only one ided, namely psl, = sl,/k-1, and that psl, is smple. Conclude
that pgl,, is semisimple but not a direct product of simple ideals and show that
Hi(pgly, KT H'(pgl,, k) = k.

The Casimir Operator 7.8.8 Let g be semisimple and let M be an m-
dimensional g-module. If f is the image of the structure map

p: g — Lie(Endr(M)) = gl,,, (k),

then g=h x ker(p),h < gl,,,, and the bilinear form g onh is nondegenerate
by Cartan’s criterion 7.8.4. Choose a basis {€t, ..., e/} of b; by linear algebra
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there is a dua basis {e!,..., e’} of h such that B(ei,e’) = §;;. The element
ey =Y eieeUgis caled the Casimir operator for M; it is independent of
the choice of basis for §. The following facts are easy to prove and are left as
EXErcises:

1. If x e gand [e;, x] = ) cijej, then [x, el]= Zcijei.

2. cpisin the center of Ug and cp € 3. Hint: Use (1).

3. The image of cps in the matrix ring Endg (M) is r/m times the identity
matrix. In particular, if M is nontrivial as a g-module, then r #0 and cx
acts on M as an automorphism. Hint: By (2) it is a scalar matrix, so it
suffices to show that the trace is r = dim(h).

Exercise 7.8.3 Let g = sl, with basis x=(§4),y=(00).n=(;9). 1f M is
the canonical 2-dimensional g-module, show that ¢y = 2xy —h+ h2/2, while
its image in End(M) is the matrix (8/23/(2)).

Theorem 7.8.9 Let g be a semisimple Lie algebra over a field of characteris-
tic 0. If M is a simple g-module, M # k, then

Hi (g, M) = H"(g, M) = 0 forali.

Proof Let C be the center of Ug. We saw in 3.2.11 and 3.3.6 that H,(g, M) =
Torff”(k, M) and H*(g, M) = Ext’{jg(k, M) are naturally C-modules, more-
over, multiplication by ¢ € Cisinduced by c: k >k aswel asc: M — M.
Since the Casimir element cys acts by 0 on k (as cy €3J) and by the invertible
scaar r/m on M, we must have 0 = r/m on H,(g, M) and H*(g, M). This
can only happen if these C-modules are zero. <&

Corollary 7.8.10 (Whiteheadis first lemma) Let g be a semisimple Lie alge-
bra over a field of characteristic 0. If M is any finite-dimensional g-module,
then Hﬂie(g, M) = 0. That is, every derivation from g into M is an inner
derivation.

Proof We proceed by induction on dim(M). If M is simple, then either M = k
and H'(g,k) = g/[g. 9] =0 or else M # k and H*(g, M) = 0 by the theo-
rem. Otherwise, M contains a proper submodule L. By induction, H!(g, L) =
H'(g, M/L) = 0, so we are done via the cohomology exact sequence

..+HYg,L)> H'(g, M) > H'(g, M/L)---. &
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Weylis Theorem 7.8.11 Let g be a semisimple Lie algebra over a field of
characteristic 0. Then every finite-dimensional g-module M is completely re-
ducible, that is, is a direct sum of simple g-modules.

Proof Suppose that M is not a direct sum of simple modules. Since dim(M)
is finite, M contains a submodule M; minima with respect to this property.
Clearly M is not simple, so it contains a proper g-submodule Mu. By induc-
tion, both My and M, = M /Mj are direct sums of simple g-modules yet M
is not, so the extension M| of M2 by Mp must be represented (3.4.3) by a
nonzero element of

Extyyq (M2, Mo) = H}, (g, Hom (M2, My))
(see exercise 7.3.5), and this contradicts Whiteheadis first lemma. 0

Corollary 7.8.12 (Whiteheadis second lemma) Let g be a semisimple Lie al-
gebra over afield of characteristic 0. 1€ M is any finite-dimensional g-module,
then Hfie(g, M) = 0.

Proof Since H* commutes with direct sums, and M is a direct sum of simple
g-modules, we may assume that M is simple. If M # k we aready know the
result by 7.8.9, so it suffices to show that H?(g, k) = 0, that is, that every Lie
algebra extension

0~—>k—>ei>g—>0

splits. We claim that e can be made into a %-module in such away that = isa
g-map. To see this, let x be any lift of x € g to e and define x oy to be [x, y]
fory € e. This is independent of the choice of x because k is in the center of
e. The g-module axioms are readily defined (exercise!), and by construction
m{x 0oy) =[x, n(y)]. This establishes the claim.

By Weylis Theorem e and g split as %-modules, and there is a g-module
homomorphism o:g— e splitting 7 such that e = k x g as a %-module. If we
choose x = ax), then it is clear that ¢ is a Lie agebra homomorphism and
that ek x g as a Lie algebra. This proves that H%(g,k) =0, as desired. 0

Remark H3(sl,, k) = k (exercise 7.7.3), so there can be no ithird Whitehead
lemma.”

Leviis Theorem 7.8.13 Ifg is a finite-dimensional Lie algebra over afield of
characteristic zero, then there is a semisimple Lie subalgebra C of g (called a
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Levi factor of g) such that g is isomorphic to the semidirect product

g= (rad g)yx L.

Proof We know that g/(rad g) is semisimple, so it suffices to show that the
following Lie algebra extension splits.

O—-radg—>g—g/radg— 0

If rad g is abelian then these extensions are classified by H?(g/(rad g), rad g),
which vanishes by Whiteheadis second lemma, so every extension splits.

If rad g is not abelian, we proceed by induction on the derived length of
rad g. Let v denote the ideal [rad g, rad g] of g. Since rad(g/t) = (rad g)/v is
abelian, the extension

0 —>(radg)/t— g/r —>g/(radg) —> 0

splits. Hence there is an ideal h of g containing ¢ such that g/r = (rad g)/t X
h/r and hir = g/(rad g). Now

rad(h) = rad(g) Nh =,

and v has a smaller derived length than rad g. By induction there is a Lie
subalgebra £ of f such that h=tx L and £L=h/r=g/rad g. But then L
is our desired Levi factor of g. 0

Remark Levi factors are not unique, but they are clearly al isomorphic to
g/(rad g) and hence to each other. Malcev proved (in 1942) that the Levi
factors are all conjugate by nice automorphisms of g.

Historical Remark 7.8.14 (see [Bour]) Sophus Lie developed the theory of
Lie groups and their Lie algebras from 1874 to 1893. Semisimple Lie alge-
bras over C are in |- correspondence with compact, simply connected Lie
groups. In the period 1888-1894 much of the structure of Lie algebras over
C was developed, including W. Killingis discovery of the solvable radical and
semisimple Lie algebras, and the introduction of the iKilling formi in E. Car-
tanis thesis. The existence of Levi factors was announced by Cartan but only
proven (publicly) by E. E. Levi in 1905. Weylis Theorem (1925) was origi-
nally proven using integration on compact Lie groups. An agebraic proof of
Weylis theorem was found in 1935 by Casimir and van der Waerden. This and
J. H. C. Whiteheadis two lemmas (19361937) provided the first clues that
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enabled Chevalley and Eilenberg (1948 [ChE]) to construct the cohomology
H*(g, M). The cohomological proofs in this section are close parallels of the
treatment by Chevalley and Eilenberg.

Exercise 7.8.4 If g is afinite-dimensional Lie algebra over afield of charac-
teristic 0, show that g is semismple iff H!(g, M) = 0 for al finite-dimensional
g-modules M.

Exercise 7.8.5 (Reductive Lie algebras) A Lie algebra g iscalled reductive if
g is a completely reducible g-module (via the adjoint representation). That is,
g is reductive if g is a direct sum of simple g-modules. Now assume that gis
finite-dimensional over a field of characteristic 0, so that g= (rad g) x £ for
some semisimple Lie algebra C by Leviis theorem. Show that the following
are equivaent:

1. g is reductive

2. lg.gl=CL

3. rad(g) is abelian and equals the center of g

4. g= ax L where ais abelian and £ is semisimple

Then show that gl,, is a reductive Lie algebra, and in fact that gl,, = k X sl,,.

7.9 Universal Central Extensions

A central extension e of aLie agebra g is an extension 0— M — e —> g — 0 of
Lie algebras such that M isin the center of e (i.e, it isjust an extension of Lie
algebras of g by atrivial g-module M in the sense of 7.6.1). A homomorphism

over g from e to another central extension 0 — Mi —» ei 1>g —0isamap
f: e— el such that 7 = nif. eiscaled auniversal central extension of g if
for every central extension ei of g there is a unique homomorphism f:e— €
over g. Clearly, auniversal central extension of g is unique up to isomorphism
over g, provided it exists. As with groups (6.9.2), if g has a universal centra
extension, then g must be perfect, that is, g = [g, g].

Construction of a Universal Central Extension 7.9.1 We may copy the
construction 6.9.3 for groups. Choose a free Lie algebra § mapping onto g and
let v ¢ f denote the kernel, so that g = f/r. This yields a central extension

0—t/[t,f] = §/[t,fl> g— 0.
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If gis perfect, [f, ] maps onto g, and we claim that

0— e NI[f, D/ fl = If,f)/[t. fl >g—>0

is a universal central extension of g. Note that Hz(g, k) = (¢ N [f, f)/[x, f] by
exercise 7.5.2.

Theorem 7.9.2 A Lie algebra g has a universal central extension iff g is
perfect. In this case, the universal central extension is

) 0 = Ha(g, k) —>If, fi/It, fl = g — 0.

Proof We have seen that (x) is a central extension. Set e = [f, f]/[x, f]. Since
[f,f] maps onto g, ay X, y €f may be written as x = xi + r,y = yi +s with
xi, yi €[f,flandr,ser. Thusinf/[z,{l]

[, y1 = X, Y1+ [x', s1 + [, Y] + [ s] = [X), Y]

This shows that e is also a perfect Lie algebra. If 0 - M — el g0
is another central extension, lift f —gtoamap ¢:f— ei. Since m¢(r) =0,
¢(r)C M. Thisimpliesthat ¢ ([t,f]) = 1. Asin6.9.5, ¢ inducesamap f:e—
el over g.If f1is another such map, the difference 8 = fi— f:e— M is zero
because e = [¢,e] and

HxyD = [fx) + 8(x), f() + W] = [f %), FD] = flx, yD-

Hence fi= f, that is, f is unique. <

By copying the proofs of 6.9.6 and 6.9.7, we also have the following two
results.

Lemma 793 If0>M—>e—>g—>0and 0 > Mi — ei —g— 0 are
central extensions, and e is perfect, there is at most one homomorphism from e
to ei overg.

Recognition Criterion 7.9.4 Call a Lie algebra g simply connected if every
central extension 0 — M — e —g-> 0 splits in a unique way as a product
Lie algebra e = g x M. A central extension 0 - M —e —g—> 0 is universal
iff e is perfect and simply connected. Moreover, Hj(e, k) = Ha2(e,k) = 0. In
particular if g is perfect and Ha(e, k) = 0, then g is simply connected.
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Corollary 7.9.5 Let g be ajinite-dimensional semisimple Lie algebra over a
field of characteristic 0. Then Hj(e, k) = 0 and g is simply connected.

Proof M = Ha(e, k) is a finite-dimensional g-module because it is a sub-
quotient of A2g in the Chevalley-Eilenberg complex. By Whiteheadis second
lemma 7.8.12, H?(g, M) = 0, so the universal central extensionise = M x g.
By universdity, we must have M = 0. 0

Exercise 7.9.1 Show that smply connected Lie algebras are perfect.

Exercise 7.9.2 If 0 > M; —>¢; —g; — 0 are universal central extensions,
show that 0 — M| X M —e¢; Xez —> g X go— 0 is also a universal central
extension.

In the rest of this section, we shall use the above ideas in the construction of
Affine Lie algebras g corresponding to simple Lie algebras.

Let g be afixed finite-dimensional simple Lie agebra over afield k of char-
acteristic 0. Write g[t, ¢ 1] for the Lie algebra g ®x k[r,1~!] over k[z, 7).
Elements of g[z,t~!] are Laurent polynomias Y x;z' with x;e g and i e Z.
Since the Chevalley-Eilenberg complex Vi (glz,t 11)isV,(9) Qk[z,1~ '], we
have

Hi(glr, ™1, k1, t7") = Hi(g, k) @ k[, 171,

In particular, Hy= H, = 0 (7.8.6, 7.8.12) so g[r,t~] is perfect and simply
connected as a Lie algebra over the ground ring k[¢, 1~ '].

Now we wish to consider g[z,7~'] as an infinite-dimensional Lie agebra
over k. Since g[r,1~ 1] is perfect, we still have H;(glr,t~'1,k) =0, but we
will no longer have H(g[t,1~'], k) = 0. We now congtruct an example of a
nontrivial central extension of g[z, 7] over k.

Affine Lie Algebras 7.9.6 If x:g® g— ks the Killing form (7.8.3), set

ﬁ(zxiti, Z yjith) = Z ik (xi, i)

Since B is aternating bilinear, it is a 2-cochain (7.7.3). Because k is a triv-
ia glr,~"]-module, B is a 2-cocycle: if x=3Y xit',y =3 y;jt/, and z=
3" zit*, then the g-invariance of the Killing form gives
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8B(x,y, z) = —B(xy], z) + B(xzl, v) — B([yz). x)

D =Byl zthy + Bllxizelt ™, yie0) — Bllyjzlt T xir)
i,j.k

Z =+ eyl z) + G+ ez, Yj) — (G + Bre([yjzd, Xi)
i+j+k=0

I

3T i ) G+ D=+ ey zk)

i+j+k=0

=0.

The class [B]e H?(g[t,t~'], k) corresponds to a central extension of Lie al-
gebras over k:

0—>k—>g§—glr,r'1>0.

The Lie agebra g is caled the Affine Lie algebra corresponding to g. It is a
specia type of Kac-Moody Lie agebra We are going to prove that g is the
universal central extension of g[r,z~!] following the proof in [Wil].

Lemma 7.9.7 §is perfect.

Proof Let p: glt,t~']—> g be the vector space splitting corresponding to the
2-cocycle B. If x, y € g then [p(xt)), p(yt™)]1 = p([xy]) + i k(x,y) for i =
0, 1 s0 k €[4, §]. Since [§, §] maps onto the perfect g[r, 1], we must have
g =19, 8l <&

Now fix an arbitrary central extension 0 — M — e —>g[t, ] — 0. If
o:glt,t~'1— e is a vector space splitting of 7, recall (exercise 7.7.5) that the
corresponding 2-cocycle f,:A2(glt,t ') — M is defined by

[o(x),o0(y)] = o([xy]D + folx,¥),

and that conversely every 2-cocycle f determinesao suchthat f = f,. Let S
denote the set of al splittings o of 7 such that

fg(Zx,-t", y)=o for al x;,yeg and iZ.

Lemma 7.9.8 S is nonempty for every central extension of g[z, r~1].

Proof Given any splitting o, write fi(x,y) for f,(xt',y). Each fi(—,y)
is an element of Homy(g, M), so we may think of f! as al-cochain, that



252 Lie Algebra Homology and Cohomology

is, a map from g to Homy (g, M). In fact, £ is a cocycle (exercise!). But
Homy (g, M) is finite-dimensiona, so by Whiteheadis firs lemma (7.8.10)
there exists ¢’ € Homy (g, M) such that fi(x,y) = ¢'([xy]). Assembling the
@' into a k-linear map @: glt,t~'1— M by the rule (3 x;2°) = 3" ¢ (x;), we
see that the 2-cocycle 8¢: A2g[t,1~']— M satisfies

GO _xit', y) == ¢ (xiy) == Y fiGi, ) =—=F(Txit', y).

Hence the splitting t corresponding to the 2-cocycle f + 8¢ is an element
of s <&

Exercise 7.9.3 Show that S contains exactly one element.

Lemma 7.9.9 tk = Cand o€ S, then there exist ¢;; € M such that

foOQ o xit' Y it = k(i yj)ei,

where «is the Killing form on g.

Proof Because o €S, we have
o =8fCat', yit!, 2) = follxizlt', yjt!) = fo (Lxit' [z, y,1t7).
Therefore each £ (x,y) = f,(xt', yt/) is a g-invariant bilinear form on g:

fxzl, vy = £9(x, [zyD-

On the other hand the Killing form is a nondegenerate g-invariant bilinear
form on g. Since k = C, any g-invariant symmetric bilinear form must there-
fore be a multiple of «(exercise 7.8.1). Thus fy’-kc;; for some ¢;j€ M.

0

Corollary 7.9.10 Zfk = C and o €S, then there is a ¢ € M such that for
x=Y xt,y =Y y;t/inglt, 1] we have

fox, y) = B(x, y)e = ik (xi, y-i)c.

Proof Setting ¢ = ¢,—1, it suffices to prove that ¢; _; = ic and that ¢;; = 0
ifi£—j.Asoe€S,ciop=0forali; since f, is skew-symmetric, we have
cij=—cj;. Since «is g-invariant and symmetric,

0 =8fs(xt',ytd, 2%y = —ic(x, [yzD)(Cipjk + Cithj + Cirni)
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which yields O =cjyjk+Cipk,i + Cjtk,i- Taking i + j=1and k = -1, so
that j + k = —i, we get

Ci,—i=—C_jj=C + Ci—1,1-i

By induction on |i|> 0, this yields ¢; ;= ic for dl ieZ. Taking i + j + k=
sandk=I,weget
Cs—1,1 =Ci, j+1 = Citl,j-

Summing from i =0tos — 1 if s > 0 (or from i =5 to —1 if s < 0) yields
5¢s—1,1= 0, so ¢;,1= 0 unless t = -1. This yields c; j4+1=c¢;4+1,; unless
i+ j=-1 Fixing s# 0, induction on |i| shows that ¢; s—; = O for all i € Z.

e

Theorem 7.9.11 (H. Garland) Let g be a finite-dimensional simple Lie alge-
bra over k = C. Then the corresponding Affine Lie algebra g (7.9.6) is the
universal central extension of g[¢, ¢ 1].

Proof Lee 0 > M — ei>g[t,t“]—+ 0 be a central extension. Choose a
splitting o in.§(7.9.8), and let c;j€ M be the elements constructed in lemma
7.9.9. Recall that there is a vector space splitting «: g[¢, 7~ !]1— § correspond-
ing to the 2-cocycle B, which yields a vector space decomposition § =k x
glt,t~1]. Define F: k — M by F(a) = ac;,_; and extend this to a vector
space map from § to e by setting F(:(x)) = a(x) for x € g[t, 1. Since

F([e(x), c»)D = F(x, y]) + F(B(x, y))
=o(lx, yD) + ) _ ik(xi, y-)er -1
-o([x,yD + folx,y)
= [F(), F(yN],
and k is in the center of g, Fis a Lie agebra homomorphisn g— e over

glt, 7 ']. Since g is perfect, there is at most one such map, so F is unique.
<&

Remark 7.9.12 If g is semismple over C, theng=g;x---x g, for smple
Lie algebras g;. Consequently the universal central extension of g[r,z~!]isthe
product

0=k > X...x8—glt,t 1> 0

If k is a subfield of C and g is simple over k, g® C is semisimple over C.
If g® C is simple then since Ha(g, k) @, C= Hy(g ®: C,C) = C it follows
that § is still the universal central extension of g[¢,z~!]. However, this fails if
g®C=g; x --- X g, because then Ha(g, k) = ki.
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By now, the reader has seen severa examples of chain complexes in which
the boundary maps C,— C,_| are dternating sums dy—d+---+d, . The
primordial example is the singular chain complex of a topological space X;
elements of C,(X) are formal sums of maps f from the n-simplex A,, into X,
and d;( f) is the composition off with the inclusion A,_;C A,, of the i’" face
of the simplex (1.1.4). Other examples of this phenomenon include Koszul
complexes (4.5.1), the bar resolution of a group (6.5.1), and the Chevalley-
Eilenberg complex of a Lie algebra (7.7.1). Complexes of this form arise from
simplicial modules, which are the subject of this chapter.

8.1 Simplicial Objects

Let A be the category whose objects are the finite ordered sets [n]= (0 <1<

- <n} for integers n> 0, and whose morphisms are nondecreasing mono-
tone functions. If A is any category, a simplicial object A in A isa con-
travariant functor from A to A, thatis, A: A%’ - A. For smplicity, we write
A, for A([n]). Similarly, a cosimplicial object C in A is a covariant functor
C: A — A, and we write A" for A([n]). A morphism of simplicial objects is
a natura transformation, and the category S.A of al simplicia objectsin A is
just the functor category A%,

Example 8.1.1 (Constant simplicial objects) Let A be a fixed object of A .
The constant functor A — .4 sending every object to A is called the constant
simplicial object in. A a A. We have A,, = A for al n, and o* = identity
morphism for every « in A.

254
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We want to give a more combinational description of simplicial (and cosim-
plicia) objects, and for this we need to study the simplicial category A di-
rectly. The reader interested in more details about simplicia sets may want to
read [May].

It is easy to see that for each n there are n + 1 maps [0] — [n] but only one

map [n] — [Q]. There are ("ﬁz) maps [1]— [n} and more generaly (”jﬂ”)

maps [i] — [n] in A. In order to make sense out of this chaos, it is useful
to introduce the face maps &; and degeneracy maps #;. For eech nand i =
0, --,n the map ¢;:[n —1]— [n] is the unique injective map in A whose
image misses i and the map n;:[rn +1]1— [n] is the unique surjective map in
A with two elements mapping to i. Combinationally, this means that

i if j <i PP if j <i
&) _[jj+ | iszi}’ mi() ‘{j St >if
Exercise 8.1.1 Verify the following identities in A:
gjei=¢gigjy ifi <
nini=ninj1 ifi <

gnj-1 ifi<j
njei = { identity ifi=jori=j+1
gi-1m; ifi>j + 1

Lemma 8.1.2 Every morphism «:[n] — [m] in A has a unique epi-manic
factorization o = en, where the monic ¢ is uniquely a composition of face
maps

&€ =& &, With 0<ig<.-.-<ij<m

and the epi n is uniquely a composition of degeneracy maps
n=nj- nj, With 0<ji<---<j<n.
Proof Let i;<--- <i] be the elements of [m] not in the image of « and

j1<--- < j; be the elements of [n] such that a(j)=a(j + 1). Thenif p =
n-t=m-s,themapcrfactorsas

[n] -1 [p] < [m].

The rest of the proof is straightforward. (Check this!) &
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Proposition 8.1.3 To give a simplicial object A in A, it is necessary and
sufficient to give a sequence of objects Ag, A, - - together with face operators
9;: A, — A,_y and degeneracy operators oi: A, > A, (i=0,1,---,n),
which satisfy the following “simplicial” identities

0;0; - 3;-10; if i<j

0i0j=0j410; ifi <]
oj—10; ifi<j

aidj.: Identlfy ifi:jori:j+1
Oja,'_l ifi>j + 1.

Under this correspondence d; = A(g;) and o; = A(n;).

Proof If A is simplicia, we obtain the above data by setting A, = A([n])
and considering only faces and degeneracies. Conversely, given the data and
amap in A written in the standard form « = ¢;,---n;, of the lemma, we set
A(a) = oj, -+ 9;,. Since the simplicial identities control composition in A,
this makes A into a contravariant functor, that is, a smplicia object. o

If we dualize the above discussion, we get cosimplicia objects. Recall that
a cosimplicial object is a covariant functor A: A — A.

Corollary 8.1.4 To give a cosimplicial object A in d, it is necessary and suf-
ficient to give a sequence of objects A%, A, ... together with coface operators
d': A"l AT and codegeneracy operators o': A"t!—» AT (i =0,---,n)
which satisfy the “cosimplicial” identities

ot =00/ if T <

olol =olo/t! ifi < |

o dlo/1 ifi<j
0/d' =1 identity ifi=jori=j+|
3 lgd ifixj+ 1.

Example 8.1.5 (Simplices) The geometric n-simplex AT is the subspace

of [R"'H

AT = {(to, 1) 0<t; <1, )t =1).

If we identify the dlements of [n] with the vertices vjp=(1,0,...,0), ...,
v, =(0,...,0, 1) of AT, thenamap «:[n] —[p]in A sends the vertices of
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Proposition 8.1.3 To give a simplicial object A in A, it is necessary and
sufficient to give a sequence of objects Ag, A1, - - together with face operators
dit A,, = A,1 and degeneracy operators o;: A,, > A1 (=0, 1, ---,n),
which satisfy the following isimplicialT identities

0;0; - 3;-10; if i<j

oigj=0j110; ifi <]
oj_10; ifi < j

aisz identify ifi=jori=j+1
ojoi—1  ifi>j+ 1

Under this correspondence 9; = A(e;) and o; = A(n;).

Proof If A is simplicial, we obtain the above data by setting A, = A([n])
and considering only faces and degeneracies. Conversdly, given the data and
amap in A written in the standard form a = ¢;,--- i, of the lemma, we set
A(a) = gj,-- 9;,. Since the simplicial identities control composition in A,
this makes A into a contravariant functor, that is, a smplicial object. <

If we dudize the above discussion, we get cosimplicial objects. Recdl that
a cosmplicial object is a covariant functor A: A — A.

Corollary 8.1.4 To give a cosimplicial object Ain A, it is necessary and suf-
jicient to give a sequence of objects A%, A!, ... together with coface operators
8 A"~ A" and codegeneracy operators o': A"t AT (i=0, .-, n)
which satisfy the icosimpliciall identities

ol =ala/ if | <
oloi =i/t ifi< ]

o dol=l ifi<j
/3" =1 identity ifi=jori=j+1
-l ifisj+ L

Example 8.1.5 (Simplices) The geometric n-simplex AT is the subspace
of R+l
AT = ((fg, 1) 0<t; < 1,) =1},

If we identify the elements of [n] with the verticesvg=(1,0, ..., 0), ...,
v = (0, . .,0, 1) of AT, then amap «:[n]—{p]in A sends the vertices of
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AT to the vertices of A? by the rule a(v;) = vq(;). Extending linearly gives a
map a: AT — AP and makes the sequence A%, AT, ..., A”,...into acosim-
plicia topologica space. Geometrically, the face map &; induces the inclusion
of A" linto AT as the i" face (the face opposite the vertex v;), and the degen-
eracy map 7; induces the projection A1 — AT onto the i*” face that identi-
fiesv; and v;+1. This geometric interpretation provided the historical origins
of the terms face and degeneracy operators.

Geometric Realization 8.1.6 If X isasimplicial set, its geometric realiza-
tion |X| is a topological space constructed as follows. For each n> 0, topol-
ogize the product X, x AT as the digoint union of copies of the n-simplex
AT indexed by the elements x of X,. On the digoint union [] X, x A",
define the equivalence relation ~ by declaring that (x, s)€ X, x A™ and
(y,t) e X, x AT are equivalent if there is a map a«: [m] — [n] in A such that
ar(y) = x and a,(s) =¢. That is,

(@ (¥), )~ (v, o).

The identification space | [(X, X A™)/ ~ is the geometric redlization | X|. It is
easy to see that in forming | X| we can ignore every n-smplex of the form
o;(y) x A", s0 we say that the elements o;(y) are degenerate. An element
x€X, is called non-degenerate if it is not of the form o;(y) for some i <n
and y € X,,_; the nondegenerate elements of X, index the n-cells of |X|,
which implies that | X | is a iICW complex.T A more detailed discussion of the
geometric redization may be found in [May].

Example 8.1.7 (Classifying space) Let G be a group and consider the simpli-
cial set BG defined by BGo={1},BG; =G, .., BG, = G",.... The face
and degeneracy maps are defined by insertion, deletion, and multiplication:

Ui(gla""gn)=(g19""gi9 1,gi+1,"‘,gn)
0i(g,---.8) =181, &i&i+1,--..8) f0<i<n
(glv .. -»gn—l) lfl =nN.

The geometric redlization |BG| of the simplicial set BG is called the clas-
sifying space of G. The name comes from the theory of fiber bundles; if
X is a finite cell complex then the set [X, |BG|] of homotopy classes of
maps X — | BG | gives a complete classification of fiber bundles over X with
structure group G. We will seein 8.2.3 and 8.3.3 that | BG | is an Eilenberg-
MacLane space whose homology is the same as the group homology H,(G)
of Chapter 6. Thus we recover definition 6.10.4 as well as 6.10.5.
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Example 8.1.8 (Simplicial complexes) A (combinational) simplicial com-
plex is a collection K of nonempty finite subsets of some vertex set Vv such
that if 0 £ cocV and oK then te K. If the vertex set is ordered, we
call K an ordered simplicial complex. To every such ordered smplicial com-
plex we associate a simplicial set SS(K) as follows. Let S&(K) consist of
all ordered (n + 1)-tuples (vg, - - -, vn) Of vertices, possibly including repeti-
tion, such that the underlying set {vg,---,v,}isin K. If a:[n]— [p] is a map
in A, define a,:SS,(K)—> SSu(K) by aw(vo, - -, vp) = (Va(0)s - * * » Va(n))-
Note that vg<---<v, and that

8[(1)07 ] vn)=(v0s"'a Ui—],vi+1, "'»Un)
o' (o, -+, vp) = (Vg, - -+, Uiy Vjy -+ 0, Up).

The following exercises explain how combinatorial simplicial complexes
correspond to triangulated polyhedra. Clearly a triangulated polyhedron P
gives rise to a combinatoria simplicial smplex K whose elements correspond
to the faces of P, the vertices of P forming the vertex set v of K (see 1.1.3).

Exercise 8.1.2 Show that if Kis an ordered combinatorial simplicial com-
plex, then SS(K) determines K, because there is a bijection between K and
the subset of $S( K) consisting of non-degenerate elements.

Exercise 8.1.3 Let K be the collection of al nonempty subsets of a vertex
set V having n + 1 elements. (K is the combinationa simplicia complex
arising from the polyhedron AT.) Show that the geometric realization |SS(K)|
is homeomorphic to the geometric n-simplex A",

Exercise 8.1.4 (Geometric simplicia complexes) If K is a combinatoria
simplicia complex (8.1.8), let| K| denote the geometric redlization |SS(K) | of
the smplicial set SS(K) associated to some ordering of K. Show that |K|is
a triangulated polyhedron with one face e, for eech g e K. (If 6 hasn + 1
elements, then e, is homeomorphic to an n-smplex.) Therefore K is the
combinational simplicial complex arising from |K|. The polyhedron |K|is
sometimes called the geometric simplicial complex associated to K.

Definition 8.1.9 (Semismplicia objects) Let A, denote the subcategory of
A whose morphisms are the injections &: [i] <> [n]. A semi-simplicial object
K in a category A is a contravariant functor from A, to A .

For example, an ordered combinational simplicial complex K yields asemi-
simplicid set with K, ={reK:t hasn +1 elements]. Every smplicial set
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becomes a semi-simplicial set by forgetting the degeneracies, but the degen-
eracies provide a richer combinatorial structure.

The forgetful functor from simplicial objects to semi-simplicial objects
has a left adjoint L when A has finite coproducts; (LK), is the coproduct
]_[pf,, ]__[77 K p[nl, where for each p <n the index n runs over all the surjec-
tions [n] — [p] in A and K ,[n] denotes a copy of K,. The maps defining the
simplicia structure on LK are given in the following tedious exercise 81.5;
LK is caled the left Kan extension of K dong Asc A in {MacCW, X.3L
When A is abelian we will give an aternate description of LK in exercise
8.4.3.

Exercise 8.1.5 (Left Kan extension) If «:[m] — [n] is any morphism in A,
define L K (@): L K, — L K, by defining its restrictions to K ,[#] for each sur-
jection 7 as follows. Find the epi-manic factorization en’ of na with n’: [m] —
[g] and £:[g] —[n]; the restriction of LK (a) to Kp{n] is defined to be the
map K(e) from K, to the factor K,[n'] of the coproduct (L K),,. Show that
these maps make L K into asimplicial object of A .

Exercise 8.1.6 Show that a semi-simplicial object K is the same thing as
a sequence of objects Kg,K1,--- together with face operators 39;: K, —
Ky-1(=0,---,n)suchthatif i < j then 9;9; = 9;_10;.

dp o
K()fZa:Kngngg,'--.
1 o2

Historical Remark 8.1.10 Simplicial sets first arose in Eilenberg and Zil-
beris 1950 study [EZ] under the name icomplete semi-simplicial setst (c.s.s.).
For them, semi-simplicial sets (defined as above) were more natural, and the
adjective icompletel reflected the addition of degeneracies. By 1954, this ad-
jective was often dropped, and isemi-simplicial seti was a common term for a
c.s.s. By the late 1960s even the prefix isemiT was deleted, influenced by the
book [May], and isimplicia setT is now universaly used for c.s.s. In view of
modem usage, we have decided to retain the origina use of isemi-simplicial”
in definition 8.1.9.

8.2 Operations on Simplicial Objects

Definition 8.2.1 Let A be a simplicial (or semi-simplicia) object in an
abelian category d. The associated, or unnormalized, chain complex C =



260 Simplicial Methods in Homological Algebra

C(A) has C, = A,,, and its boundary morphism d: C,, — C,_ is the aternat-
ing sum of the face operators 9;: C, — Cp—1:

d=208—3 + -+ (—1)"3,.

The (semi-) simplicial identities for 9;3; imply that d? = 0. (Check thisl)

Example 8.2.2 (Koszul complexes) Let x =(xy,--, x,) be a sequence of
central elements in a ring R. Then the sequence R™, AZR™, .., A"tIR™,
of exterior products of R™ forms a semi-simplicia R-module with

0i(eqyg N -+ A gy) =Xglag A+ ANeg; A+ A eg,.

The Koszul complex K (x) of 4.5.1 is obtained by augmenting the chain com-
plex associated to the semi-simplicial module {A"*t1R™}.If R is a k-algebra,
this defines an action of the abelian Lie algebra g = k™ on R, and K (x) coin-
cides with the Chevalley-Eilenberg complex 7.7.1 used to compute H.(g, R).

An extremely useful observation is that if we apply afunctor F: A — Bto
asmplicial object AinA, we obtain asimplicial object in B. Similar remarks
apply to semisimplicial and cosimplicia objects.

Example 8.2.3 (Smplicia homology) If R is aring, the free module R[X]
on a set X is a functor Sets — R-mod. Whenever X = {X,} is a (semi-)
simplicia set, R[X] = {R[X,]} is a (semi-) simplicid R-module. The chain
complex associated to R[X] is the chain complex used to form the simplicial
homology of the cellular complex | X| with coefficients in R. (See 1.1.3.)

Motivated by this example, we define the simplicial homology H.(X;R) of
any simplicia set X to be the homology of the chain complex associated to the
simplicial module R[X]. Thus Hy(X;R) = H.(|X|; R).

For example, consider the classifying space | BG| of agroup G (8.1.7). The
chain complex associated to R[BG] is the canonical chain complex used in
6.5.4 to compute the group homology H,.(G;R) of G with coefficients in the
trividl G-module R. This yidlds the formula

H.(G; R) 2 H.(BG; R) = H,(|BG|;R)

Example 8.2.4 (Singular chain complex) Let X be a topologica space. Ap-
plying the contravariant functor Homrep(—, X) to the cosimplicia space (AT)
gives a simplicial set S(X) with S,(X) = Homrep(A", X), caled the singu-
lar simplicial set of X. The singular chain complex of X used to compute the
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singular homology of X with coefficientsin R (1.1.4) is exactly the chain com-
plex associated to the simplicial R-module R[S(X)).

Remark There is a natural continuous map {S(X)|— X, which is a homotopy
equivalence if (and only if) X has the homotopy type of a CW complex. It
is induced from the maps S,(X) x AT — X sending (f,t) to f(t). In fact,
§ is the right adjoint to geometric realization: for every simplicia set K,
Homop(| K |, X) = Homgssets( K, S(X)). These assertions are proven in [May,
section 16].

Example 8.2.5 For each n > 0 a simplicial set A[n] is given by the functor
Homa(—, [n]). These are universal in the following sense. For each simplicia
set A, the Yoneda Embedding 1.6.10 gives a |-l correspondence between
elements a € A,, and simplicia morphisms f:A[n]— A; f determines the
element ay = f(idj,)) and conversely f,; is defined on A € Homa ({m], [n]) by
fa(k) =h*(a) € A,.

Exercise 8.2.1 Show that A[n] is the simplicial set SS(A™) associated (8.1.8)

to the combinatorial simplicial complex underlying the geometric n-simplex
A,

Cartesian Products 8.2.6 The Cartesian product A x B of two simplicia
objects A and B is defined as (A x B), = A, x B, with face and degeneracy
operators defined diagonally:

di(a,b) = (&a, 3:b) and o;(a, b) =(0ia, 0;b).

If Bis a simplicial set and A is a simplicial object in a category .4 having
products, then we can also make sense out of A x B by defining A,, X B, to
be the product of B, copies of A,. This construction is most interesting when
each B, isfinite, in which case .4 need only have finite products.

Exercise 8.2.2 If K and L are combinoria simplicial complexes (8.1.8),
there is a combinational simplicial complex P with |P|=|K|x|L| as poly-
hedra, defined by SS(P)=SS(K)x SS(L); see [May, 14.31 or [EZ]. Verify
this assertion by finding combinational simplicial complexes underlying the
square Ai x Aland the prism A2 x A! whose associated simplicia sets are
A[1] x A[1] and A[2] x A[l].

Fibrant Simplicial Sets 8.2.7 From the standpoint of homotopy theory, it
is technicaly useful to restrict oneis attention to those simplicial sets X that
satisfy the following Kan condition:
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Foreverynand k withO <k <n+1,if x0, - -+, Xk—1, Xk41,***, Xnt1 €
X, are such that 9;x;=9;_1x; for al i <j(i and j not equa to k), then
there exists ay € X+ such that 9;(y) = x; for al i # k.

We call such simplicid sets fibrant; they are sometimes called Kan com-
plexes after D. Kan, who first isolated this condition in 1955 and observed that
the singular simplicial set S(X) of a topologica space X (8.2.4) is aways fi-
brant. The class of fibrant smplicia sets includes all simplicial groups and al
simplicia abelian groups by the following calculation.

Lemma 8.2.8 If G is a simplicial group (a simplicial object in the category of
groups), then the underlying simplicial set is fibrant. A fortiori every simplicial
abelian group, and every simplicial R-module, is fibrant when considered as a
simplicial set.

Proof Suppose given x;€ Gy (i # K) such that d;x;=9;_1x; fori<j. We
use induction on r to find g, € Gy+1 such that 9;(g,) = x; foral i <r, i #k.
We begin the induction by setting g—1=1€G,4+| and suppose inductively
that g = g,—p isgiven. If r = k, we set g- =g. If r # k, we consider u =
x71(3,g). Ifi<rand i#Kk, then 3 (u) =1 and hence 3;(o,u) = 1. Hence
gr = g(owu) ! satisfies the inductive hypothesis. The dement y = g, there-
fore has 9;(y) = x; for al i # k, so the Kan condition is satisfied. <

Exercise 8.2.3 Show that A[n] is fibrant. Now let A"*! be the combina-
tional simplicial complex obtained from A"*! be removing the top (n + 1)-
dimensional cell, and show that the simplicial set SS(A”*!)isnot fibrant.

Exercise 8.2.4 Show that BG isfibrant for every group G but that BG is a
simplicia group if and only if G is abelian.

Fibrations 8.2.9 A map w: E — B of simplicia sets is called a (Kan) fibra-
tion if
for every n,b eBprrand k<n + 1, if xg, -, Xk—1, Xk41,- "5 Xp+1 €
E, are such that 9;b = m(x;) and d;x; = 8;_1x; for dl i <j (i, ]+ k),
then there exists ay € E, 41 such that n(y) = b and 9;(y) for al i # k.
This notion generalizes that of a fibrant smplicial set X, which is after al just
a simplicial set such that X —* is a fibration. The following two exercises
give some important examples of fibrations.

Exercise 8.2.5 Show that every surjection E — B of simplicia groups is a
fibration.
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Exercise 8.2.6 (Principa G-fibrations) We say that a group G acts on a sim-
plicial set X (or X is a simplicial G-set) if G acts on each X, and the action
commutes with the face and degeneracy operators. The orbit spaces X,/G fit
together to form a simplicid set X/G; if G acts freely on X (gx # x for every
g# 1 and every x) we say that X — X/G isa principal G-jibration. Show
that every principal G-fibration is a fibration.

Front-to-Back Duality 8.2.10 Simplicia constructions (e.g., homotopy in
8.3.11) aways have a ifront-to-backm dua formulation. Consider the invo-
lution “on A, which fixes every object [n]; it is defined on the morphisms
in A by

8=, :n—11—>[n] and o, =0, ;:[n+ 1] [n.

We may think of it as reversing the ordering of [n] = (0 <1<...<n)to
get the ordering (n<--- <1< 0). That is, if a: [m] — [n] then a () =n —
a(m—i). If Aisasimplicial objectin A, thenitsfront-to-back dual AT isthe
composition of A with this involution.

8.3 Simplicial Homotopy Groups

Given a fibrant simplicial set X (8.2.7) and a basepoint * e Xo, we define
n,(X) as follows. By abuse of notation, we write x for the element o () of
Xyand set Z, = {xe€X,:0;(x)==«fordl i=0,.--,n}. We say that two
elements x and xi of Z,, are homotopic, and write x ~ xi, if thereisay € X,
(called ahomotopy from x to xi) such that

* ifi<n
0i(y)=1x ifi=n
x ifi=n+1.

Lemma/Definition 8.3.1 If X is a fibrant simplicial set, then ~ is an equiva-
lence relation, and we set w,(X)=Z,/ ~.

Proof The relation is reflexive since y = (o,x) is a homotopy from x to itself.
To see that ~ is symmetric and transitive, suppose given homotopies yi and
yi from x to xi and from x to xi. The Kan condition 8.2.7 applied to the
elements *, .., *,y’, yT of X,y withk =n+ 2 yields an element z € X,,12
with 8,z = y',9,4+1z = yI and 9;z = for i <n. The lement y = 3,2z isa
homotopy from xi to xi. (Check this!) Therefore xi ~ xi. <&
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Remark If X is a fibrant simplicial set, 7,(X) agrees with the topologica
homotopy group 7,(]X|); see [May, 16.11. Since n,(|X|) = n,(]S(X)]|), one
usually defines m,(X) as 7,S(X) when X is not fibrant. Thus 7 (X) is a
group, and r,, (X) is an abelian group for n> 2.

Example 8.3.2 q(X) = Xy/ ~, where for each y € X; we declare dyp(y) ~
a1 (y).

Example 8.3.3 (Classifying space) Consider the classifying space BG of a
group G. By inspection Z, ={ 1) for n#1and Z; = G. From this we deduce
that

G ifn=1

7.(IBG|) = mn(BG) = [ 1 ifn#l

Definition 8.3.4 If G is a group, then an Eilenberg-MacLane space of type
K (G,n)isafibrant smplicial set K such that =, K =G and 7; K =0 for
i #n. Note that G must be abelian if n> 2. The previous example shows
that BG is an Eilenberg-MacLane space of type K (G, 1). In the next section
(exercise 8.4.4), we will construct Eilenberg-MacLane spaces of type K (G, n)
for n> 2 as an application of the Dold-Kan correspondence 8.4.1. The term
ispaceT rather than isimplicia set,T is used for historical reasons as well as to
avoid a nine-syllable name.

Exercise 8.3.1 If G is a simplicia group (or simplicial module), considered
as a fibrant simplicial set, show that any two choices of basepoint lead to
naturally isomorphic n,(G). Hint: Gg actson G.

If G is a simplicia group (or simplicial module), considered (by 8.2.8)
as afibrant simplicia set with basepoint * = 1, it is helpful to consider the
subgroups

Ny(G)={xeG,:0;x =1 fordl i#n}
Then Z, = ker(d,: N, — N,—1) and the image of the homomorphism 3, :

Nn+1 — Nn is B, = {x : x ~ 1}. Hence 7, (G) is the homology group Z,/ B,
of the (not necessarily abelian) chain complex N,

a
1 (—No<;N1<BLN2<—-'-
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Exercise 8.3.2 Show that B, is a normal subgroup of Z,, so that n,(G) is a
group for al n> 0. Then show that 7, (G) isabelian for n > 1. Hint: Consider
(on—1x)(ony) and (0 x)(0n—1y) for x, v € Gp.

Exercise 8.3.3 If G— GI is asurjection of simplicial groups with kernel Gi,
show that there is a short exact sequence of (not necessarily abelian) chain
complexes 1 - NG’ — NG —- NG” — 1. By modifying the discussion in
Chapter 1, section 3 show that there is a natural connecting homomorphism
9.7, G” — m,1 G’ fitting into a long exact sequence

2 3
oy 1G — 1,G' = 1,G > 1, G —> TG’

Remark 8.3.5 More generally, suppose that 7:E — B is a fibration with E
and B fibrant. Suppose given basepoints xg € Eg and *g = 7 (xg) € By; the
fibers F, = n‘l(a(;'(*)) form a fibrant simplicial subset F of E. Given b€ B,
with 3;(b) = for dl i, the fibration condition yields e € E, with n(e) =b
and 9;(e) == for dl i <n. The equivalence class of d,(e) inm,—; (F)is
independent of the choices of e and induces a map a: n,(B) — m,—1 (F)
fitting into a long iexact? sequence of homotopy igroupsi:

Ty 1(B) = n,(F) = n,(E) =5 n,(B) —> a1 (F)---.

For more details, see [May].

This remark and exercise 8.3.3 show that the homotopy groups . form a
(nonabelian) homological §-functor. This observation forms the basis for the
subject of nonabelian homological algebra. We shall not pursue this subject
much, referring the reader to [DP] and [Swan 1]. Instead we use it as a model
to generdize the definition of homology to any abelian category A, even if the
objects of .A have no underlying set structure.

Definition 8.3.6 (Homotopy groups) Suppose that A is a simplicia object in
anabelian category A.  The normalized, or Moore, chain complex N(A) is the
chain complex with

n—1
N,(A) = ﬂker(a,-: A, — Ap_1)
i=0

and differential d =(—1)"8d,. By construction, N(A) is a chain subcomplex of
the unnormalized complex C(A) and we define
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7p(A) = Hp(N(A)).

If A isthe category of abelian groups or R-modules, this recovers the defi-
nition 8.3.1 of n,(A) obtained by regarding A as afibrant simplicial set and
taking homotopy.

Exercise 8.3.4 Show that N(A) is naturally isomorphic to its front-to-back
dual NT(A) = N(A), which has N;(A) ={xe€A, :9x=0foral i 0} and
differential 9. (See 8.2.10.)

Now let D(A) denote the idegeneratel chain subcomplex of C(A) gener-
ated by the images of the degeneracies o;, o that D,(A) = > 6;(Cn—( A).

Lemma 8.3.7 C(A) = N(A) @ D(A). Hence N(A) = C(A)/D(A).

Proof We will use an element-theoretic proof, which is valid by the Freyd-
Mitchell Embedding Theorem 1.6.1. An element of D,(A) isasumy =
Y oj(x;) with x;e C,_1(A).If ye N,(A) and iis the smallest integer such
that o;(x;) # 0, then 3;(y) = x;, which is a contradiction. Hence D,N N, = 0.
To see that D, + N, = C,, we pick y € C,, and use downward induction on
the smallest integer j such that 3; (y) # 0. The element y is congruent modulo
Dntoyi =y —0;d;(y), and for i < j the smplicia identities yield

() =9;(»—0j-18;—18:(y) = 0.

Since 9;(y") = 0 as well, y" is congruent modulo D, to an element of N, by
induction, and hence D, + N, = C,. <

Theorem 8.3.8 In any abelian category A, the homotopy n,(A) of asimpli-
cial object A is naturally isomorphic to the homology H,(C) of the unnormal-
ized chain complex C = C(A):

m(A) = Hy(N(A)) = H (C(A)).

Proof It suffices to prove that D(A) is acyclic. Filter D(A) by setting FoD,, =
0, F;Dy, = Dyifn <pand F,D, = 0p(Cy—1) + - . + 0,(Cy—1) Otherwise.
The simplicial identities show that each F, D is a subcomplex. (Check this!)
Since this filtration is canonically bounded, we have a convergent first quad-
rant spectral sequence

E), = Hpyo(FpD/Fy 1D)=> Hpyy(D).
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Therefore it suffices to show that each complex F,D/F,_1 D is acyclic.
Note that (FpD/Fp—1D), is a quotient of o,(C,—1) and is zero for n < p.
In element-theoretic language, if xeC,_1(A), the simplicid identities yield
inF,D/F,_,D:

n

dop(x) = Z (_1)i0'pai—l(x)v

i=p+1
n+1 ) n )
doy(x) — op_idop(x) = Y (—D'opdii0p(x) — Y (=D)io28;-1(x)
i=p+2 i=p+2

= (="Moo, x).

Hence {s, = (—1)?*!0,} forms a chain contraction of the identity map of
F,D/F,_1 D, which is therefore null homotopic and hence acyclic (1.4.5).
0

Application 8.3.9 (Hurewicz homomorphism) Let X be a fibrant simplicial
set, and Z[X] the simplicia abelian group that in degree n is the free abelian
group with basis the set X, (8.2.3). The simplicial set map h: X — Z[X] send-
ing X to the basis elements of Z[X] is cdled the Hurewicz homomorphism,
since on homotopy groups it is the map

n,(X) = m(Z[X1) = HCZIX)) = Ho(X; Z)

corresponding via 8.2.4 and 8.3.1 to the topologica Hurewicz homomorphism
(| X]) > Hy (| X]; Z). (TO see this, represent an element ¢ of 7, (| X]) by a
map f:A" —|X| and consider f as an element of S,(|X|). The class of h(f)
in H,Z[S(I1X|)] = H,(|X]);Z) is the topological Hurewicz element i (g).)

Proposition 8.3.10 Let A be a simplicial abelian group. Then the Hurewicz
map h,: n,(A) - H.(A;Z) = H.(|A|;Z) is a split monomorphism.

Proof There is a natural surjection from the free abelian group Z[{G] onto
G for every abelian group G, defined on the basis elements as the identity.
Thus there is a naturd surjection of simplicia abelian groups j:Z[A]— A.
The composite simplicial set map jh: A — Z[A]— A is the identity, so on
homotopy groups j.f.: m(A) — m(Z[A]) = n,(A) is the identity homo-
morphism. 0
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Remark The above proposition is the key result used to prove that every
simplicial abelian group has the homotopy type of a product of Eilenberg-
MacLane spaces of type K (;r, A, n); see [May, 24.51.

8.3.1 Simplicial Homotopies

8.3.11 Let A and B be simplicial objects in a category A. Two simplicial
maps f, g: A — B are said to be (simplicially) homotopic if there are mor-
phisms k;: A, — B,+1in A (i =0, ---,n) such that doho = f and dp+1hn =

g, while
hj_10; ifi < ]
aihj: dihi—1 ifi=j#0},

hidiy ifi>j+1

hjpior Q<]
""hf—{h,-a,-_l ifi>j|

We call {h;} asimplicial homotopy from f to g and write f ~g.

If A isanabelian category, or the category of sets, the next theorem gives
a cleaner definition of simplicia homotopy using the Cartesian product A x
A[1] of 8.2.6 and the two maps &g, €1: A = A x AlIO] — A x A[l] induced
by the maps &g, £1: [0] —[1]in A.

Theorem 8.3.12 Suppose that A is either an abelian category or the category
of sets. Let A, B be simplicial objects and f,g: A — B two simplicial maps.
There is a one-to-one correspondence between simplicial homotopies from f
to g and simplicial maps h: A x A[1]— B such that the following diagram
commutes.

&0 &l
A — AX A[l]l<«<— A

£\ lh Ve
B

Proof We give the proof when A isan abelian category. The set A[ 1], con-
sists of the maps «;: [n] — [1] ({ = —1,---, n), where q; is characterized by
a7 (0)=1{0,1,---,i—1}. Thus (A x A[ 1), is the direct sum of n + 2 copies
of A,, indexed by the o;. A map h: (A x A[1]), — By, is therefore equiva-
lent to a family of maps #: A, — B, (i= -1, ---, n). Given a simplicial
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homotopy (4 ;} we define h(_"f =g, hf,”) =fand h}")=a,-+1h,- for 0 <i<n.
It is easily verified that 3;2 = =Dy, and 0;h™ = A"t Dg;, 50 that the
h™ form a simplicial map h such that hgg = f and he; = g. (Exercise!) Con-
versaly, given h the maps k; = h§"+l)a,-: A, — B4 define a simplicia ho-
motopy from f tog. <

Exercise 8.3.5 (Swan) Show that the above theorem fails when A is the cat-
egory of groups, but that the theorem will hold if A x A[1] is replaced by
the simplicia group A x A[ 1], which in degree n is the free product of n + 2
copies of A,, indexed by the set A[ 1],,.

Exercise 8.3.6 In this exercise we show that simplicial homotopy is an addi-
tive equivalence relation when A is any abelian category. Let f, f’, g, gi be
simplicial maps A — B, and show that:

1. f~f.

2.if f~gand f' =g, then (f + fi) = (g + gi).

3. if f~g, then(—f)~(—g),(f —g)~0and g = f.
4.iff ~ g andg~h,then ¥ ~h.

Lemma 8.3.13 Let A be an abelian category and f, g- A — B two sim-
plicially homotopic maps. Then fi, g« N(A) — N(B) are chain homotopic
maps between the corresponding normalized chain complexes.

Proof By exercise 8.3.6 above we may assume that f = 0 (replace g by
g — f). Define s, = Z(—l)jhj as a map from A, to B,41, where {h;} is
a simplicial homotopy from O to g. The restriction of s, to Z,(A) lands in
Z,(B), and we have

On+18n — Sp—10p = (_l)ng-
(Check thisl) Therefore {(—1)"s,} is a chain homotopy from O, to g.. <

Path Spaces 8.3.14 There is a functor P: A — A with P[n] =[n + 1] such
that the natural map g¢: [n] — [n + 1]=P[n] is a natura transformation
idy= P. Tt is obtained by formally adding an initial element Oi to each [n]
and then identifying (Oif <0 <--- < n) with [n +1]. Thus P(g;) = ;41 and
P(n;) =ni+1. If Ais a simplicial object in A, the path space PA is the sim-
plicial object obtained by composing A with P. Thus (PA), = Ant1, the i*”
face operator on PA isthe d; 1 of A, and the i'" degeneracy operator on PA
is the gj41 of A. Moreover, the maps dp: Ap+1— A, form a simplicial map
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PA — A. The path space will play a key role in the proof of the Dold-Kan
correspondence.

Exercise 8.3.7 (PA >~ Ap) Let A be a simplicial object, and write A for the
constant simplicia object at Au. The natura maps og‘“:Au — Apyy form a
simplicial map ¢: Ag — PA, and the maps A,+1— Ao induced by the canoni-
cal inclusion of [0] ={0}in[r+1]=(0<1l<---<n+ 1) form a smplicia
map p: PA — Ag such that p: is the identity on Aq. Use g¢ to construct a
homotopy from ¢p to the identity on PA. This shows that PA is homotopy
equivalent to the constant object Ag.

Exercise 8.3.8 If G is a group one usually writes EG for the simplicial set
P(BG). By the previous exercise 8.3.7, EG =~ {1}. Show that the surjection
do: EG — BG is a principal G-fibration (exercise 8.2.6). Then use the long
exact homotopy sequence of a fibration (exercise 8.3.3) to recalculate 74 (BG).

Exercise 8.3.9 (J. Moore) Let A be a simplicial object in an abelian category
A. Let AA denote the simplicial object of .A which is the kernel of dg: PA —
A; AA is a kind of bruta iloop spacel of A. To see this, let Ap[1] denote
the chain complex that is Ag concentrated in degree — 1, and let cone(N A) be
the mapping cone of the identity map of NA (15.1). Show that N,(AA)=
Nu41(A) for dl n> 0 and that there are exact sequences:

0 — Apll] = NA[l] > N(AA)— O,
0 — Ag[l] — cone(NA)[1] - N(PA) — 0.

That is, N(AA) is the bruta truncation o>oN A{l] of NA[l] and N(PA) is
the brutal truncation of cone(N A)[ 1], in the sense of 1.2.7 and 1.2.8.

8.4 The Dold-Kan Correspondence

Let A be an abelian category. The normalized chain complex N(A) of asim-
plicial object A of d (8.3.6) depends naturaly on A and forms a functor N
from the category of simplicial objects in .4 to the category of chain com-
plexes in A. The following theorem, discovered independently by Dold and
Kan in 1957, is called the Dold-Kan correspondence. (See [Dold].)

Dold-Kan Theorem 8.4.1 For any abelian category A, the normalized chain
complexfunctor N is an equivalence of categories between Sd and Chsg(A).
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molicial
SA:{ simplici

N —
objects in A } — Cheo(d) = {

chain complexes C in A
with C,=0for n<0

Under this correspondence, simplicial homotopy corresponds to homology
(i.e., m(A)= H.(N A)) and simplicially homotopic morphisms correspond to
chain homotopic maps.

Corollary 8.4.2 (See 2.4.7) The simplicial homotopy groups m«A of a simpli-
cial object A of A form a universal §-functor (the left derived functors of the
functor mp).

Corollary/Definition 8.4.3 (Dua Dold-Kan correspondence) For any abe-
lian category A, there is an equivalence

{ cosimplicial

simpli }_N_*)Chzo(A)={cochain complexesCinA]
objects in A

with C*=0forn<0

N*A is a summand of the unnormalized cochain CA of A. We define the co-
homotopy of a cosimplicial object A to be the cohomology of N*A, that is, as
7'A = H (N*A). Then m! A= H'(CA). Finally, if A has enough injectives,
the cohomotopy groups 7 *A are the right derived functors of the functor 79,

8.44 The equivaence in the Dold-Kan Theorem is concretely redized by an
inverse functor K:

Ch>0(A)—K> SA:[ simplicial }

objectsin A
which is constructed as follows. Given a chain complex C we define K,(C)
to be the finite direct sum €B , ., €D, Cpln], where for each p <n the index n
ranges over al surjections [n] — [p] in A and C,[n] denotes a copy of C,.

If @: [m] — [n] is any morphism in A, we shal define K(a): K,(C) —
K,(C) by defining its redtrictions K (e, 17): Cpln]— K,(C). For each surjec-
tion n: [n] — [p], find the epi-manic factorization &n’ of ne (8.1.2):

[m] —> [n]
n’l . ln
[4] <> [pl.

If p=q (in which case na =7’) we take K (a,n) to be the natural identifica-
tion of Cpln] with the summand Cp[n'lof K,(C). If p=q+1and e=¢,
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(in which case the image of ne« is the subset (O, --, p —1} of [p]), we take
K (e, n) to be the map

d
Cp *)Cp—l = Cq[r)/] C K (C).

Otherwise we define K (a, ) to be zero. Here is a picture of K(C):

COECOCECOCICIdCEC®C)’ () e C;

Exercise 8.4.1 Show that K(C) is a simplicial object of A. Since it is clearly
natural in C, this shows that K is a functor.

It is easy to see that NK(C)= C. Indeed, if n: [n] — [p] and n# p, then
n =i -ni, and Cpln] = (i, - - - 0, Cp)lid ] lies in the degenerate subcom-
plex D(K(C)).If n is the identity map of [n], then 9; restricted to Cplid,)
is K(g;, id,), which is O if i#n and d if i =n. Hence N,(KC) = Cy[id,]
and the differentia is d. Therefore in order to prove the Dold-Kan Theorem
we must show that K N (A) is naturally isomorphic to A for every simplicia
object Aind.

We firgt construct a natural simplicial map ¥ 4: KN(A)— A. If n: [n] =
[p] is asurjection, the corresponding summand of K Ny, (A) isNp(A), and we

define the restriction of ¥4 to this summand to be N,(A) c A, =, A,. Given
a:[m] — [n] in A, and the epi-manic factorization en’ of 5 in A (8.1.2) with
n':[m]— [q], the diagram

KN+(A)D N,(A) ¢ A, — A,
ol Le Le Le
KNu(A) D NyA) ¢ A, — A,

commutes because &: N,(A) — N,(A) is zero unless & = ¢g,. (Check this!)
Hence vr4 is a smplicial morphism from K N(A) to A and is natural in A.
We have to show that ¥4 is an isomorphism for al A. From the definition
of ¥4 it follows that Ny 4: NKN(A) — N(A) is the above isomorphism
NK(NA)= NA. The following lemma therefore implies that ¢4 is an iso-
morphism, proving that N and K are inverse equivaences.

Lemma 8.4.5 If f: B — A is a simplicial morphism such that Nf: N(B) —
N(A) is an isomorphism, then f is an isomorphism.
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Proof We prove that each f,:B,— A,, is an isomorphism by induction on
n, the case n = 0 being the isomorphism By = NoB = NgA = A. Recall from
exercise 8.3.9 that the brutal loop space AA is the kernel of dy: PA — A,
(PA), = A,41, and that N(AA) is the trandate ((NA)/Ag)[1]. Therefore
NAf:N(AB) - N(AA) is an isomorphism. By induction both f, and
(Af ), are isomorphisms. From the 5-lemma applied to the following diagram,
we deduce that f,+1 is an isomorphism. 202

d
0 — (AB);, — Bu4i i B, — 0

Afnl,E lfn+l fnlE

Oy
0 —> (AA), —> Aps1 —> A, —> 0.

Exercise 8.4.2 Show that N and K are adjoint functors. That is, if Aisa
simplicial object and C is a chain complex, show that  induces a natura
isomorphism:

Homgs 4 (K (C), A) = Homch(C, NA).

Exercise 8.4.3 Given a semi-simplicial object Bin A, KC(B) is a simplicial
object. Show that KC is left adjoint to the forgetful functor from simplicial
objects to semi-simplicia objects. (Cf. exercise 8.1.5.) Hint: Show that if A is
a simplicial object, then there is a natural split surjection KC(A) — A.

To conclude the proof of the Dold-Kan Theorem 8.4.1, we have to show
that simplicially homotopic maps correspond to chain homotopic maps. We
saw in 8.3.13 that if f ~ g then Nf and Ng were chain homotopic. Con-
versely suppose given a chain homotopy {s,} from f to g for two chain maps
f.g: C— Ci. Define h;: K(C), > K (C")p+1 as follows. On the summand C,
of K(C), corresponding to n =id, set

oif ifi<n-—1
hionCo={ 04,1 [ —Onsp—1d ifi=n-1
on(f —sp—1d) —spifi =n.

On the summand Cp,[n] of K(C), corresponding to #n: [n] — [p], n # p, we
define h; by induction on n — p. Let j be the largest element of [n] such that
n(j) =n(j + 1) and write n = n'n;. Then o maps Cp[n’] isomorphically onto
Cplnl, and we have aready defined the maps h; on Cp[7']. Writing A; for the
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composite of C,[n]=Cp[n'] with h; restricted to Cp[n'], we define

' _Nojhi_, if] <i
hi on Cpln] = {o,+1h; if >
A sraightforward calculation (exercise!) shows that {hi} form a smplicia
homotopy from K(f) to K(g). <&

Exercise 8.4.4 (Eilenberg-Maclane Spaces) Let G be an abelian group, and
write G[-n] for the chain complex that is G concentrated in degree n (1.2.8).

1. Show that the simplicial abelian group K(G[-n]) is an Eilenberg-
MacLane space of type K(G,n) in the sense of 8.3.4 and that the
loop space of exercise 8.3.9 satisfies AK(G[—n—1])= K(G[—n]) for
n> 0.

2. Suppose that a simplicial abelian group A is an Eilenberg-MacLane
space of type K (G, n). Use the truncation t>,N A (1.2.7) to show that
there are simplicial maps A < B — K(G[—~n]) that induce isomor-
phisms on homotopy groups. Hence A has the same simplicial homotopy
type as K(G[-n]). A similar result holds for &l Eilenberg-MacLane
spaces, and is given in [May, section 23].

Exercise 8.4.5 Suppose that .4 has enough projectives, so that the category of
S A of simplicial objects in A has enough projectives (exercise 2.2.2). Show
that a simplicia object P is projective in S.A if and only if (1) each P, is
projective in A, and (2) the identity map on P is simplicialy homotopic to
the zero map.

Augmented Objects 8.4.6 An augmented simplicial object in a category A
is a simplicia object A, together with a morphism ¢: Ag— A_, to a fixed
object A_; such that €9y = £9;. If A is an abelian category, this allows us to
augment the associated chain complexes C(A) and N(A) by adding A_;in
degree -1.
0 A <Al a Ly

An augmented simplicial object A, — A_qiscdled aspherical if =, (A) =
0 for n# 0and e: mp(A) = A_;. In an abelian category, this is equivaent to
the assertion that the associated augmented chain complexes are exact, that

is, that C(A) and N(A) are resolutions for A_;in A. For this reason, A,
is sometimes called a simplicial resolution of A_;. We will use aspherical



8.5 The Eilenberg-Zilber Theorem 275

simplicial objects to construct canonical resolutions in 8.6.8. The following
exercise gives a useful criterion for A, —> A_ to be aspherical.

An augmented simplicial object A, 5 A_j is called (right) contractible
if there are morphisms f,: A, — A,y for all n (including f_;: A_; — Ag)
such that ef | =id, 3,41 f, =id for n > 0, 8y fo = f_1¢, and 3; f, = f,_19;
forall 0 <i < n. (It is called left contractible if its dual A 2> A_1(8.2.10)is
right contractible, that is, if ef | =id, 3o f, =id, d_1 fo = f-1&, and 3, f,, =
Sn-10i-1.)

Exercise 8.4.6 (Gersten)

1. If A is an abelian category, prove that every contractible augmented
simplicial object is aspherical, and that the associated augmented chain
complexes are split exact.

2. Now suppose that A is the category of sets. Let X be a fibrant simplicial
set with basepoint % and &: X — X_; an augmentation. Prove that if
X — X_ is (left or right) contractible and f;,(x) = * for all n, then X
is aspherical. Hint: Set y = f,(x) in 8.3.1.

8.5 The Eilenberg-Zilber Theorem

A bisimplicial object in a category A is a contravariant functor A from A x A
to A. Alternatively, it is a bigraded sequence of objects A rq (P,g =0),
together with horizontal face and degeneracy operators 8,.”: Apg —> Ap_1q
and aih:A pq —> Apt1,4 as well as vertical face and degeneracy operators
3/ Apg = Apg—1 and 6 Apg — Ap 411. These operators must satisfy the
simplicial identities (horizontally and vertically), and in addition every hori-
zontal operator must commute with every vertical operator.

There is an (unnormalized) first quadrant double complex CA = {A pq} as-
sociated to any bisimplicial object A. The horizontal maps d” are (- 1)"3,."
and we use the sign trick (1.2.5) to define the vertical maps d?: A pg—> A
to be (—1)? 3" (—1)"a}.

Clearly we may regard a bisimplicial object as a simplicial object in the
catagory S.A of simplicial objects in 4. The Dold-Kan correspondence im-
plies that the category of bisimplicial objects is equivalent to the category of
first quadrant double chain complexes, the normalized double complex corre-
sponding to A being quasi-isomorphic to C A.

The diagonal diag(A) of a bisimplicial object A is the simplicial object
obtained by composing the diagonal functor A — A x A with the functor A.

p.g—1
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Thus diag(A), = Ann, the face operators are 9; = 8{’8}’, and the degeneracy
operators are o; = 0o’

Eilenberg-Zilber Theorem 8.51 Let A be a bisimplicial object in an abe-
lian category .A. Then there is a natural isomorphism

mdiag(A) = H, Tot(CA).
Moreover there is a convergent first quadrant spectral sequence

El,=m)(Apy), E} =mhml(A)=> mpygdiag( A)

Proof We first observe that mo =2 Hy. By inspection, we have decomposi-
tions Ao = o' (A00) @ Nio, Ao1 = o8 (Aoo) @ Not, and A1y = ool (Ao) @
a3 (N10) ® o5 (No1) ® Nii. Now HoTot(CA) = Ago/(3f (N10) + 87(Nor))
and modiag(A) is the quotient of Agg by

M3V (o N1o ® o' Not ® Ni1) = 3 (N1o) + 3} (Nor) + 0.

Hence there is a natural isomorphism mpdiag( A) = Hy Tot (A).

Now the functors diag(A) and Tot(CA) are exact, while my and H, are
§-functors, so both m.diag(A) and H, Tot(C A) are homological é-functors
on the category of bisimplicia objects in A. We will show that they are
both universal d-functors, which will imply that they are naturally isomor-
phic. (The isomorphisms are given explicitly in 8.5.4.) This will finish the
proof, since canonical first quadrant spectral sequence associated to the double
complex CA has E}, = HY(Cps) = (A p) and E5, = HY(C(2(Apx)) =
mhn2(A) and converges to Hp4y Tot(CA) = 744 diag(A).

To see that 7, diag and H, Tot C are universa d-functors, we may assume
(using the Freyd-Mitchell Embedding Theorem 1.6.1 if necessary) that A4 has
enough projectives. (Why?) We saw in exercise 2.2.2 that this implies that
the category of double complexes-and hence the category of bisimplicial
objects by the Dold-Kan correspondence-has enough projectives. By the next
lemma, diag and Tot C preserve projectives. Therefore we have the desired
result:

nydiag = (Lymg)diag = L.(m.diag),
H, Tot C = (L, Hp) Tot C = L,(HyTot C). ¢

Lemma 8.52 The functors diag and Tot C preserve projectives.
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Proof Fix a projective bismplicial object P. We see from exercise 8.4.5 that
any bismplicial object A is projective if and only if each A,, is projective
in A, each row and column is smplicialy null-homotopic, and the vertical
homotopies 4! are simplicial maps. Therefore diag(P) is a projective simpli-
cial object, since each diag(P), = Pn, iS projective and the maps k; = hﬁ‘h}’
form a simplicia homotopy (8.3.11) from the identity of diag( P) to zero. Now
Tot(C P) is a non-negative chain complex of projective objects, so it is projec-
tivein Chxo(A) if and only if it is split exact if and only if it is exact. But every
column of Tot(C P) is acyclic, since Hx(C Ppy) = m4(Pps) = 0, so Tot(C P) is
exact by the Acyclic Assembly lemma 2.7.3 (or a spectral sequence argument).
<&

Application 8.5.3 (Kiinneth formula) Let A and B be simplicia right and
left R-modules, respectively. Their tensor product (A ®r B) = A, ®r Byis
a bisimplicial abelian group, and the associated double complex C(A ® B)
is the total tensor product Tot C(A) ® g C(B) of 2.7.1. The Eilenberg-Zilber
Theorem 8.5.1 states that

m.diag(A ®g B) = H.(Tot C(A) ®r C(B)).

This is the form in which Eilenberg and Zilber originaly stated their theorem
in 1953. Now suppose that X and Y are simplicial sets and set A = R[X],
B = R[Y] 8.2.3. Then diag(A ® BY=R[X x Y], and the computation of the
homology of the product X x Y (8.2.6) with coefficientsin R is

H,(X X Y; R) = m,diag(A ® B)= H,(Tot C(X) ® C(Y)).

The Kiinneth formula 3.6.3 yields Ha(X xY) =P, ,_, H..(X) ® H,(Y)
when R isafidd. If R = Z there is an extra Tor term, as described in 3.6.4.

The Alexander-Whitney Map 8.5.4 For many applications it is useful to
have an explicit formula for the isomorphisms in the Eilenberg-Zilber Theo-
rem 851. If p+ g =n, we define fpq: A, — A, to be the map
CARRRRT i R

The sum over p and g yieldsamap f,,: A,, — Tot, (CA), and the f, assemble
to yield a chain complex map f from C(diag(A)) to Tot(C A). (Exercise!) The
map f is called the Alexander-Whitney map, since these two mathematicians
discovered it independently while constructing the cup product in topology.
Since f is defined by face operators, it is natural and induces a morphism of
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universal §-functors fy: m.diagA — H, Tot(C A). Moreover, fo:Ago = Ao,
S0 f, induces the natural isomorphism modiag A = Hp Tot (C A). Therefore the
Alexander-Whitney map is the unique chain map (up to equivaence) inducing
the isomorphism f, of the Eilenberg-Zilber Theorem.

The inverse map V: Tot(C A)— C(diagA) is related to the shuffle product
on the bar complex (6.5.11). The component V,,: A, = A, (n=p + gq)is
the sum

gt L gh v v
D D0 T Ta T T
f73

over dl (p, g)-shuffles . The proof that V is a chain map is a tedious but
straightforward exercise. Clearly, V is natural, and it is easy to see that Vi
induces the natural isomorphism HyTot(C A) = mpdiag A. Therefore V, is
the unique isomorphism of universal §-functors given by the Eilenberg-Zilber
Theorem. In particular, V, is the inverse of the Alexander-Whitney map fx.

Remark The anadogue of the Eilenberg-Zilber Theorem for semi-simplicia
simplicial objects is fase; the degeneracies are necessary. For example, if
A,, is zero for p # 1, then mdiag(A) = Ay need not equal H) Tot(CA) =
T1(Als).

8.6 Canonical Resolutions

To motivate the machinery of this section, we begin with a simplicial descrip-
tion of the (unnormalized) bar resolution of a group G. By inspecting the con-
struction in 6.5.1 we see that the bar resolution

0«2z g g gl
is exactly the augmented chain complex associated to the augmented simpli-
cial G-module

Z< - BYs=BIE=BIEBY- -,

in which B is the free ZG-module on the set GI. In fact, we can construct
the simplicial module B¥ directly from the trivial G-module Z using only the
functor F =ZG®z: G-mod — G-mod; BYis F"*'Z=7G®z ... 371G,
the face operators are formed from the natural map ¢:ZG®z M — M, and
the degeneracy operators are formed from the natural map M =Z®z M -
72G®z M.
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In this section we formalize the above process (see 8.6.11) so that it yields
augmented simplicia objects whose associated chain complexes provide
canonical resolutions in a wide variety of contexts. To begin the formalization,
we introduce the dual concepts of triple and cotriple. (The names itriplel and
icotriplel are unfortunate because nothing occurs three times. Nonetheless
it is the traditional terminology. Some authors use imonadi and icomonadt,
which is not much better.)

Definition 8.6.1 A triple (T, n, ) on a category C is a functor T: C — C,
together with natural transformations n:id¢= T and w: TT = T, such that
the following diagrams commute for every object C.

Tu Tnc nTC
TT(TC) = T(TTC)— T(TC) TC—— T(TC)«—TC
llﬁc luc =\ l# /—“‘—
uC
T(TC) TC TC

Symbolically, we may write these as u(Tp) =p(uT) and u(Tn) =id =
p(nT).

Dually, a cotriple (I, ¢,8) in acategory A isafunctor I: A — A, together
with natural transformations ¢: 1= id 4 and 6: L=>_L L, such that the follow-
ing diagrams commute for every object A.

8a

I A —_—— 1 (1L A) LA
la,‘ lau =/ ls N\ =
L(LA)ﬂ»L(LLA) = 11(LA LAT— L(LA) —> LA
4 Ela

Symbolically, we may write these as (I 8)§=(8L)5 and (Lg&)d =id =
(e 1.)8. Note the duality: a cotriple in A is the same as atriple in .A°P.

Exercise 8.6.1 Provided that they exist, show that any product ITT,, of triples
Tg isatriple and that any coproduct LI L, of cotriples L is again a cotriple.

Exercise 8.6.2 Show that the natural transformation ¢ of a cotriple satisfies
the identity e(e 1) =e(L E). That is, for every A the following diagram com-
mutes:
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leg
LA —2 LA

EJ_Al ,LSA

&
IA — A

Main Application 8.6.2 (Adjoint functors) Suppose we are given an adjoint
pair of functors (F, U) with F Ieft adjoint toU.

F
BsC
U

That is, Homp(FC, B) = Hom¢(C, US) for every C in C and B in B. We
claimthat T=UF:C — Cispartofatriple (T,n, u)andthat | = FU: B>
B is part of a cotriple (I, ¢, S).

Recall from A.6.1 of the Appendix that such an adjoint pair determines two
natural transformations. the unit of the adjunction n:idg — U F and the counit
of the adjunction E: F U = id¢. We define 8 and w by

Sp=F(up): F(UB) > F(IUF(WUB)), unuc=U(erc):U(FU(FC))—> U(FC).

In the Appendix, A.6.2 and exercise A.6.3, we see that (¢F)o0 (Fn): FC —>
FC and (UE) o (nU): UB — UB are the identity maps and that ¢ o (FU¢) =
e0(eFU):FU(FU(B))— B. From these we deduce the triple axioms for
(T,n,

w(Tn) = UeF) o (Fm)=id,  u(rT)=((Ue) 0 QU)F =id,
w(Tuw)=WUeF)o(UFUeF)=U(coUFe)F =U(e0 eUF)F = u(uT).
By dudlity applied to the adjoint pair (U°P, F°P), (1, ¢, 4) is a cotriple on B.
Example 8.6.3 The forgetful functor U: G-mod — Ab has for its left ad-
joint the functor F(C) = ZG ®z C. The resulting cotriple on G-mod has
L1=FU, and L(Z)=ZG. The following construction of a smplicia object
out of the cotriple L on the trivial G-module Z will yield the simplicid G-

module used to form the unnormalized bar resolution described at the begin-
ning of this section; see 8.6.11.

Simplicial Object of a Cotriple 8.6.4 Given a cotriple L on.A and an object
A set 1, A=1"*t1Aand define face and degeneracy operators

9= Lligl1n i I"MlaA "4,
o= 1is 1 1A 1724
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We clamthat L, Aisasimplicia object in A. To see this, note that

g0y =1 (e 1)§ L"'=1% (1) L"*= identity, and
dip1oi=L" (1 &)8 L"'=1% (1) L" "= identity.

Similarly, we have

Jidir1= L'(e(Le) L" = L (e(e L)) L" 7 =9;3;,
oir10i= LE((L 8)8) 1" = 11((5 1)) 1" =o0;0;.

The rest of the simplicia identities are formally valid. The map s4: L A — A
satisfies gdy = €9y (because (e 1) =¢(L E)), soinfact I, A > Ais an
augmented simplicial object.

Duadlly, given a triple T on C, we define L" = T"*1C and 8’ = Tip T,
ol = TiuT"i Since atriple T on C is the same as a cotriple T°P on C°P,
L*=T*t1C isacosimplicia object in C for every object C of C.

Definition 8.6.5 Let L be a cotriple in a category A. An object A is called
I-projective if e4: L A — A has a sectiont A —_L A (i.e., if 4 f = idy).
For example, if 1= FU for an adjoint pair (F, U), then every object FC is
I-projective because Fn: FC — F(UFC)= 1 (FC) is such a section.

Paradigm 8.6.6 (Projective R-modules) If R is a ring, the forgetful functor
U: R-mod — Sets has the free R-module functor F asits left adjoint; we call
FU the free module cotriple. Since FU (P) is a free module, an R-module
P is FU-projective if and only if P is a projective R-module. This paradigm
explains the usage of the suggestive term il-projective.l It also shows that a
cotriple on R-mod need not be an additive functor.

I-Projective Lifting Property 8.6.7 LetU: A — C have a left adjoint F,
and set L = FU. An object P is I-projective if and only if it satisfies the
following lifting property: given a map g: Aj—> Az in Asuchthat U A, —
UA; is a split surjection and a map y: P — A3, there isa map 8: P — A,
such thaty = g8.

Proof The lifting property applied to FU(P) — P shows that P is I-
projective. For the converse we may replace P by FU (P) and observe that
since Hom 4 (FU (P), A) =Hom¢(U P,U A), the map Hom 4(FU (P),A) —
Hom4(FU (P), Ap) is a split surjection. <
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Exercise 8.6.3 Show that an object P is -L-projective if and only if there is
an Ain A such that Pisaretract of L A. (That is, thereare mapsi: P - L A
and r: L A— Psothat ri =idp.)

Proposition 8.6.8 (Canonical resolution) Let L be a cotriple in an abelian
category A.  I'F A is any I-projective object, then the augmented simplicial ob-
ject I, A 5 Als aspherical, and the associated augmented chain complex
is exact.

0 A LA 2409 1344

Proof For n>0, set f,=L"t1f: 1" 1A 51724 and set f_;= f. By
definition, 8,41 fa =1"*+! (sf) = identity and 8o fo = (¢ L)(L f) = fe. If
n>1land0<i<n+ 1 then (setting j = n —i and B=_/ A) naturdlity of ¢
with respect to g =L/ f yields

difa=(Lelp)(L'Lg)=(L g)(L ep) = fu-18:.

We saw (in 8.4.6 and exercise 8.4.6) that such a family of morphisms { f;}
makes L, A — AicontractibleT hence aspherical. Vv

Corollary 8.6.9 If AisabelianandlU: A — C is a functor having a left
adjoint F:C — A, then for every C in C the augmented simplicial object
I, (FC) — FC is contractible, hence aspherical in A .

Proposition 8.6.10 Suppose that U: A — C has a left adjoint F: C —d

Then for every A in A the augmented simplicial object U (L, A) —U—8>UA is
left contractible in C and hence aspherical.

Proof Set f_y=nU:UA— UFUA = U(L A) and f,=nU L". Then the
{ fn} make U (L, A) left contractible in the sense of 8.4.6. (Check thisl) V

8.61 Applications

Group Homology 8.6.11 If G isagroup, the forgetful functor U: G-mod —
Ab has a left adjoint F(C) =ZG ®7 C. For every G-module M, the re-
sulting simplicial G-module |, M — M is aspherical because its underly-
ing simplicia abelian group U (I, M) — UM is aspherica by 8.6.10. More-
over by Shapirois Lemma 6.3.2 the G-modules L"*! M = F(C) are acyclic
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for H(G;—) in the sense of 2.4.3. Therefore the associated chain complex
C(L, M) is a resolution by H,(G; -)-acyclic G-modules. It follows from
2.4.3 that we can compute the homology of the G-module M according to the
formula

H,(G; M) = Hi(C(Ly M)g) = (L M)g),

using the homotopy groups of the simplicia abelian group (L, M)g.

If wetake M = Z,C(L,Z) is exactly the unnormalized bar resolution of
6.5.1. The proof given in 6.5.3 that the bar resolution is exact amounts to a
paraphrasing of the proof of proposition 8.6.10.

The Bar Resolution 8.6.12 Let k — R be a ring homomorphism. The for-
getful functor U: R-mod — k-mod has F(M) = R ®; M as its left adjoint,
so we obtain a cotriple .= FU on R-mod. Since the homotopy groups of the
simplicial R-module |, M may be computed using the underlying simplicial
k-module U (L, M), it follows that 1L, M — M is aspherica 8.4.6 (I, M is
a simplicia resolution of M). The associated augmented chain complexes are
not only exact in R-mod, they are split exact when considered as a complex
of k-modules by 8.6.10. The unnormalized chain complex B(R, M) associ-
aed to I, M is caled the (unnormalized) bar resolution of a left R-module
M. Thus B(R, M)y = R @ M, and B(R, M), is R®"*+D @, M. Note that
B(R. M) = B(R, R) ®&M:

DM R M <« R FRNM< -

The normalized bar resolution of M, written B(R, M), is the normalized chain
complex associated to |, M and is described in the following exercise.

Exercise 8.6.4 Write R for the cokernel of the k-module homomorphism
k — R sending 1 to 1, and write ® for ®;. Show that the normalized bar res-
olution has B,(R, M) = RQ R® ---® R® M with n factors R, with (well-
defined) differential

drnp@®r® - HmA®mM=rrNen® - - ®rn®m

n—1
Y (D@ @R @ ® m

i=1

+ (D' RFI® - ®Fue1 @ rpm.
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Proposition 8.6.13 Suppose k is commutative. If M (resp. Mi) is a left mod-
ule over a k-algebra R (resp. R’), then there is a chain homotopy equivalence
of bar resolutions of the R ® R’-module M @ M’:

Tot(B(R, M) ® B(R', Mi)) — B(R®x R', M @ M.

Proof Let A (resp. Af) denote the simplicial k-module R®*® M (resp.
R'®*® Mi), where ® denotes ®;. The diagonal of the bisimplicial k-module
A® Ai is the smplicial k-module [p] —(R®” @ M) @ (R®’P@ M) = (R ®
RN®P® (M ® MIi) whose associated chain complex is B(R® Ri, M ® Mi).
The Eilenberg-Zilber Theorem (in the Kiinneth formula incarnation 8.5.3)
gives a chain homotopy equivalence V from the total tensor product Tot
C(A ® Ai) = Tot C(A) ® C(AI) = Tot B(R,M)® B(R’, Mi) to C diag (A ®
Al) XB(R® Ri, M @ Mi), <&

Remark The homotopy equivalence Tot B(R, R)® B(R’, Ri) Lﬂ(R@ Ri,
R ® Ri) isfundamental; applying ® ger (M ® Mi) to it yields the proposition.

Exercise 8.6.5 (Shuffle product) Use the explicit formula for the shuffle map
V of 6.5.11 and 8.5.4 to establish the explicit formula (where 1 ranges over dl
(p, g)-shuffles):

V(o ® - ®@rp@m@(ry®--®r,® mi)) =

Z(—l)“(ro ®70) ® Wu(l) ® -+ ® Wy(prg) ® (M m).
"

Here the r; arein R, the r} are in R, me M, mi € Mi, and wi,---,wp4q
is the ordered sequence of elements r1®l,---,rp®1,1®ri,---,1®r‘; of
R®R.

Free Resolutions 8.6.14 Let R be aring and FU the free module cotriple,
where U: R-mod — Sets is the forgetful functor whose left adjoint F(X) is
the free module on X. For every R-module M, we claim that the augmented
simplicid R-module (FU),M — M is aspherical (8.4.6). This will prove that
FU.M isasmplicia resolution of M, and that the associated chain complex
C=C(FU.M)is acanonicd free resolution of M because

i=0

Hi(C) = mi(FUM)=m:(UFUM)= {B" 20,
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Indeed, the underlying augmented smplicial set U (FU).M — UM isfi-
brant and contractible by 8.6.10. If we choose [0] = 7(0) as basepoint in-
stead of 0O, then the contraction satisfies f,({0}) = [0] for al n, and therefore
U(FU)«(M) is aspherica (by exercise 8.4.6). As the sets 7, U(FU)M are
independent of the choice of basepoint (exercise 8.3. 1), the augmented simpli-
cial R-module FU,(M)— M is dso aspherical, as claimed.

Sheaf Cohomology 8.6.15 Let X be a topological space and Sheaves(X)
the category of sheaves of abelian groups on X (1.6.5). If F is a sheaf we
can form the stalks F; and take the product T(F) = [, cx x«(Fx) of the
corresponding skyscraper sheaves as in 2.3.12. As F, = x, and U, (F) = Fx
are adjoint, each FyU,(F) = x4(Fx)is a triple. Hence Their

_—'7>(T*Jr 1F) and a corresponding augmented cochain complex

n 30—a! 2 d
0 —F— T(F) ——> THF) —> --- .

The resulting resolution of F by the r-acyclic sheaves T*+€(F) is called the
Godement resolution of F, since it first appeared in [Gode]. (The proof that
the Godement resolution is an exact sequence of sheaves involves interpreting
[T1U«(F) as a sheaf on the digoint union X? of the points of X.)

Example 8.6.16 (Commutative algebras) Let k be a commutative ring and
Commalg the category of commutative k-algebras. Let Px— R be an aug-
mented simplicial object of Commalg; if its underlying augmented simplicial
set is aspherical we say that Py isasimplicial resolution of R.

The forgetful functor U: Commalg — Sets has a l€ft adjoint taking a set
X to the polynomia algebra k[X] on the set X; the resulting cotriple L on
Commalg sends R to the polynomial algebra on the set underlying R. As with
free resolutions 8.6.14, U (L« R) — UR is aspherical, so I, R is a simplicia
resolution of R. This resolution will be used in 8.8.2 to construct André-
Quillen homology.

Another cotriple L% on arises from the left adjoint Sym of the forgetful
functor Ui: Commalg — k-mod. The Symmetric Algebra Sym(M) of a k-
module M is defined to be the quotient of the tensor algebra T(M) by the
2-sided ideal generated by all (x ® y—y ® x) with x, y€ M (under the iden-
tification i: M < T(M)). From the presentation of TM) =k &M @--- D
M®" g ... in 7.3.1it follows that Sym(M) is the free commutative algebra
on generators i(x), x € M, subject only to the two k-module relations on M:

o iX) = i(@x) and ix) +ily) = i(x +y) @€k x,y€EM).
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Thus any k-module map M — R into a commutative k-algebra extends
uniquely to an algebra map Sym(M) — R. This gives a natural isomorphism
Hom (M, R) = Homcoemmalg (Sym(M), R), proving that Sym is left adjoint
U. The resulting cotriple on Commalg sends R to the symmetric algebra
15(R) = Sym(U’R) and we have a canonical adjunction &:Sym(U’R)— R.
Asthe smplicid k-module U’(L, R) — U’R is aspherica, 15R—Ris an-
other simplicia resolution of R in Commalg, and there is a simplicia map
I, R > L15R, natural in R.

Exercise 8.6.6 Let X be aset and M the free k-module with basis X. Show
that Sym(M) is the commutative polynomia ring K[X]. Then show that the
map L, kK[X] — 13 k[X] is a smplicia homotopy equivalence.

Exercise 8.6.7 In genera, show that Sym(M)=k® M @ S2M)® ... d
S"M)@®---, where S"(M) is the module (M ®---® M)y, of coinvariants
for the evident permutation action of the n*” symmetric group >, onthe n-
fold tensor product of M.

8.7 Cotriple Homology

Suppose that A is a category equipped with a cotriple L= (I, &,3) as de-
scribed in the previous section, and suppose given a functor E: A — M with
M some abelian category. For each object A in.4 we can apply E to the aug-
mented simplicial object I, A — A to obtain the augmented simplicial object
E(1l,A)— E(A) in M.

Definition 8.7.1 (Barr and Beck [BB]) The cotriple homology of A with
coefficients in E (relative to the cotriple L) is the sequence of objects
H, (A; E) =, E (L, A). From the Dold-Kan correspondence, this is the same
as the homology of the associated chain complex C( E L, A):

0« E(LA) <4 E(124) <— E(L2A) « .

Clearly cotriple homology is functorial with respect to maps A — Al in
A and natural transformations of the icoefficient functorsi E — Ei. The
augmentation gives a natural transformation eA: Hy(A; E) = mo(E |, A) —
E(A), but at this level of generdity 2 need not be an isomorphism. (Take
1=0)

Dualy, if (T, n, ) isatriple on acategory C and E: C — M is a functor,
the triple cohomology of an object C with coefficients in E is the sequence of
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objects H"(C; E) = a"E(T**1C), which by definition is the cohomology of
the associated cochain complex

0 > E(TC) % E(T20) L E(T3C) - -

associated to the cosimplicial object E(T**1C) of M. By dudity, H"(C; E)
is the object H,(C; E°P) in the opposite category M°P corresponding to
E°P:C%P — MOP; we shall not belabor the dua development of triple coho-
mology.

Another variant occurs when we are given a contravariant functor E
from A to M. In this case E(L,A) is a cosmplicia object of M. We set
H"(A;E)=n"E (L, A) and call it the cotriple cohomology of A with co-
efficients in E. Of course if we consider L to be atriple on 4°P and take as
coefficients E: .A°P — M, then cotriple cohomology is just triple cohomology
in disguise.

Example 8.7.2 (Tor and Ext) Let R be aring and _L the free module cotriple
on mod-R (8.6.6). We saw in 8.6.14 that the chain complex C(L.M)isa
free resolution of M for every R-module M. If N is a left R-module and we
take E(M) = M ®z N, then homology of the chain complex associated to
E(L,M)= (L, M)®gr N computes the derived functors of E. Therefore

H,(M;®gN) = TorR(M, N).

Similarly, if N is a right R-module and E(M) = Homz (M, N), then the co-
homology of the cochain complex associated to E(L,M)=Homg(L,M, N)
computes the derived functors of E. Therefore

H"(M;Homg(—, N)) = Extp(M, N).

Definition 8.7.3 (Barr-Beck [BB]) Let 1 be a fixed cotriple on .A and M
an abelian category. A theory of -L-left derived functors (L,, A,d) is the as-
signment to every functor E: 4 — M a sequence of functors L, E: A — M,
natura in E, together with a natural transformation A: LoE = E such that

LA:Lop(El)=ELl and L,(EL)=0forn # 0andevery E.

2. Whenever £:0 - E’'—E— ET — 0 is an exact sequence of functors
suchthat 0 - E’'1—E L—E”1—0is aso exact, there are iconnect-
ingT maps d:L, ET — L, _ Ei, natural in &£, such that the following se-
guence is exact:

o iLyE' = LyE — LyE" > Ly \E' = Ly_1E---.
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Uniqueness Theorem 8.7.4 Cotriple homology H.(—; E) is a theory of I-
left derived functors. Moreover; if (L,,A,d) is any other theory of I-left
derived jiinctors then there are isomorphisms L,E = H,(—; E), natural in
E, under which A corresponds to eand a corresponds to the connecting map
for Hy(—; E).

Proof A theory of left derived functors is formally similar to a universal (ho-
mological) S-functor on the functor category M+, the E L playing the role of
projectives. The proof in 2.4.7 that left derived functors form a universal -
functor formally goes through, mutatis mutandis, to prove this result as well.
<

8.7.1 Relative Tor and Ext

8.7.5 Fix an associative ring k and let k — R be a ring map. The forget-
ful functor U: mod-R — mod-k has a left adjoint, the base-change functor
F(M) = M ®; R. If N isaleft R-module, the relative Tor groups are defined
to be the cotriple homology with coefficients in ® g N (relative to the cotriple
1 =FU):
Tory'*(M, N) = Hy(M; ®gN) = 7,((L. M) ®& N),

which is the homology of the associated chain complex C(1L,M ® N) (8.3.8).
Since (LPH M) @ N = (LPM) ®x R®gr N = LPM ®; N, we can give an
alternate description of this chain complex as follows. Write ® for ®, and
R®” fr RO R®--® R, so that 1LPM =M @ R®P. Then (I, M @ N) is
the simplicial abelian group [p]+—> M ® R®P ® N with face and degeneracy
operators

mri®@r2®... Qrp®n ifi=0
IimR®r@: - @rp@n)={m---Qririp1 ®---Q®n if0<i <p
men® - Qr, 1®rpn ifi=p;

oi(mrI@---Qrp@®n)=mQ---Qri_1Q1Q®r®---n.
(Check thisl) Therefore Torf/ k (M, N) is the homology of the chain complex

0«MINT"MORON - MORZQN - MR QN « ---.

Asin 2.7.2, one could also start with left modules and form the cotriple homol-
ogy of the functor M® z: R-mod — Ah relative to the cotriple 1'(N) =R ®;
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N on R-mod. The resulting simplicial abelian group [p] = M ® R®P @ N is
just the front-to-back dual (8.2.10) of the one described above. This proves
that relative Tor is a ibalancedi functor in the sense that

R/k

Torp" " (M, N) = Hp(M;@rN) = Hy(N; M®gR).

If N isaright R-module we define the relative Ext groups to be the cotriple
cohomology with coefficients in the contravariant functor Homg(—, N):

Extg (M, N) = HP(M; Homg(—, N)) = 7% Homg(L«M, N),

which is the same as the cohomology of the associated cochain complex
C(Hompg (L M, N)). Since Homz(M ®i R, N) = Hom; (M, N) by 2.6.3,
Homg(L« M, N) is naturaly isomorphic to the cosimplicial abelian group
[p] = Homy(M ® R®”,N) = (k-multilinear maps M x R? — N} with

flmro,ry,....rp)  ifi=0
(alf)(mvr()v"srp): f(m7--,ri_]r[,...) |f0 <l<p
f(m,ro,,..,rp_l)rp ifi = p;

(Ulf)(m,rl,”',rp_l) = f(m9"'9ri,17ri+17""rp—l)-

Exercise 8.7.1 Show that Tory’*(M,N) =M ®x N and Ext%/k(M, N) =
Homg(M, N).

Example 8.7.6 Suppose that R = k/1 for some ided Z of k. Since 1 M =
M for al M, (L, M)® N and Homg(L, M,N) are the constant simplicia
groups M ® N and Hom( M, N), respectively. Therefore ToriR/k (M, N) =
Ext",e/k(M, N)=o0fori # 0. This shows one way in which the relative Tor
and Ext groups differ from the absolute Tor and Ext groups of Chapter 3.

Just as with the ordinary Tor and Ext groups, the relative Tor and Ext groups
can be computed from |-projective resolutions. For this, we need the follow-
ing definition.

Definition 8.7.7 A chain complex P, of R-modules is said to be k-split if
the underlying chain complex U (P,) of k-modules is split exact (1.4.1). A
resolution P,— M is cadled k-split if its augmented chain complex is k-split.

Lemma 8.7.8 If £:0 > Mi — M — Mi — 0 is a k-split exact sequence of
R-modules, there are natural long exact sequences
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Rk
*—1

TorR% M7, NY — Tor®* (M, N) = Torf 7, N) -2 Tor® % s, Ny -

)
< Exth (M", N) = Extl (M, N) — Ext} (M, N) — Ext37,(M", N)-

Proof Since U(£) is split exact, for every p > 1 the complexes (Lrt!
EYRrN = UE) % (R®P®g N) and Homgz(LPT1E, N) = Homp(UE &%
R®P_ N) are exact. Taking (co-) homology yields the result. <&

By combining adjectives, we see that a ik-split I-projective resolutiont of
an R-module M is a resolution P,— M such that each P; is I-projective and
the augmented chain complex is k-split.

0« M <= Py<—Pi<=pPy--.

For example, we saw in 8.6.12 that the augmented bar resolutions B(R, M) —>
M and 8( R, M) — M are k-split I-projective resolutions for every R-module
M.

Comparison Theorem 8.7.9 Let P.—> M be a k-split I-projective reso-
lution and fi: M — N an R-module map. Then for every k-split resolution
Qs — N there is a map f. P,— Q. lifting fi. The map f is unique up to
chain homotopy equivalence.

Proof The proof of the Comparison Theorem 2.2.6 goes through. (Check
thisl) &

Theorem 8.7.10 If P,— M is any k-split I-projective resolution of an R-
module M, then there are canonical isomorphisms:

TorX*(M, N) = H,(P ®& N),

Ext} (M, N) = H*Homg(P, N).

Proof Since ®gN is right exact and Homg(—, N) is left exact, we have iso-
morphisms Tory’“(M, N) = M ®g N = Ho(P ®z N) and Ext}, , (M, N)=
Hom g (M, N) = HO Homg (P, N). Now the proof in 2.4.7 that derived func-
tors form a universal S-functor goes through to prove this result. &

Lemma 8.7.11 Suppose Riand R» are algebras over a commutative ring
k; set L;=R;® and L12=R|® R>®. If Pyis L -projective and P;is L-
projective, then P{® Pz is Li2-projective.
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Proof In generad P; is a summand of R; ® P;, SO P1® P is a summand of
LA P)Z(R1®P)Q(R® P). <

Application 8.7.12 (Externa products for Tor) Suppose k is commutative,
and we are given right and left R;-modules M and N (resp. Ry-modules M3
and Nj). Choose k-split _L;-projective resolutions P; — N;; Tot(Py® P2) is
therefore a k-split L j2-projective resolution of the R} ® Ry-module N1 ® N».
(Why?) Tensoring with M ® M, yields an isomorphism of chain complexes

Tot{(M; ®g, P1) @ (M2 ®g, P2)} = (M1 ® M2) ®r,@R, TOU(P1® P2).

Applying homology yields the external product for relative Tor:

Tor " (M1, Ny) @ Tor (M, Ny) — Tor @R % (1 @ My, Ny @ V).
Asin 2.7.8, the (porism version of the) Comparison Theorem 2.2.7 shows that
this product is independent of the choice of resolution. The externa product is
clearly natura in M, N, M>, N, and commutes with the connecting homo-
morphism § in al four arguments. (Check thisl) When i = j =0, it isjust the
interchange (MI ®g, NI) ®x (M2®g, N2) =(M1Q M2) r,or, (N1 ® N2).

The bar resolutions B(R;, N;) of 8.6.12 are concrete choices of the Pi. The
shuffle map V: Tot B(R;, N1) ® B(R2,N2) —> B(R1® R2, N1® N3) of 8.6.13
and exercise 8.6.5 may be used in this case to simplify the construction (cf.
[MacH, X.71).

Exercise 8.7.2 (External product for Ext) Use the notation of 8.7.12 to pro-
duce natura pairings, commuting with connecting homomorphisms:

Exthl/k(Ml, N2) ®k EXt{?z/k(M2’ N2) —> Extl(;i’®R2)/k(M] ® M2, Nl ® NZ)
Ifi=j=0, thisis just the map

Hom(Mj, Ni) ® Hom(M2, N2) - Hom(M| ® My, N1 ® Na).

Example 8.7.13 Suppose that R is a flat commutative algebra over k. If 7

is an idea of R generated by a regular sequence x = (xq,--,xg), then T =
Torf/k(R/I,R/I) is isomorphic to (R/I)¢ and

Torf’*(R/1, R/ = AT for i > 0.
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In particular these vanish for i>d. To see this, we choose the Koszul reso-
lution K (x)— R/I (4.5.5); each K;(x)=A'R? is -L-projective. Since every
differential in R/I ®g K (x) is zero, we have

TOIf,R/k(R/I, R/I)=R/IQr Ki(x) = A'T

More is true: we saw in exercise 4.5.1 that K(x) is a graded-commutetive
DG-algebra, so Torf/k(R/I,R/I)is naturally a graded-commutative R/Z-
algebra, namely via the exterior algebra structure. This product may aso be

obtained by composing the external product

TorX'*(R/1, R/ D@ Tor®'*(R/1, R/ T) — TorR®*'*(R/1®R /1, RJIQR/I)
with multiplication arisng from R ® R — R and R/l ® R/l — R/I. Indeed,
the external product is given by K(x)® K(x) and the multiplication is re-
solved by the Koszul product K(x) ® K (x) — K(x); see exercise 4.5.5.

Theorem 8.7.14 (Products of rings) Let k — R and k — R’ be ring maps.
Then there are natural isomorphisms

Tor®*FV% (41 x Mi, N x Ni) = Tor®* (M, N) @ TorX /% (M’, N),
EXtlp, gy (M X MI, N x NI) = Ext (M, N) ®Exth, (M, Ni).

Here M and N are R-modules, M’ and Ni are R’-modules, and we consider
M x Mi and N x N’ as (R x R')-modules by taking products componentwise.

Proof Write L and |i for the cotriples ®R and ® R, so that L & L' is
the cotriple ®(R x Ri). Since (I @ L)YM x Mi) =X (I M) & (I Mi) & (I
M) @ (L' Mi), both LM=M®Rand L' Mi = Mi ® Ri are (I &.L1')-
projective (R x R")-modules (exercise 8.6.3). The bar resolutions S(R, M) —
M and B(R’, Mi) —i (L & L")-projective resolutions;
50 is the product 8(R, M) x B(R’, Mi) — M x Mi. Using this resolution to
compute relative Tor and Ext over R x Ri yields the desired isomorphisms, in
view of the natural k-module isomorphisms

(M xM)®rxr) (Nx Ni) =(M®g N)dM Qg Ni),
Hompg, (M X Mi, N x Ni) = Homg(M, N) & Hom g (M’, Ni). <

Cdll aright R-module P relatively flat if P @ gr N, is exact for every k-split
exact sequence of left R-modules N.. Asin exercise 3.2.1 it is easy to see that
P is relatively flat if and only if Tor®’* (P, N) =0 for x 0 and al left mod-
ules N.
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Relatively Flat Resolution Lemma 8.7.15 If P — M is a k-split resolution
of M by relatively flar R-modules, then Torf/k(M, N) = H,(P®pg N).

Proof The proof of the Flat Resolution Lemma 3.2.8 goes through in this
relative setting. <&

Corollary 8.7.16 (Flat base change for relative Tor) Suppose R — Tis a
ring map such that T is flar as an R-module. Then for all T-modules M and
all R-modules N:

Tor®* (M, N) = TorT/¥(M, T ®& N).

Moreover; if R is commutative and M = L @ T these are isomorphic to

TorR/ ¥ (L@g T, N) =T ®g TorR/k(1 N).

Proof This is like the Flat base change 3.2.9 for absolute Tor. Write P — M
for the k-split resolution associated to L, M — M, with L. =®gT. The right
side is the homology of the chain complex P &7 (T ®gr N) =P ®g N, so
it suffices to show that each P,= (IT M) ®; T is a relatively flat R-module.
Because k is commutative there is a natural isomorphism P @zrN=T Qr
N ®; (L" M) for every N. If N, is a k-split exact sequence of left R-modules,
SO is N, ®; (L™ M); since T is flat over R, this implies that P @ g N, =
T ®r Nu®i (L™ M) is exact. >

Exercise 8.7.3 (Locdlization) Let S be a centra multiplicative set in R, and
M, N two R-modules. Show that

TorS™ ' R/k(s=1M, 57 1N) = TorR/* (S~ 1M, N) = S~ TorX/ (M, N).

Vista 8.7.17 (Algebraic K-theory) Let R be the category of rings-without-
unit. The forgetful functor U: R — Sets has a left adjoint functor F: Sets —
R, namely the free ring functor. The resulting cotriple I: R — R takes a
ring R to the free ring-without-unit on the underlying set of R. For each
ring R, the augmented simplicial ring I, R — R is aspherical in the sense
of 8.4.6: the underlying (based, augmented) simplicia set U(L«R) >UR
is aspherical. (To see this, recal from 8.6.10 that U(L. R) is fibrant and
left contractible, hence aspherical). If G: R — Groups is any functor, the L-
left derived functors of G (i.e., derived with respect to 1) are defined to be
L,G(R)=m,G(L, R), the homotopy groups of the simplicial group G(Llx
R). This is one type of non-abelian homological agebra (see 83.5).
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Classical examples of such a functor G are the general linear groups
GL,(R), defined for a ring-without-unit R as the kernel of the augmenta-
tion GLu(Z® R) > GLy,(Z). The incluson of GL,(R) in GL;u4+1(R) by
M (M9 dlows us to form the infinite general linear group GL(R) as the
union UG L,,(R). By inspection, L,GL(R) =1im;; 500 LoGL(R).

One of the equivalent definitions of the higher K-theory of aring R, due to
Gersten and Swan, is

K,(R) = Lpn2GL(R) =m,2GL(L«R) for n= 3,
while K| and K, are defined by the exact sequence
0 — K2(R) — LoGL(R)— GL(R) = K (R)— 0.

If R is a free ring, then K,(R) = 0 for n > 1, because GL(L«R) — GL(R)
is contractible (8.6.9). If R has a unit, then LoGL(R) is the infinite Stein-
berg group St(R) =1_ir3 St,(R) of 6.9.13; St(R) is the universal central ex-
tension of the subgroup E(R) of GL (R) generated by the elementary matrices
(6.9.12). For details we refer the reader to [Swanl].

8.8 André-Quillen Homology and Cohomology

In this section we fix a commutative ring k and consider the category Com-
malg = k-Commalg of commutative k-algebras R. We begin with afew defi-
nitions, which will be discussed further in Chapter 9, section 2.

8.8.1 The Kdkhler differentials of R over k is the R-module Qg+ having the
following presentation: There is one generator dr for every r e R, withda =0
if @€ k. For each r, s € R there are two relations:

dr + s)=(dr) + (ds) and d(rs) = r(ds) + s(dr).

If M is ak-module, a k-derivation D: R — M is a k-module homomorphism
satisfying D(rs) = r(Ds) + s(Dr); the map d: R — g/« (sending r to dr)
is an example of a k-derivation. The set Dery (R, M) of al k-derivations is an
R-module in an obvious way.

Exercise 8.8.1 Show that the k-derivation d: R — €2g/« is universa in the
sense that Der (R, M) EHOII]R(QR/](, M).

Exercise 8.8.2 If R = k[X] is a polynomid ring on a set X, show that
Qirx/« is the free R-module with basis {dx: x€ X}. If Kis a k-algebra,
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conclude that Qg (xy/x = K ®xQk(x1/x. These results will be generdized in
exercise 9.1.3 and theorem 9.1.7, using 9.2.2.

Recdl from 8.6.16 that there is a cotriple L. on Commalg, L R being
the polynomial agebra on the set underlying R. If we take the resulting
augmented simplicial k-algebra I, R — R, we have canonicad maps from
I, R =1"t'Rto R for every n. This makes an R-module M into a
1, R-module. The next definitions were formulated independently by M.
Andre and D. Quillen in 1967; see [Q].

Definitions 8.8.2 The André-Quillen cohomology D"(R/ k, M) of R with
values in an R-module M is the cotriple cohomology of R with coefficients
in Derg(—, M):

D"(R/k, M) = " Derg(Ly R, M) = H"(R; Dery(—, M)).

The cotangent complex Lg,;x=Lg/r(L«R) of the k-algebra R is defined
to be the simplicial R-module [r}> R ®(1,r)2(L,r)/k- The André-Quillen
homology of R with values in an R-module M is the sequence of R-modules

Dp(R/k, M) = (M QgL g/i).

When M =R, we write D,(R/k) for the R-modules Dy(R/k, R) = myLg/x.

There is a formal analogy: D, resembles Tor, and D* resembles Ext*.
Indeed, the cotangent complex is constructed so that Hompg(lLg i, M) =
Dery (L« R, M) and hence that D*(R/k,M)=n*Homg(Lz/k, M). TO see
this, note that for each n we have

Homg(R ®(1,r) Q1 r)/k» M) = Hom | g((L,r)/k>» M) = Dery (L, R, M).

Exercise 8.8.3 Show that D°(R/k, M) = Dery(R, M) and Do(R/k, M) ==
M ®rR/k-

Exercise 8.8.4 (Algebra extensions [EGA, IV]) Let Exalcommy (R, M) de-
note the set of al commutative k-algebra extensions of R by M, that is, the
equivalence classes of commutative algebra surjections E — R with kernel
M,M?=0. Show that

Exalcommy (R, M) = D'(R, M).

Hint: Choose a set bijection E = R x M and obtain an element of the mod-
ule Homsets(L R, M) = Derx(L2 R, M) by evaluating formal polynomials
fE-L Rinthe agebraE.
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Exercise 8.8.5 Polynomial k-algebras are |-projective objects of Commalg
(8.6.7). Show that if R is a polynomia agebra then for every M and i # 0
D (R/k,M) =D;(R/k,M) =0. We will seein exercise 9.4.4 that this van-
ishing also holds for smooth k-algebras.

Exercise 8.8.6 Show that for each M there are universal coefficient spectral
sequences

El, = Torsy(Dg(R/k), M)= Dpiq(R/k, M);
EJ? = ExtR(Dg(R/k), M) = DPTI(R/k, M).
If Ris afield, conclude that
Dy(R/k, M) = Dy(R/k)®g M and DY(R/k, M) = Homg(Dg(R/k), M).

In order to give the theory more flexibility, we need an analogue of the fact
that 1-projective resolutions may be used to compute cotriple homology. We
say that an augmented simplicial k-algebra P« — R isasimplicial polynomial
resolution of R if each P; is a polynomia k-algebra and the underlying aug-
mented simplicia set is aspherica. The polynomia resolution LR — R is
the prototype of this concept. Since polynomial k-algebras are I-projective,
there is a simplicial homotopy equivalence P —>1,4R (2.2.6, 8.6.7). There-
fore Derg(Py, M) >~ Derg(Ly R, M) and D*(R/k, M) =" Derg(Py, M).
Similarly, there is a chain homotopy equivaence between the cotangent com-
plex [LR/k and the smplicia module ﬂ.R/k(P*):[n]l—-) R®p,2p,/k- (Exer-
cisel) Therefore we may also compute homology using the resolution Pi.

8.8.3 Hereis one useful application. Suppose that k is noetherian and that R
isafinitely generated k-algebra. Then it is possible to choose asimplicia poly-
nomia resolution P, — R so that each P, has finitely many variables. Conse-
quently, if M is a finitely generated R-module, the R-modules D4(R/k, M)
and Dg(R/ k, M) are all finitely generated.

8.8.4 (Flat base change) As another application, suppose that R and K are
k-algebras such that Torf.‘ (K, R) =0 for i # 0. This is the case if K is flat
over k. Because these Tors are the homology of the k-module chain complex
C(K®x Ly R), it follows that K®; L« R — K® Ris a simplicial polyno-
mial resolution (use 8.4.6). Therefore

D*(K @R /K, M) =m* Derg(K® L«R, M)
>~ 7* Dery (L R, M) = D*(R/k, M)
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for every K ® R-module M. Similarly, from the fact that Qgx/« = K ®«
Qiix1/x for a polynomial ring K[X] it follows that L xgr/x ~ K ®L g/« and
hence that D, (K ® R /K)= K ®; D,(R/k). This family of results is caled
Flat base change.

Exercise 8.8.7 Show that D*(R/k, M) = D,(R/k, M) =0 if R is any local-
ization of k.

8.85 As athird application, suppose that R is free as a k-module. This will
aways be the case when kis a field. We saw in 8.6.16 that the forgetful
functor Ui: Commalg — k-mod has aleft adjoint Sym; the resulting cotriple
1S5(R)= Sym(U’R) is somewhat different than the cotriple 1. Our assump-
tion that R is free implies that Sym(U’R) is a polynomia algebra, and free
as a k-module. Hence 13 (R) — R is aso a simplicia polynomial resolu-
tion of R. Therefore D*(R/k, M) is isomorphic to the cotriple cohomology
m*(L3 R, M) of R with respect to the cotriple LS. Similarly, Lgx and L} , =
{R®1:sryS2(13R)/k} @€ homotopy equivalent, and D«(R/k, M) =m.(M ®r
L, 0)-

8.8.6 (Trangitivity) A fourth basic structural result, which we cite from [Q],
is Transitivity. This refers to the following exact sequences for every k-algebra
map K — R and every R-module M:

0 — Derg (R, M) — Derg(R, M) — Derg(K, M) —6>ExalcommK(R, M) —
Exalcommyg (R, M) — Exalcommg(K, M) > DX(R/K, M) —
S D'(R/K, M) — D*"(R/k, M) — D™K/k, M) =>> D""\(R/K, M) — ,

and its homology analogue:
oo Doy 1(RJK) =2 R ®k Du(K/k) = Dy(R/k) — Du(R/K) —> Dy 1(R/K) ~> ...
The end of this sequence is the first fundamental sequence 9.2.6 for Q2z/«.

Exercise 8.8.8 Suppose that k is a noetherian loca ring with residue field
F = R/m. Show that D'(F/k)= D;( F/k) =m/m?, and conclude that if R
is a k/l-algebra we may have D*(R/k, M) # D*(R/(k/I), M).

Exercise 8.8.9 (Barr) In this exercise we interpret Andre-Quillen homology
as a cotriple homology. For a commutative k-algebra R, let Commalg/R
be the icommal category whose objects are k-algebras P equipped with
an algebra map P — R, and whose morphisms P — Q are algebra maps
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such that P — R factors as P — Q — R. Let Diff: Commalg/R —- R-mod
be the functor Diff(P) = Qp;r®p R. Show that L induces a cotriple on
Commalg/R, and that if we consider R as the terminal object in Commalg/R,
then the cotriple homology groups (8.7.1) are Andre-Quillen homology:

Dn(R/k) = Hy(R; Diff) and Dn(R/k,M) = H,(R;DDiff ®g M).

8.8.1 Relation to Hochschild Theory

When k is afield of characteristic zero, there is a much simpler way to calcu-
late D*(R/k, M) and D.(R/k, M), due to M. Barr [Barr].

Barris Theorem 8.8.7 Suppose C,(R) is an R-module chain complex, natu-
ral in R for each R in Commalg, such that

1. Hp(C«(R))= Qg for each R.

2.If R is a polynomial algebra, C,(R) — £2g/ is a split exact resolution.

3. For each p there is a functor F,: k-mod — k-mod such that C,(R) =
R ®i Fp(U R), where U R is the k-module underlying R.

Then there are natura isomorphisms

DY(R/k, M) = HY Homg(Cx(R), M) and
Dy(R/k,M)=H,(M ®g C«(R)).

Proof We give the proof for cohomology, the proof for homology being simi-
lar but more notationally involved. Form the first quadrant double complex

E§? = Homg(Cp(13R), M)

with horizontal differentials coming from C, and vertical differentials coming
from the naturdity of the C,. We shall compute H* Tot(Ey) in two ways.

If we fix g, the ring J_g R is polynomial, so by (2) C*(J_gR)—»QﬁIR/k is
split exact. Hence H” Homg(C (L3 R), M) = 0 for p # 0, while

HOHomg(C.(L3 R), M) = Homg(Q, sr/k> M) = Derk(L R, M).

Thus the spectral sequence 5.6.2 associated to the row-filtration on Eo degen-
erates at Ejto yield H? Tot(Eg) = HY Dery (13 R, M) = DY(R/k, M).

On the other hand, if we fix p and set G(L) = Hom(Fp(L), M) we see
by condition (3) that E(f *=G(U L3 R). But the augmented simplicia -
module U L3 R — U R is left contractible (8.4.6), because 15 R = Sym(U R)
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(see 8.6.10). As G is a functor, E§* — G(UR) = Homg(Cp(R), M) is
also left contractible, hence aspherical. Thus H‘I(Eé’*) =0for g+# 0, and
HYES*)=Homg(Cp(R), M). Thus the spectral sequence 5.6.1 associated
to the column filtration degenerates at E, as well, yiedding H? Tot(Eg) =
HP” Homg(C«(R), M). <&

Preview 8.8.8 In the next chapter, we will construct the Hochschild homol-
ogy H«(R,R) of a commutative k-algebra R as the homology of a natural R-
module chain complex C%(R) with CA(R) =R ® F,(UR), F,(L) being the
p-fold tensor product (L ®i L ®i--®x L). There is a natural isomorphism
H|(R,R) = Qg and the map C:(R) —>C(’)‘(R) is zero. We will seein 9.4.7
that if R is a polynomia agebra, then H,(R, R) EQ’,’Q/,{, so C! does not quite
satisfy condition (2) of Barris Theorem.

To remedy this, we need the Hodge decomposition of Hochschild homol-
ogy from 9.4.15. When Q C k there are natural decompositions Fp,(L) =
SF,(L) such that each C!(R)¥) = R @ F(U R)® is a chain subcomplex
of CH(R) and C'(R) = &CH(R)P.If M is an R-module (an R-R bimod-
ule via mr = rm), set H (R, M) = H,(M ® C"(R)®) and H{!\(R, M) =
H"Homg(C*(R)®, M). The Hodge decomposition is

H,(R,M) =0H{"(R, M) and H"(R,M)=&H[ (R, M).

If R is a polynomia algebra, then H,fi)(R, R)=0fori#n, and H,E")(R, R) =
Q is a free R-module (exercise 9.4.4). In particular, since CHRYD =0 for
i > n the augmented complex Ci’(R)(")—»Q"R/k[—i] is split exact for all i.

If we let Cp(R) be Clh, (R)D, then the above discussion show that C

satisfies the conditions of Barris Theorem 8.8.7. In summary, we have proven
the following.

Corollary 8.8.9 Suppose that k is a field of characteristic zero. Then André-
Quillen homology is a direct summand of Hochschild homology, and André-
Quillen cohomology is a direct summand of Hochschild cohomology:

Dy(R/k,M)=H{Y (R, M) and DI(R/k, M) = H{ ' (R, M),



9
Hochschild and Cyclic Homology

In this chapter we fix a commutative ring k and construct severa homology
theories based on chain complexes of k-modules. For legibility, we write ®
for ® and R®" for the n-fold tensor product R® ... ® R.

9.1 Hochschild Homology and Cohomology of Algebras

9.1.1 LetR beak-agebraand M an R-R bimodule. We obtain a simplicial
k-module M ® R®* with [n] > M ® R®" (M ® R®® = M) by declaring

mrir®---Qry ifi=0
Imr® - Qry)=MB3r@---Qririr1Q---Qr, if0<i <n
rimri® - Qrp_ ifi=n

ocimPri®--@rp) =m B - Vri®Lrit1Q - ®ra,

where m € M and the r; are elements of R. These formulas are k-multilinear,
so the 9; and g; are well-defined homomorphisms, and the simplicial identities
are readily verified. (Check thisl) The Hochschild homology H.(R, M) of R
with coefficients in M is defined to be the k-modules

H,(R, M) = m,(M ® R®*) = H,C(M ® R®").

Here C(M ® R®*) is the associated chain complex with d = 3 (—1)"9;:

89—d1 d d
0 «— M «—— M®R «— M®R®R «— ---

For example, the image of dg — d; is the k-submodule [M, R] of M that is gen-
erated by all terms mr-rm (m € M, r € R). Hence Hp(R, M) =M /[M, R].
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Similarly, we obtain a cosimplicial k-module with [n] = Hom (R®", M) =
(k-multilinear maps f:R"— M} (Hom(R®%, M) = M) by declaring

rof(ri,... r) ifi=0
@ o, rn)=1 fro,....ritri,...)if0<i<n
f(r()’-'-,rn—])rn ifl =n
@ )ty ram) - fOr, . LT, L ).

The Hochschild cohomology H*(R, M) of R with coefficients in M is defined
to be the k-modules

H"(R, M) = n" (Homg(R®*, M)) = H"C(Homg(R®*, M)).

Here C Homyg (R*, M) is the associated cochain complex

303! d d
0 — M —— Hom(R, M) — Hom(R® R, M) —---.

For example, it follows immediately that

HYR,M)y={meM:rm=mr forallre R}.

Exercise 9.1.1 If Ris a commutative k-algebra, show that M ® R®* is a
simplicidl R-module via r-(m®ri®---)=(rm) ®r;®---. Conclude that
each H,(R, M) is an R-module. Similarly, show that Homg(R®*, M) is a
cosimplicial R-module, and conclude that each H" (R, M) is an R-module.

Exercise 9.1.2 If 0 >My—>M;—>M>—0is a k-split exact sequence of
bimodules (8.7.7), show that there is along exact sequence

. H{(R, o) - Hi(R,My)— Hy(R, M) —> H;_1(R, M) - - .

Example 9.1.2 (Group rings) Let k{G] of agroup G, and
<M for M

{riviadl left G-moduterstradtireg ¢ G, e M). |If B}

H.(G; M )

®zc BZ, the chain complex that in degree iis M ®(ZG)® . By inspec-

7G, M. Similar
H*(G; is the cohomology of Homg(B{;hawrhicdm |
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the same as the complex Hom,, ((ZG)®*,. M) used to define Hochschild coho-
mology. Thus

H.(G; M) =H,(ZG;:M) and H*(G;M)=H*(ZG; :M).

The above definitions, originally given by G. Hochschild in 194.5, have the
advantage of being completely natural in R and M. In order to put them into
a homologica framework, it is necessary to consider the enveloping algebra
R¢=R ®; R°P of R. Here R°P is the iopposite ringl; R°P has the same un-
derlying abelian group structure as R, but multiplication in R°P is the opposite
of that in R (the product r -s in R°P is the same as the product sr in R). The
main feature of R°P is this: A right R-module M is the same thing as a left
R°P-module via the product r - m = mr because associativity requires that

(r-s)-m=(sr) m = msr) = (M =1 (ms)=r-(s-m).

Similarly a left R-module N is the same thing as a right R°P-module via
n-r = rn. Consequently, the main feature of R€ isthat an R-R bimodule
M is the same thing as a left R®-module via the product (r ® s) - m = rms,
or as aright R¢-module via the product m - (r ® s) = smr. (Check this!) This
gives a dick way to consider the category R-mod-R of R-R bimodules as
the category of left R¢-modules or as the category of right R-modules. In
particular, the canonical R-R bimodule structure on R makes R into both a
left and right R¢-module.

Lemma 9.1.3 Hochschild homology and cohomology are isomorphic to rel-
ative Tor and Extfor the ring map k - R =R ® RP;

Ho(R. M) =Tork (M, R) and H*(R, M) = Ext}e (R, M)

Proof Consider the unnormalized bar resolution B(R, R) of R as a left R-
module (8.6.12). Each term B(R,R),=R®"*1® R is isomorphic as an R-R
bimodule to R® R®"® R = (R ® R°P) ® R®" and hence is |-projective
(8.63, where L = R°®. Since B(R, R) is a k-split I-projective resolution
of the R®-module R, 8.7.10 yields

Torf /(M. R) = H,(M ®g B(R,R)) and

Ext’,;e/k(R, M) = H* Homg:(8(R,R), M).

On the other hand, the isomorphism M ®ge (R ® R®"® R) > M ® R" send-
ing M@@o® - ® rua1) 10 (Fapimrg) ® (1 ® -+ - @ ry) identifies M @ge
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B(R,R) with the chain complex C(M ® R®*) used to define Hochschild ho-
mology. Similarly, the isomorphism Homg: (R ® R®"® R, M) — Hom;( R®",
M) sending f to f( 1, —, 1) identifies Homg<(B(R, R), M) with the cochain
complex C(Homy(R®*, M)) used to define Hochschild cohomology. <&

Next we show that in good cases, such as when k is a field, we can identify
Hochschild homology and cohomology with the absolute Tor and Ext over the
ring R¢.

Lemma 9.1.4 If P and Q are flat (resp. projective) k-modules, then so is
P® Q.

Proof Let £ be an exact sequence of k-modules. If P and Q are flat, then
by definition £ ® P and hence £ ® P ® Q are exact; hence P ® Q is flat. If
P and Q are projective, then Hom(Q, &) and hence Hom(P, Hom(Q, 1)) =
Hom(P ® Q,€&) are exact; as we saw in 2.2.3, this implies that P® Q is
projective. <&

Corollary 9.1.5 If Ris flar as a k-module, then H,(R, M) ETorfe(M, R). If
R is projective as a k-module, then H*(R, M) = Ext}.(R, M).

Proof If Ris flat (resp. projective), then each R®" is a flat (resp. projective)
k-module, and hence each B(R,R),=R¢® R®" is a flat (resp. projective)
R¢-module. Thus B(R, R) is a resolution of R by flat (resp. projective) R®-
modules. It follows that the relative Tor (resp. relative Ext) modules are iso-
morphic to the absolute Tor (resp. absolute Ext) modules. 0

Here are three cases in which H,(R, M) is easy to compute. First, let us
recall from 7.3.1 that the tensor algebra of a k-module V is the graded algebra

TV) =k@VeVOV)® - OV a....
Proposition 9.1.6 Let T = T(V) be the tensor algebra of a k-module V, and

let M be a T-T bimodule. Then H; (T, M) =0 for i 0, 1 and there is an
exact sequence

0— H(T,M)—> M@V -2 M — Hy(T, M) - 0

where b is the usual map b(m ® v) = mv—vm. In particular if o denotes the
cyclic permutationoc (Vv Q@ - - Q) =V; QU1 ®---Vj_| of V®J and we write
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(V®/)? and (V®/), for the invariants and covariants of this group action,
then we have

o

HoT.T) =k o @P(v®),, H(T.T) = Pv®)e.
j=1

j=1

Proof The formulad(t®@v® ti) = tv® ti —t® vti definesa T-T bimodule
map from TRV ® TtoT ®T. As the kernel 1 of the multiplication w: T ®
T — T is generated by theelements v® 1 — 1 Q@ v=d(1 @ v® 1) and ud =
0, the image of dis/. Asd is a direct sum (over p and g) of maps from
VPRV @VIito VEPHI@V® and to VEP @ V®I+! each of which is an
isomorphism, d is an injection. (Check this!) Hence

05>TRVRT-H5TeT S T—>0

is a |-projective resolution of the T¢-module T; w is k-split by the map id ®
1: T—T®T. Hence we can compute Tor*Te/k(M, T) using this resolution.
Tensoring with M yields H;(T,M) =0 for i 0, 1 and the advertised exact
sequence for Hy and Hp. o

Exercise 9.1.3 (Polynomids) If R = k[xy,---, x;], show that R® is isomor-
phic to the polynomia ring k[yi,-., ¥, 21, ", 2m] and that the kerne of
R?— R is generated by the regular sequence x =(y1—2z1, ..., Ym— 2,). Us
ing the Koszul resolution K (x) of 4.5.5, show that H,(R,R) =HP(R,R) =
AP(R"™) for p =0, -+, n, while Hy,(R,M) = HP(R, M) = 0 for p>n and
all bimodules M. Thisis a special case of Theorem 9.4.7 below.

Exercise 9.1.4 (Truncated polynomias) If R=k[x]/(x""!=0), leu=x®
l-1®@xandv=x"®@1+x"'®x+.--+x@x"" ! + 1 ® x" as elements
in R¢. Show that

0 R<—R< R R & R & R

is a periodic Ré-resolution of R, and conclude that H;(R, M) and H(R, M)
are periodic of period 2 for i >1. Findly, show that when —L_e R we have

n+1
H;(R,R) =H'(R,R) =R/(x"R) for al i> 1.

Let k — £ be a commutative ring map. If R is a k-algebra, then Ry = R ®; £
is an E-algebra. If A4 is an R¢— Ry bimodule then via the ring map R —
R¢ (r—r® 1) we can also consider M to be an R-R bimodule. We would
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like to compare the Hochschild homology Hf(R, M) of the k-algebra R with
the Hochschild homology Hf(R[, M) of the e-algebra Ry =R ®¢.

Theorem 9.1.7 (Change of ground ring) Let R be a k-algebra and k —£a
commutative ring map. Then there are natural isomorphisms for every R¢— Ry
bimodule M:

HYR, M) =HY R, M) and  H (R, M) = H} (R, M),

Proof The unnormalized chain complexes used for computing homology are
isomorphic by the isomorphisms M @ R ®i... ®xR=EM Q¢ (R®£)®¢
< ®p (R®g £). Similarly, the unnormalized cochain complexes used for com-
puting cohomology are isomorphic, by the bijection between k-multilinear
maps R"— M and £-multilinear maps (R¢)" — M. &

Theorem 9.1.8 (Change of rings) Let R be a k-algebra and M an R-R
bimodule.
1. (Product) If R’ is another k-algebra and Mi an R’— R’ bimodule, then
HARXR', M x Mi) ZH,(R, M) ®H.(R', Mi)
H*(R x Ri, M x Mi) H*(R,M)®H*(R', Mi).

2. (Flat base change) If R is a commutative k-algebra and R — T is a ring
map such that T is flat as a (left and right) R-module, then

H(T,T ®r M @ T) =T ®rH.(R,M).
3. (Localization) If S is a central multiplicative set in R, then

Ho(S™'R,ST'RY= H.(R, S 'R)= S H.(R, R).

Proof For (1), note that (R x RN = R*x R*x (R ® RP)x (Ri ® RP);
since M and Mi are left R¢ and R’¢-modules, respectively, thisis a special case
of relative Tor and Ext for products of rings (8.7.14). For (2), note that R® —
T¢ makes T¢ flat as an R°-module (because T ®ge M =T ®r M ®r T). By
flat base change for relative Tor (8.7.16) we have
Torl /T, T @ M) = TorX /*(1", M) = T ®& TorX /*(R, Mm).

The first part of (3) is dso flat base change for relative Tor 8.7.16 with T =
S~IR, and the isomorphism H.(R,S'R)=S"'H,(R,R) is a special case
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of the isomorphism Tor®/¥(§=1am, N) = §~! Tor® /*(M, N) for localization
(3.2.10 or exercise 8.7.3). <&

Here is one way to form R-R bimodules. If M and N are left R-modules,
Homy (M, N) becomes an R-R bimodule by the rule rfs : m > rf(sm).
The Hochschild cohomology of this bimodule is just the relative Ext of 8.7.5:

Lemma 9.1.9 Let M and N be /eft R-modules. Then

H"(R,Homg(M, N)) =Ext}y, (M, N).

Proof Let B = B( R, R) be the bar resolution of R. Thinking of M as an R-k
bimodule, we saw in 2.6.2 that the functor @ gM: R-mod-R — R-mod-k is
left adjoint to the functor Homg (M, —). Naturality yields an isomorphism of
chain complexes:

Hompg(B ®gr M, N) = Homg_r(B,Homi (M, N)).

As B ®g M is the bar resolution B(R, M), the homology of the left side
is the relative Ext. Since the homology of the right side is the Hochschild
cohomology of R with coefficients in Hom(M, N), we are done. 0

9.2 Derivations, Differentials, and Separable Algebras

It is possible to give simple interpretations to the low-dimensional Hochschild
homology and cohomology modules. We begin by observing that the kernel of
the map d: Homg (R, M) — Homy (R ® R, M) is the set of al k-linear func-
tions f: R — M satisfying the identity

flror) =rof(r) + flror:.

Such a function is caled a k-derivation (or crossed homomorphism); the
k-module of all k-derivations is written Dery(R, M) (as in 8.8.1). On the
other hand, the image of the map d: M — Homy (R, M) is the set of al k-
derivations of the form f, (r) = rm — mr; cal f, aprincipal derivation and
write PDer( R, M) for the submodule of all principal derivations. Taking H!,
we find exactly the same situation as for the cohomology of groups (6.4.5):

Lemma 9.2.1 H'(R, M) = Derx(R, M)/PDery(R, M).
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Now suppose that R is commutative. Recall from 8.8.1 that the Kdhler
differentials of R over k is the R-module €2 g/, defined by the presentation:
There is one generator dr for every r e R, with da = 0 if o € k. For each
r1,r2 € R there are two relations:

d(rg + r1) =d(rg) + d(r)) and d(ror1) = ro(dr1) + (dro)ry.

We saw in exercise 8.8.1 that Dery (R, M) = Homg(Qg,, M) for every right
R-module M. If we make M into a bimodule by setting rrn = mr for al re R,
m € M then H ! (R, M) = Der, (R, M). This makes the following result seem
amost immediate from the Universal Coefficient Theorem (3.6.2), since the
chain complex C(M ® R®*) is isomorphic to M ®z C(R ® R®*).

Proposition 9.2.2 Let R be a commutative k-algebra, and M a right R-
module. Making M into an R-R bimodule by the rule rm = mr, we have
natural isomorphisms Hp(R, M) = M and Hi(R, M) =M Qg Q2g/k. In par-
ticular,

Hi(R, R) = Qgk-

Proof Since rm =mr for al m and r, the map dp —3;: M ® R = M is zero.
Therefore Hp= M and H;(R, M) is the quotient of M ®; R by the relations
that for all me M, e RmriQro—m@rirp+rom@®r; =0 It follows
that there is a well-defined map Hi(R,M)— M ®r Qg Sending m®-r
to m® dr. Conversely, we see from the presentation of Qg4 that there is
an R-bilinear map M x Qg — Hi(R, M) sending (m, rydr;) to the class
of mry®ry; this induces a homomorphism M ®g Qg — Hi(R, M). By
inspection, these maps are inverses. <&

Corollary 9.2.3 If S is a multiplicatively closed subset of R, then
Qs-1ryk =S Q).

Proof The Change of Rings Theorem (9.1.8) states that H;(S™'R,S™!R)=
S~THi(R, R). &

Alternate Calculation 9.2.4 For any k-algebra R, let I denote the kernel of
the ring map e:R ® R — R defined by e(ri®r)=rir;. Sincer>r® 1
defines a k-module splitting of &, the sequence 0 — | — R¢——» R — 0 is k-

split. As H; (R, R®) =0, the long exact homology sequence (exercise 9.1.2)
yields

Hi(R, M) =Zker(I ®@ge M — ZM).
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If R is commutative and rm = mr, then IM = 0 and H;(R, M) =
1/1*°® g M. In particular, if we take M = R this yields

Qr/x = H\(R, R) =1/I.

Explicitly, the generator dr eQpg,; corresponds to 1 @r—r® 1 el/I%.
(Check this!)

Example 9.2.5 Let k be afield and R a separable algebraic field extension
of k. Then Qg/x = 0. In fact, for any r e R there is a polynomial f(x) €k[x]
such that f(r) = 0 and f’(r)% 0. Since d: R —Qg/« IS a derivation we have
f'(rydr =d(f(r)) = 0, and hence dr =0. As Qg is generated by the dris,
we get Qg =0.

Exercise 9.2.1 Suppose that R is commutative and M is a bimodule satisfy-
ing rm = mr. Show that there is a spectral sequence

E%, = TorR(H (R, R), M) = Hp14(R, M).
Use this to give another proof of proposition 9.2.2. Then show that if M (or

every H.(R,R)) is a fla R-module, then H,(R,M)=H,(R,R) ®r M for
al n.

The following two sequences are very useful in performing calculations.
They will be improved later (in 9.3.5) by adding a smoothness hypothesis.

First Fundamental Exact Sequence for £ 9.2.6 Let k — R — T be maps
of commutative rings. Then there is an exact sequence of T-modules:

Qr/ik ®rT N Qr/k i) Qr/r — 0.
The maps in this sequence are given by «(dr ® t)=tdr and B(dr) = dt.

Proof Clearly B is onto. By the Yoneda Lemma (1.6.1 1), in order for this
sequence of T-modules to be exact at Qr/x, it is sufficient to show that for
every T-module N the sequence

EY ﬂ*
Homz (R« ®r T, N) <— Homy(Qr /4, N) <— Homp(Q27/r, N)
be exact. But thisis just the sequence of derivation modules

Deri(R, N) < Dery(T, N) < Derg(T, N),
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and this is exact because any k-derivation D: T — N satisfying D(R) = 0 is
an R-derivation. <

Second Fundamental Exact Sequence for € 9.2.7 Let I be an ided of
a commutative k-algebra R. Then there is an R-module map 6: /17—
Qr/k®r R/l defined by 8(x) = dx ® 1, fitting into an exact sequence

8
1)1 5 Qi ®r R/T 5 Qi — 0.

Proof If xel and re R, then 8(rx) =dx ®ras dr  x = 0; if re 1 then
rx € 1% and 8(rx) = 0. Hence & is well defined and R-linear. Once more we
use the Yoneda Lemma 1.6.11 to take an R/I -module N and consider

Hompg;(I/1%, N) <— Dery(R, N) <— Derg(R/I, N) < 0.

If D: R — N is a k-derivation, then (8* D)(x) = D(x), so if *D =0, then
D(I) = 0, and D may be considered as a k-derivation on R/I. <

9.2.1 Finite Separable Algebras

A finite-dimensional semisimple agebra R over afield k is caled separable if
for every extension field k C £ the E-algebra R, = R ®; £ is semisimple.

Lemma 9.2.8 If K is a finite field extension of k, this definition agrees
with the usual definition of separability: every element of K is separable
over k.

Proof If X eKis not separable, its minimal polynomia f €k[X] has mul-
tiple roots in any splitting field £. Then K ® £ contains k(x) ® £=¢[X]/f,
which is not reduced, so K ® £ is not reduced. Otherwise we can write K =
k(x), where the minimal polynomial f of x has digtinct roots in any field ex-
tension £ of k. Hence K ® £=£[X]/(f) is reduced, hence semisimple. 0

Corollary 9.2.9 A finite-dimensional commutative algebra over a field is sep-
arable if and only if it is a product of separablejeld extensions.

Proof A finite commutative algebra R is semisimple if and only if it is a
product of fields. R is separable if and only if these fields are separable. 0

The matrix rings M,(k) form another important class of separable algebras,
since M,(k) ®«£=M,,(£). More generaly, Wedderburnis Theorem states
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that every semisimple ring R is a finite product of simple rings, each isomor-
phic to M,,(A) for some m and some division algebra A; R is separable if and
only if each of its simple factors is separable.

Suppose that M,,(A) is separable. If F is the center of A, then F ® £ is
a subring of A ® £ and M,;(A) ® £, so F must also be a finite separable
extension of k. It is easy to see that if £ is a splitting field of F, then F ® £ is
a finite product of copies of ¢, so each of the simple factors of M,,(A) ® £ has
center £. As we saw in 6.6.10 (see [BAII, 8.4]), there exists a finite extension
L of £ such that L ®; My, (A) =L ®; (£ ®« My(A)) is a product of matrix
rings over L. In summary, we have proven that if R is separable over k, then
there is a finite extension L of k such that R ® L is a finite product of matrix
rings M, (L).

Lemma 9.2.10 If R = M,,(k), then R is a projective R¢-module.

Proof Theelemente =) ¢;1 ® e1; of R¢ = M,, (k) ® M,, (k)°P is idempotent
(€2 = ¢) and the product map ¢: R ® R°° — R sends e to ) ¢;; = 1. Define
a: R — R by a(r) = re. Since the basis elements ¢;; of R satisfy e;je =
ei1 ® e1j = ee;j, we have re = er for all r € R; hence « is an R— R bimodule
map. Since e« is the identity on R, this shows that R is a summand of R®. ¢

Theorem 9.2.11 Let R be an algebra over a field k. The following are equiv-
alent:

1. R is a finite-dimensional separable k-algebra.

2. R is projective as a left R®-module.

3. Hi«(R, M) =0 for all ¥ # 0 and all bimodules M.
4. H*(R, M) =0 for all x # 0 and all bimodules M.

Proof From the “pd” and “fd” lemmas of 4.1.6 and 4.1.10 we see that (2),
(3), and (4) are equivalent. If R is separable, choose k C £ so that R, is a finite
product of matrix rings R; = M,,,(£). Since every R— R bimodule is a product
M = TIM; of R;—R; bimodules M; we have H,(R, M) = T1H,(R;, M;) =0
by 9.1.8 and the above lemma. Thus (1) = (3).

Now assume that (2) holds for R. Then (2), (3), and (4) hold for every R ® ¢
because R ® £ is projective over the ring

(R =R R (RINDP=(RR® RP) R £ = (R R L.

We have isolated the proof that dim(R) < oo in lemma 9.2.12 following this
proof. Now each R, is semisimple if and only if R, has global dimension 0
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(4.2.2). If M and N are left Ry-modules, we saw in 9.1.3 and 9.1.9 that

Ext’}}z(M, N) = Ext’;l/k(M, N) = H*(Ry, Homg{(M, N)).

As (4) holds for Ry, the right side is zero for x# 0 and al M, N; the Globa
Dimension Theorem (4.1.2) implies that R, has globa dimension 0. Hence (2)
= (2). <

Lemma 9.2.12 (Villamayor-Zelinsky) Let R be an algebra over a field k. If
R is projective as an R¢-module, then R is finite-dimensional as a vector space
over k.

Proof Let {x;} be a basis for R as a vector space and {f'} a dua basis for
Homy (R, k). As R¢ isafree left R-module on basis { 1 ® x;} with dua basis
(1 ® f'} S Hompg(R®, R), we have

u :Z(l R fHYw)® x; for dl ueRe.

Now if R is a projective R¢-module, the surjection &: R — R must be split.
Hence there is an idempotent e € R® such that R°.e=R and g(¢) = 1. In
particular, (1 @ r—r®1l)e=0foral reR. Settingu = (1 ®@re = (r ®1)e
yields

® r=en=y (®HNE®De) - xi=rY (18 file)x.

Therefore the sum in (x) is over afinite indexing set independent of r. Writing
e=)_ eupXa® xp With eqp € k alows us to rewrite () as

r=Y (18 fi)(eapra ®rxp)xi = Y eapf(rip)(xaxi).

Therefore the finitely many elements x,x; span R as a vector space. <

9.3 H?, Extensions, and Smooth Algebras

From the discussion in Chapter 6, section 6 about extensions and factor sets
we see that H2(R, M) should have something to do with extensions. By a
(square zero) extension of R by M we mean a k-algebra E, together with
asurjective ring homomorphism ¢: E — R such that ker(e) is an idea of
square zero (so that ker(e) has the structure of an R-R bimodule), and an
R-module isomorphism of M with ker(e). We call it a Hochschild extension
if the short exact sequence 0 - M — E —> R — 0 is k-split, that is, split
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as a sequence of k-modules. Choosing such a splitting o: R — E yidds a k-
module decomposition E = R & M, with multiplication given by

() (r1, m)(r2, ma) = (rira, rima + mry + f(r1,r2)).

We call the function f: R ® R — M the factor set of the extension corre-
sponding to the splitting o. Since the product (rg, 0){r1, 0)(r2, 0) is associa-
tive, the factor set must satisfy the cocycle condition

rof(ri,ra) — f(rori,r2) + fro,rir2) — f(ro, ri)rz = 0.

Conversely, any function satisfying this cocycle condition yields a Hochschild
extension with multiplication defined by (x). (Check this!) A different choice
o’:R — E of a splitting yields a factor set i, and

firi,r) — f(ri.r) =a'(r)o’(r2) —o'(rr) — o (r)e(r2) + o(rir2)
=a'(r)lo’(r) — o (r)] — [0/ (r1r2) — o (r172)]

+ o' (r)—a(r)lo(r2),

which is the coboundary of the element (ai — a) e Hom(R, M). Hence a
Hochschild extension determines a unique cohomology class, independent of
the choice of splitting o.

The trivial extension is obtained by teking E = R & M with product
(r1,m1)(ra,mp) = (rira,rima2 4+ mr2). Since its factor set is f = 0, the trivia
extension yields the cohomology class 0 € H2(R, M).

As with group extensions, we say that two extensions E and Ei are equiv-
alent if there is a ring isomorphism ¢ : E =2 Ei making the familiar diagram
commute:

0O — M — E — R — 0

I ol |

0 —»> M — E — R — 0.

Since E and Ei  share the same factor sets, they determine the same cohomol-
ogy class. We have therefore proven the following result.

Classification Theorem 9.3.1 Given a k-algebra R and an R-R bimodule
M, the equivalence classes of Hochschild extensions are in I-1 correspon-
dence with the elements of the Hochschild cohomology module H2(R, M).
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9.3.1 Smooth Algebras

9.3.2 We say that a k-algebra R is smooth (over k) if for every sguare zero
extension 0 > M >E—>T—>00f a k-algebra T by a T-T bimodule
M and every algebra map v:R — T, there exists a k-algebra homomorphism
u:R — E lifting v in the sense that eu = v. For example, it is clear that every
polynomia ring R = k[xy,--, x,] iS smooth over k.

k — R

L v b

O—s M — F —> T — 0
£

If R is smooth and J is a nilpotent ideal in another k-algebra E, then every
algebra map R — E/J may be lifted to a map R — E. In fact, we can lift it
successively to R —>E/J?%,toR —E/J3, and so on. Since J™ = 0 for some
m, we eventudly lift itto R - E/J™=E.

Proposition 9.3.3 (JH.C. Whitehead-Hochschild) If k is a field, then a k-
algebra R is smooth if and only if HZ(R, M) = 0 for all R-R bimod-
ules M.

Proof If R is smooth, every extension of R by a bimodule M must be trivia,
so H?(R, M) = 0 by the Classification Theorem 9.3.1. Conversely, given an
extenson 0 > M —>E—>T—0and v: R — T, let D be the pullback D =
((r, ) €eRxT:u(r) =einT). Then D isasubring of R x E and the kernel
of D — Ris asquare zero ideal isomorphic to M.

O—s M — D — R — 0

| ! by

0O — M — E — T — 0.

Since kis afield, D is a Hochschild extension of R and is classified by an
element of H2(R, M). So if H2(R, M) = 0, then there is a k-algebra splitting
0:R — D of D — R; the composite of a with D — E is a lifting of R — T.
Quantifying over dl such M proves that R is smooth. <

Corollary 9.3.4 If R is an algebra over a field k and HZ(R, M) = 0 for
every R-R bimodule M, then any k-algebra surjection E — R with nilpotent
kernel must be split by a k-algebra injection o:R — E.
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Exercise 9.3.1 (Wedderburnis Principd Theorem) Let R be a finite-dimen-
sional algebra over afield k, with Jacobson radical J = J(R). It is well known
that the quotient R/J is a semisimple ring ([BAII, 4.2]). Prove that if R/J
is separable, then there is a k-algebra injection R/J C R splitting the natural
surjection R — R/J. Hint: Use the Generd Verson 4.3.10 of Nakayamais
Lemma to show that J is nilpotent.

Exercise 9.3.2

1. (Locdlization) If R is smooth over k and S cRis a central multiplicative
set, show that S~! R is smooth over k.

2. (Trangtivity) If R is smooth over K and K is smooth over k, show that
R is smooth over k.

3. (Base change) If R is smooth over k and k — £ is any ring map, show
that R ®y £ is smooth over £.

4. If kis afield, show that any filtered union of smooth algebras is smooth.

Exercise 9.3.3 L 0>M >E—>T—>0be a square zero algebra exten-
sion and u: R — E a k-algebra map. If ui: R — E is any k-module map with
su' = eu, then u’ =u + D for some k-module map D: R — M. Show that u’
isak-agebramap if and only if D is a k-derivation.

Fundamental Sequences for €2 with Smoothness 9.3.5 Let k= R S, T

be maps of commutative rings.

1. If T issmooth over R, then the first fundamental sequence 9.2.6 becomes
asplit exact sequence by adding O — on the left:

B
0> Qr®r T —> Qr/x— Qr/r 0.

2. 1f T=R/I and T is smooth over k, then the second fundamental se-
quence 9.2.7 becomes a split exact sequence by adding 0 — on the left:

8
0— 1/1* = Qrjx ®r R/T —> Qr/1/k = 0.

Proof For (1), let N be a T-module, and D: R — N a k-derivation. Define
a ring map ¢ from R to the trivial extenson T & N by (o(r) = (f(r), Dr).
By smoothness, the projection T & N — T is split by an R-module homo-
morphisn o:T — T & N. Writing o (¢) = (¢, Dit), then Di: T — Nisak-
derivation of T such that Dif = D. (Check this!) Now take N to be 2/« ®r
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T; Di corresponds to a T-bilinear map y: Q71— Qr/k ®r T. If D is the
derivation D(r) = dr ® 1, then y« is the identity on N and y splits .
For (2), note that smoothness of T = R/I implies that the sequence 0 —

1/12—>R/12—f—> R/l —0is split by a k-algebramap o: R/l — R/I?%. The
map D = 1— of: R — R/I?* satisfies fD = f—(fo)f =0, so the image of
D liesin //1% and D is a derivation. Moreover the restriction of D to I is the
natural projection | —1/12. By universality, D corresponds to an R-module
map Q:QR/k—>1/12 sending rds to rD(s). Thus € kills /Q2g,x and factors
through Q2g/x ®g R/ 1, with 85 the identity on 1/12. &

We are going to characterize those field extensions K that are smooth over
k. For this, we recall some terminology and results from field theory [Lang,
X.61. Let k be afield and K a finitely generated extension field. We say that K
is separately generated over k if we can find a transcendence basis (f1,- -, #)
of K/k such that K is separably algebraic over the purely transcendental field
k(ty,---,1,). If char(k) = O, or if kis perfect, it is known that every finitely
generated extension of k is separably generated.

Proposition 9.3.6 If k is a field, every separably generated extension field K
is smooth over k.

Proof K is separably algebraic over some purely transcendental field F =
k(t1,--,t). AsFis a locdization of the polynomia ring k[t1,--, #], which
is smooth over k, F is smooth over k. By transitivity of smoothness, it suffices
to prove that K is smooth over F. Since K is a finite separable agebraic
extension of F, we may write K = F(x), where f(x) = O for some irreducible
polynomia f with fi(x) # 0. Suppose given a map v: K — T and a square
zero extenson 0 - M —E — T — 0. Choosing any lift y eEof v(x)e T,
we have f(y + m) = f(y) + f'(y)m for every m € M. Since v(f{x)) = 0
and v(f'(x)) isaunit of T, fly) € M and fi(y) is a unit of E. If we put
m=—f/f'(y), then f(y + m) = 0, so we may define a lift K —E by
sending x toy + m. <&

Corollary 9.3.7 If k is a perfect field, every extension field K is smooth over
k. In particular, every extension field is smooth when char(k) = 0.

Proof If K, is a finitely generated extension subfield of K, then K, is
separably generated and hence smooth. If M isa K-K bimodule, then
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H2(Kq, M) = 0. As tensor products and homology commute with filtered di-
rect limits, we have HZ(K, M) = lim H2(K4, M) = 0. Hence K is smooth.

<&

When char(k) # 0 and k is not perfect, the situation is as follows. Call K
separable (over k) if every finitely generated extension subfield is separably
generated. The proof of the above corollary shows that separable extensions
are smooth; in fact the converse is also true [Mat, 20.L]:

Theorem 9.3.8 Let k ¢ K be an extension of fields. Then

K is separable over k < K is smooth over k.

Remark 9.3.9 One of the mgor victories in field theory was the discovery
that a field extension k ¢ K is separable if and only if for any finite field
extension k C £ the ring K ®y £ is reduced. If char(k) = p, separability is also
equivalent to MacLane’s criterion for separability: K is linearly digoint from
the field £ = k!/7™ obtained from k by adjoining all p-power roots of elements
of k. See [Mat, 27.F] and [Lang, X.61. Here is the most important part of this
relationship.

Lemma 9.3.10 Let K be a separably generated extension of a field k. Then
for every field extension k c £ the ring K ®; £ is reduced.

Proof It is enough to consider the case of a purely transcendental extension
and the case of a finite separable agebraic extension. If K = k(x) is purely
transcendental, then each K ® £ =¢(x) isafidd. If Kis a finite separable
extension, we saw that K ® ¢ is reduced for every £in 9.2.8 0

Exercise 9.3.4 A commutative algebra R over afield k is called separable
if Ris reduced and for any algebraic field extension k c £ thering R ®; £ is
reduced. By the above remark, this agrees with the previous definition when R
isafield. Show that

1. Every subalgebra of a separable algebrais again separable.

2. Thefiltered union of separable agebras is again separable.

3. Any localization of a separable algebra is separable.

4. If char(k) = 0, or more generaly if kis perfect, every reduced k-algebra
is separable; this completely classifies separable algebras over k.

5. An artinian k-algebra R is separable if and only if R is a finite product of
separable field extensions of k (see 9.2.9).



9.3 H?, Extensions, and Smooth Algebras 317

6. A finite-dimensional algebra R is separable in the sense of this exercise
if and only if it is separable in the sense of section 9.2.1.

9.3.2 Smoothness and Regularity

For the next result, we shall need the Hilbert-Samuel function kg (n) = length
of R/m”" of a d-dimensional noetherian local ring R. There is a polynomial
Hpg(t) of degree d, called the Hilbert-Samuel polynomial, such that Ag(n) =
Hg(n) for dl large n; see [Mat, 12.C&H]. For example, if R isthe locdlization
of the polynomia ring K [x1,-, x4] a the maximal ided M =(x1,---, xq),
then hg(n) = HR(n)_—_("*'Z_I):”—("w_—D—for dln> 1

Theorem 9.3.11 Let R be a noetherian local ring containing a field k. If R is
smooth over k, then R is a regular local ring.

Proof Set d = dimg(m/m?2), and write S for the loca ring of K{x1,---, x4l
at the maximal ideal A4 = (x1,---, x4). Note that §/M?= K & m/m?2. By re-
placing k by its ground field if necessary, we may assume that the residue field
K = R/m is aso smooth over k. This implies that the square zero extension
R/m? — K splits, yielding an isomorphism R/m?= K & (m/m?) = S/M?.
Since R is smooth, we can lift R — R/m?=§/M? to maps R — S/M" for
every n. By Nakayamais Lemma 4.3.9, if R maps onto S/M”", then R maps
onto $/M"t! (because m(S/M"*!) contains M”"/M"*1). Inductively, this
proves that R/m" maps onto S/M" for every n and hence that Ar(n) > hs(n)
for dl n. Therefore the Hilbert polynomial Hg(t) has degree > d, and hence
dim(R) > d. Since we aways have dim(R) < d (4.4.1), this yidds dm(R) =
d, that is, R isaregular local ring. <

Definition 9.3.12 A commutative noetherian ring R is caled regular if the
localization of R at any prime ided is aregular local ring (see 4.4.1). We say
that R is geometrically regular over afield k if R contains k, and for every
finite field extension k c £ thering R ®« £ is aso regular.

Corollary 9.3.13 Let R be a commutative noetherian ring containing a field
k. If R is smooth over k, then R is geometrically regular over k.

Proof If R is smooth over k, then so is every locdlization of R. Hence R is
regular. For each k ¢ £, R ® £ is smooth over £, hence regular. <

Remark In fact the converse is true. Geometrically regular k-algebras are
smooth over k; see [EGA, 07v(22.5.8)].
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Theorem 9.3.14 If R is a smooth k-algebra, then 2z, is a projective R-
module.

Proof We will show that Qg satisfies the projective lifting property. Sup-
pose given an R-module surjection u: A4 — N and amap v: Qg ¢— N. If |
is the kernel of R¢ — R, then the square zero algebra extension R¢/1?— R is
trivia, that is, R°/I?=R@1/1* as a k-agebra Moreover, I/1?= Qg by
9.2.4. We thus have a diagram of k-algebras

R¢ —>R6/12'£ R @QR//(

E!lw lv
(Luy
RoM ——— R@®N.
The kernel of R @ M — R @ N is the square zero ideal 0 & ker(u). By base
change (exercise 9.3.2) R¢ = R ®; R is smooth over R, hence over k, so R¢ —
R & N lifts to a k-algebra map w: R — R & M. Since w([/) is contained in
0® A4 (why?), w(/2)=0. Thus w induces an R-module lifting 7/I2— M
of v. &

Remark The rank of Qg is given in 9.4.8.

Application 9.3.15 (Jacobian criterion) Suppose that R = k[xy,--, x,1/J,
where J is the ideal generated by polynomias f,---, f». The second fun-
damenta sequence 9.2.7 is

71925 R Qpji— 0,

where R" denotes the free R-module on basis {dxp,---, dx,}. Since J/J?
is generated by f1,---, fm the map & is represented by the m x n Jacobian
matrix (3f;/dx;). Now suppose that R is smooth, so that this sequence is
split exact and J/J? is also a projective R-module. If M is a maximal ideal
of k[x1,-, x,] with residue field K = R/M, and d = dim(Ryy), then Jy
is generated by a regular sequence of length n—d, so (J/J5)®r K is a
vector space of dimension n — d. Therefore the Jacobian matrix (3f; /dx;) has
rank n — d when evaduated over K = R/M. This proves the necessity of the
following criterion; the sufficiency is proven in [EGA, Oy (22.6.4)], and in
[Mat, section 29].

Jacobian criterion: R is smooth if and only if the Jacobian matrix

(3f;/dxj) has rank n —dim(Rys) when evaluated over R/M for every

maximal ideal M.



9.4 Hochschild Products 319
9.4 Hochschild Products

There are external and internal products in Hochschild homology, just as there
were for absolute Tor (and Ext) in 2.7.8 and exercise 2.7.5, and for relative
Tor (and Ext) in 8.7.12 and exercise 8.7.2. All these external products involve
two k-algebras R and Ri and their tensor product algebra R ® Ri. To obtain
internal products in homology we need an agebra map R ® R — R, which
requires R to commutative. This situation closely resembles that of agebraic
topology (pretend that R is a topological space X; the analogue of R being
commutative is that X is an H-space). We shall not discuss the internal prod-
uct for cohomology, since it is entirely analogous but needs an agebra map
R — R ® R, which requires R to be a Hopf agebra (or a bialgebra).

We begin with the external product for Hochschild homology. Let R and R”
be k-algebras. Since the bar resolution S(R, R) isan R-R bimodule resolu-
tion of R and B(R’, Ri) isan R'— Ri bimodule resolution of Ri, their tensor
product B(R, R) ® B(R’, Ri) comes from a bisimplicial object in the category
bimod of (R® Ri) -( R ® Ri) bimodules. In 8.6.13 we showed that the shuffle
product V induces a chain homotopy equivalence in bimod:

Tot (R, R) ® B(R', Ri) —> B(R®R,R® RI).

If M isan R-R bimodule and Mi isan R’—R’ bimodule, then we can tensor
over (R® R)®with M ® Mi to obtain a chain homotopy equivalence

Tot((M ®ge B(R, R)) ® (M’ @< B(R', R} —> (M ® M) ®rory SR ® R, R ® R).

Recall from 9.1.3 that the Hochschild chain complex C(M ® R®*) is isomor-
phic to M ®ze 8 (R, R). Hence we may rewrite the latter equivalence as

Tot{C(M ® R®*)® C(Mi ® R®")}— C(M® Mi) ® (R® R)®*).

If we apply Hompimed(—, M ® Mi) we get an anaogous cochain homotopy
equivalence

Tot HomMpimea(B(R, R) ® B(R', Ri), M ® Mi) —>C Hom((R ® R)®*, M @ M"),

but the natural map from Homg(8, M) ® Homg(8’, Mi) to Hompimed (8 ®
p',M ® Mi) isnot an isomorphism unless R or Ri is a finite-dimensional al-
gebra. The Kiinneth formula for complexes (3.6.3) yields the following result.

Proposition 9.4.1 (External products) The shuffle product V induces natural
maps
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Hi(R,M) ® Hj(R', Mi) —> Hi1.j(R® RI, M ® M0),
H'(R, M) H/(R', Mi) > HIY/(RQR', M & M),

For i = j = 0 these products are induced by the identity map on M ® Mi. If
k is a field, the direct sum of the shuffle product maps yields natural isomor-
phisms

H,(R®R',M ® Mi) =[H(R,M)Q H(R', Mi)],

= @ Hi(R, M) ® Hj(R', M).
i+j=n

Similarly, the shuffle product V: H*(R, M) ® H*(R', Mi) — H*R ® RI,
M & Mi) is an isomorphism when either R or R’ is jinite-dimensional over
afield k.

Remark The explicit formula for V in exercise 8.6.5 shows that the externa
product is associative from H (R, M) ® H (Ri, Mi) ® H (RT, MT) toH(R®
Ri @ RT, M® Mi ® M1).

Exercise 9.4.1 Let 0 - My— M|— M> — 0 be a k-split exact sequence of
R-R bimodules. Show that V commutes with the connecting homomorphism
d in the sense that there is a commutative diagram

v
H{(R,M)®H;(R', Mi) — Hi j(RQR ,M,® Mi)
a1 ] la

\
H;_1(R, Mo) ® Hi(R', M1) —> Hi1;_|(R®R',My® MT).

9.4.1 Internal Product

Now suppose that R is a commutative k-algebra. Then the product R ® R -
R is a k-algebra homomorphism. Composing the external products with this
homomorphism yields a product in Hochschild homology

Hy(R, M)® Hy(R, M') - Hpiq(R, M @ge M).

Here M ® Mi is an R-R bimodule by r(m® m’)s = (rm) ® (mis). When
M = Mi =R, the external products yield an associative product on H,(R, R).
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In fact, more is true. At the chain levd, the shuffle product 8.6.13 gives a map
Tot C(R® R®*) @ C(R® R®*) V> C((R ® R) ® (R ® R)®) — C(R ® R®™).

Proposition 9.4.2 If R is a commutative k-algebra, then

I. C(R ® R®*) = R ®ge B(R, R) is a graded-commutative differential
graded k-algebra (4.5.2).
2. H.(R, R) is a graded-commutative k-algebra.

Proof It suffices to establish the first point (see exercise 4.5.1). Write C, for
C(R ® R®*) =R ®pge B(R, R). The explicit formula for V (exercise 8.65)
becomes

(ro®r® - @ rp)Vry®rpr1®+ @ rpig) =

Z(_I)M("OV(’)) & Tu-1(1) ®...® Tu-Yp+q)
u

where u ranges over al (p, g)-shuffles. The product V is associative, be-
cause an (n, p, g)-shuffle may be written uniquely either as the composi-
tion of a (p, g)-shuffle and an (n, p + g)-shuffle, or as the composition of
an (n, p)-shuffle and an (n + p, q)-shuffle. Interchanging p and ¢ amounts
to precomposition with the shuffle v = (p+1,---,p+q, 1, ---, p); since
(— DT = (—1)P9 the product V is graded-commutative. Finaly, we know that
V: Tot(C«® C,) — Cy is a chain map. Therefore if we set p = (ro,ry,---,rp)
and p’ = (rg,rp+1,-- - »Tp+q) and recall the sign trick 1.25 for di we have the
Leibnitz formula:

d(pVp') = V@d" + d")(p ® pi) = (dp)Vp' +(=1)PpV(dp"). 0

Corollary 9.4.3 If R is commutative and M is an R-R bimodule, then
H,(R,M)is agraded H, (R, R)-module.

9.4.2 The Exterior Algebra Qi
As an application, recall that Hy (R, R) is isomorphic to the R-module Qg /4 of
Kihler differentials of R over k. If we write Q7 Jk for the n* exterior product

A™(Q2r/&), then the exterior algebra Q}/k oNQpg/x is

Qi =ROQU O @
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Note that Q(I)?/k =R and Q}e/k = QR/k-Q}kg/k is the free graded-commutative
R-algebra generated by S2g,«; if K4 is a graded-commutative R-algebra, then
any R-module map Qg x — K1 extends uniquely to an algebra map Q};/ka
K.

Corollary 9.4.4 If R is a commutative k-algebra, the isomorphism Q=
Hi(R, R) extends to a natural graded ring map 1//:9.’1;/,(—>H*(R, R).IfQc
R, this is an injection, split by a graded ring surjection e: Hy(R, R) —>Qj‘e/k.

Proof Since H.(R, R) is graded-commutative, the first assertion is clear. For
the second, define a map e R®”+‘—>Q’1’e/k by the multilinear formula

1
e("0®r1®"®rn):mrodrlA---/\drn.

The explicit formula for V shows that e(pV ') = &(p) A e(p”) in Q% ;- There-
fore e is a graded R-algebra map from R®**+!to Qk/,- An easy caculation

shows that e(b(ro®--- ®r,+1)) = 0. (Check this!) Hence e induces an age-
bra map H H.(R, R) > Q% . To see that e splits ¥, we compute that

ey (rodria-- - Adrpy) = e((rnp®r)V(®r)V . . . V(1Q®r,))
=e(rp@r)Ae(lI®@r)A---ne(l1®r,)
=rodriAraA... A, 0

Definition 9.4.5 We say that a commutative k-algebra R is essentially of fi-
nite type if it is a localization of a finitely generated k-algebra. If k is noethe-
rian, this implies that R and R® = R ® R are both noetherian rings (by the
Hilbert Basis Theorem).

Proposition 9.4.6 Suppose that R is a commutative algebra, essentially of
finite type over a field k. If R is smooth over k, then R€ is a regular ring.

Proof We saw in 9.3.13 that smooth noetherian k-algebras are regular. By
smooth base change and transitivity (exercise 9.3.2), R*=R ® R is smooth
over R and hence smooth over k. Since R¢ is noetherian, it is regular. 0

Theorem 9.4.7 (Hochschild-K ostant-Rosenberg) Let R be a commutative al-
gebra, essentially of finite type over afield k. If R is smooth over k, then ¥ is
an isomorphism of graded R-algebras:

¥: Qg x — Hu(R, R).
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Proof As with any R-module homomorphism, v is an isomorphism if and
only if ¥ ® g Ry is an isomorphism for every maxima ideal m of R. The
Change of Rings Theorem (9.1.8) states that Hy (R, R) ® g R = Hy (R, Rm).
Since Q}/k ®Rr Ry = Q;m/k, ¥ ®r Ry, is obtained by replacing R by R,.
Hence we may assume that R isaloca ring.

Let I be the kernd of R ® R — R and M the pre-image of m in R¢ =
R® R. M isamaxima idea in the regular ring R¢,s0 S = (R¢)p isaregular
loca ring. By flat base change (8.7.16) H.(R,R) ETorf/k(R, R). Since S
and R =S/ are regular local rings, Iy is generated by a regular sequence
of length d = dim(R) = dim(S) — dim(R); see exercise 4.4.2. We adso saw in
8.7.13 that the externa product makes Torf/ k(R, R) isomorphic to A*Qg /¢ =
Q% pasa graded-commutative R-algebra. Since the external product can aso
be computed via the bar resolution and the shuffle product (8.7.12), the above
product agrees with the interna product on H,(R, R) ETorf/ k (R, R). 0

Remark 9.4.8 We saw in 9.3.14 and 8.7.13 that Qg is a projective mod-
ule whose localization a a maximal ideal m of R is a free module of rank
dim(Ry). Hence for d = dim(R) = max{dim(R,)} we have Qtfe/ﬂé 0 and
H,(R,R) = Q’,’Uk =0 for n> d. The converse holds. If H, (R, R) =0 for
al large n, then R is smooth over k. See L. Avramov and M. Vigué-Poirrier,
iHochschild homology criteria for smoothness,T International Math. Research
Notices (1992, No.1), 17-25.

Exercise 9.4.2 Extend the Hochschild-Kostant-Rosenberg Theorem to the
case in which k is a commutative noetherian ring; if R is smooth over k and
essentialy of finite type, then w:Q;/kEH*(R, R). Hint: Although S and
R = S/Z may not be regular local rings, the ideal I is still generated by a
regular sequence of length d.

9.4.3 Hodge Decomposition

When Q ¢ R and R is commutative, we shall show (in 9.4.15) that the
Hochschild chain complex Ci’(R) = C(R ® R®*) decomposes as the direct
sum of chain complexes C,i(R)(8). The resulting decompositions H,(R,R) =
®H (R, R) and H*(R, R) = ®H(; (R, R) are caled the Hodge decomposi-
tions of Hochschild homology and cohomology in order to reflect a relation-
ship with the Hodge decomposition of the cohomology of complex andytic
manifolds. (This relationship was noticed by Gerstenhaber and Schack [GS];
see Remark 9.8.19 for more details.) In the process, we will establish the
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facts needed to apply Barris Theorem (8.8.7), showing that the summand
fl)(R, R) may be identified with the Andre-Quillen homology modules
Di—1(R/K).

If R does not contain Q, there is a filtration on H.(R, R) but need be no
decomposition [Q]. This filtration may be based on certain operations A¥; see
[Loday, 4.5.15]. When Q c R the eigenspaces of the A* give the decomposi-
tion; Ak acts as multiplication by =+ k on CF(R)® and hence on HP (R, R)
and H(’;)(R, R). For this reason, the Hodge decomposition is often called the
A- decomposition.

The symmetric group X, acts on the n-fold tensor product R®" and hence
on M ® R®" by permuting coordinates: o(m®@r1® .- ®rp)) =M ®r;-11®
-+ @ r,-1,. Consider, for example, the effect of the signature idempotent
&n = % Y sex, (=170 of QX,; the definition of the shuffle product V shows
that in R ® R®" we have the identity:

Neg(ro®r® - @ry)=ro(1®rYVv--- V(1 & rn).

This element is an n-cycle in the Hochschild complex representing the ele-
ment ¥ (rodriA---Adry) of Hy(R, R), where W:Q;/k%H*(R, R) is the
injection discussed in 9.4.4. The formula for the chain-level splitting e R ®
R®* Q"I}/k of ¥ is skew-symmetric, so we aso have e(ro®r®.--®
) = e(ex(ro ® r1 ® - - ® rp)). Hence e factors through &, (R ® R®").

The following criterion for recognizing the signature idempotent will be
handy. Consider the action of X, on the module R ® R®".

Barris Lemma 9.4.9 If ue QX, satisfies bu(1®r1® ... ®r,) =0 for all
algebras R, then u = ce, for some c € Q.

Proof Write u=)_ c,0 with c,¢Q. We consider its action on the de-
ment X = (1®r®- - -®ry) of R ®R®", where R is the polynomia ring
klri,....r]- Inbux) =3 cob(1®r,-1,®---®r,-1,) the term

1®rs-11 Q- ®ro-1;15-1341) & - BTy,

occurs once with coefficient (- 1)c, and once with coefficient (- 1)'crq,
where 7 is the transposition (i, i + 1). Since these terms form part of a
basis for the free k-module R ® R®", we must have ¢y = —c for al
ogand dl T=(i,i + 1). Hence ¢, =(—1)%c; for dl o€eX,, and therefore
u = c1y. (1% = cien. ¢

Tofit thisinto a broader context, fix n> 1 and define the ishufflel elements
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Spq Of ZZ, to be the sum Y (—1)*u over al (p, g)-shuffles in X, (so by
convention spq = 0 unless p + g = n). Let s, be the sum of the sp, for 0 <
p <n.

Lemma 9.4.10 bs, = s,_1b for every n.

Proof f p+qg=nx=r® - -®r,and y=1®rp+1®...Qr,, then
xVy=spq(ro®...®rn). Since R®*+! s a DG-algebra (9.4.2), we have

bspg(ro @ --- @ rp) = b(XVy) = (bx)Vy + (—=1)PxV(by)
= $p—1,4((BX) ® ¥) + (—1)Psp 4_1(x ® (by)).
Summing over p gives bs, = s,_1b. <
Proposition 9.4.11 ({GS]) The minimal polynomial for s,e Q X, is
Ja(x) =x(x—X2)---(x — Ap), Where A; =2"— 2,

Therefore the commutative subalgebra Q[s,]of QX contains n uniquely de-
termined idempotents e(') i=1,..., nsuch that s, = Zkie,(,’) and Qls,] =
[TQeP. In particular; ee = 0fori #j. <&

Definition 9.4.12 The idempotents e’ are called the Eulerian idempotents
of QX,,. Because s, has only n eigenvalues, e( D=0fori>n. By convention,
(0) =1and e,(,o) = 0 otherwise.

Proof If n =1 then sy = 0, while if T =(1,2) then sp =1 —t satisfies
x(x— 2). For n> 3 we proceed by induction. Since bs, = s,_1 b, we have
bfu_1(sn) = fu_1(sn_1)b = 0. By Barris Lemma, f,—i(s,) = ce, for some
congtant ¢. To evauate c, note that &,s, = A&, because s, has A, terms and
eno = (- 1), for every oeX,. Thus

Jo—1(8n) = €nfn-1(8n) = frn-1(ensn) = fu—1(Anen) = cén # 0,

where ¢ = A, fa—1(1)# 0. Thus f,(sp) = cen(sy—An) = 0. <o
Corollary 9.4.13 e is the signature idempotent &,.
Proof Q[s,]contains e, = f,—1(sp)/c, and &,5n = An&p. o

Corollary 9.4.14 bel’=e® bfori<n, and bel = 0.
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Proof For all i, let p;(x) be the product of the terms (x — A}/ (A — A ) for

J #1i, j <n, sothat p;(s,) = e,, ) and pi(Sn—1) = en 1> this is the Lagrange
interpolation formula for diagonalizable operators and is most easily checked

using Q[s,] =[] Qel”. Since bs, = s,_1b, we have
be(t) = bpi(sn) = pi(sn-1)b = e(l) 1b.
As a special case, we have the formula be(") (”_)lb =0. ¢

Definition 9.4.15 Suppose that R is a commutative k-algebra containing Q.
For i > 1, let C"(R)® denote the summand e\’ R ® R®" of CHR) =

R®". By 9.4.14, each C"(R)® is a chain subcomplex of C(R). For i = 0 we
let C i’ (R)© denote the complex that is R, concentrated in degree zero, so that
CH(R) is the direct sum of the chain subcomplexes CHR)D for i > 0. We

define H\" (R, R) to be H,(C"(R)®). The resulting formula
H,(R,R)=H"(R,RY®---® H"(R, R), n #0,

is called the Hodge decomposition of Hochschild homology. Similarly, we
define H? 1)(R R) tobe H" HomR(Cf(R)(i), R) and call the resulting formula

the Hodge decomposition of Hochschild cohomology.
The Hodge decomposition (or A-decomposition) arose implicitly in [Barr]
(via 9.4.9 and 8.8.7) and [Q] and was made explicit in [GS].

Exercise 9.4.3 Let C/(R)® denote the summand e{’R ® (R/k)®" of the

normalized Hochschild complex R ® (R/k)®". Show that H,gi)(R, R) =
H,CHR)®D,

Exercise 9.4.4 Show that Hn(")(R, R)=Q} /R for every R. Conclude that if
R is smooth and essentially of finite type over k, then H, (R, R) = H,f") (R, R).
9.5 Morita Invariance
Definition 9.5.1 Two rings R and § are said to be Morita equivalent if there

is an R—S bimodule P and an S—R bimodule Q such that P @5 Q =R
as R—R bimodules and Q ®g P = S as §—S bimodules. It follows that the
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functors @z P: mod-R —> mod-S and ®sQ:mod—-S — mod-R are inverse
equivalences, because for every right R-module M we have (M ®z P) ®g
Q=M Qg (P ®s Q) = M and similarly for right S-modules.

Exercise 9.5.1 Show that

1. Morita equivalence is an equivalence relation.

2. If R and S are Morita equivalent, so are R° and S°P.

3. If R and § are Morita equivalent, then the bimodule categories
R-mod-R and S-mod-S$ are equivalent (via Q®p — Qg P).

Proposition 9.5.2 The matrix rings M,,(R) are Morita equivalent to R.

Proof Let P be the module of row vectors (ry, - - -, r,,) of length m and Q
the module of column vectors of length m. The matrix ring § = M,,(R) acts
on the right of P and the left of Q by the usual matrix multiplication, so P is
an R—S§ bimodule and @ is an S—R bimodule. Matrix multiplication yields
bimodule maps P®s 0 — R and Q®g P — S: if p=(p1,---, pm) and
q=@1,-.qm) . then p® g maps to ) p;q; and g ® p maps to the matrix
(g: pj)- It is easy to check that these maps are isomorphisms (do so!). <&

Corollary 9.5.3 The isomorphism R-mod-R — M,, (R)-mod-M,,(R) as-
sociates to an R—R bimodule M the M,,(R)—M,,(R) bimodule M,,(M) of
all m x m matrices with entries in M.

Lemma 9.54 If P and Q define a Morita equivalence between R and S, then
P is a finitely generated projective left R-module. P is also a finitely generated
projective right S-module.

Proof Given p € P and g € Q we write p - g and q - p for the elements of R
and S corresponding to p® g € P @5 Q and ¢ @ p € Q ®g P, respectively.
As Q®r P=S,wecanwrite 1 =g - p)+ -+ qm - pm for some m. Define
eP—> R"bye(p)=(p-q1,-,p-qgm)and h: R™ — Pby h(r(, -+, rm) =
2 ripi; e and h are left R-module homomorphisms. Since he(p) = S(p-
gi)pi =Y p(qi - pi) = p, this expresses P as a summand of R™ in R—-mod.
The proof that P is a summand of some $” in mod-S is similar. <&

Exercise 9.5.2 Show that the bimodule structures induce ring isomorphisms
Endg(Q) = S = Endg(P)P.

Conclude that if all projective R-modules are free, then any ring which is
Morita equivalent to R must be a matrix ring M, (R).
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Lemma 9.5.5If L is a left R-module and Q is a projective right R-module
then H;(R,L® Q) =0fori# 0 and Hy(R,L ® Q) = Q ®g L.

Proof By additivity, it suffices to prove the result with Q = R. The standard
chain complex (9.1.1) used to compute Hx(R, L ® R) isisomorphic to the bar
resolution B(R, L) of the left R-module L (8.6.12), which has H;(8) =0 for
i#0and Hy(B)=R ®g L. <

Theorem 9.5.6 (R. K. Dennis) Hochschild homology is Morita invariant.
That is, if R and S are Morita equivalent rings and M is an R-R bimodule,
then

H,(R, M) = H,(S, Q ®gM ®rP).

Proof Let L denote the S-R bimodule Q ® g M. Consider the bisimplicia -
module X;; = S® ® L ® R®/ ® P, where the j™* row is the standard complex
9.1.1 for the Hochschild homology over S of the S-S bimodule L ® R®/ ® P
and the i** column is the standard complex for the Hochschild homology of
the R-R bimodule P ® S® ® L (with the P rotated). Using the sign trick
1.2.5, form a double complex C... We will compute the homology of Tot(C)
in two ways.

L®RRRIP «—

! !

LOR®P <«— SOLO®R®P «—
! 1 !

L®P «— SQL®P «—SQSQ®LQP...

Since P is a projective right Smodule, the j** row is exact except at i = 0,
where Ho(Cxj) =P ®s (L ® R®/)=M @ R®/ (9.55). The vertica differ-
entials of the chain complex Hy(C, ;) make it isomorphic to the standard com-
plex for the Hochschild homology of M. Thus H; Tot(C) = H;(R, M) for all
i. On the other hand, since P is a projective left R-module, the i*# column
is exact except at j = 0, where Ho(Ciy) =S¥ ® L ®s P (9.5.5). The hor-
izontal differentials of Hp(C;x) make it isomorphic to the standard complex
for the Hochschild homology of L ®sP =Q ®r M ®s P. Thus H; Tot(C) =
H;(S,Q ®r M ®s P) for dl i. &
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Definition 9.5.7 (Trace) The usua trace map from M,(R) to R is the map
sending a matrix g = (gi;) to its trace ) _ g;;. More generdly, given an R-R
bimodule M we can define maps trace, from M,(M) ® M, (R)®* to M ®
R®" py the formula

n
trace ,(m®g' @ - @ g") = Z Miyi ®gi11i2 ® - -®g;, ® ® &1y

i0,ein=1

These maps are compactible with the simplicia operators 9; and o; (check
thisl), so they assemble to yield a simplicial module homomorphism from
M, (M)RM,(R)®* to M®RK*. They therefore induce a map on Hochschild
homology, caled the trace map.

Corollary 9.5.8 The natural isomorphism of theorem 9.5.6 is given by the
trace map Hi(Mpy(R), Mp(M))— H.(R, M).

Proof Let us write F = F(R,S,P, Q,M) for the natural isomorphism H,(R,

M) — H,(S,Q ® M ® P) given by the bisimplicial k-module X of theorem

9.5.6. Fixing R,set Si = Rand S=M,,(R), Pi =R and P=R™, Qi =R

and Q = (R™T. The diagonal map A: R — M,(R) sending reR to the
r

diagonal matrix |: ----- is compatible with the maps Pi — P and Qi —
0 1

Q sending p e Pi andge Qf to (p,0,..., 0)T and(q,0, ..., 0), respectively.
It therefore yields amap A: X (R, Si, Pi, Q')— X (R,S,P, Q). (Check this!)
This yields a commutative square

7

Hy(R, M) — Hy(R,R ® M ®R) = Hy(R, M)
I la
Hy(R, M) ——> Hy(Mp(R), Q ® M ® P) = Ha(Mm(R), M.(M)).

It follows that A is an isomorphism. At the chain level, we have

0 0 rn O rm 0
o0 lel s @@ - ]
0 0 0 n 0 r

Clearly trace, (A (M ®ri® - Qrp))=mr;1®---Qry, so the trace map
H.(M,,(R), M,(M)) — H,(R, M) is the inverse isomorphism to A. <

A(m®r1®~~®rm)=|:

o o 8
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Exercise 9.5.3 For m <n, consider the (nonunital) inclusion :: M,(R) —
M,(R) sending g to [)go
complex M,,(M)® M,(R)@* to the complex M,(M)® M,(R)®* for every
R-module M. Then show that this chain map is compatible with the trace maps
(i.e, that trace = trace ot4), and conclude that ¢, induces the Morita invariance
isomorphism

= Show that ¢ induces a chain map ¢, from the

H (Mpu(R), My(M)) = Hy(Mp(R), Mp(M)).

Exercise 9.5.4 Let ¢;;(r) denote the matrix with exactly one nonzero entry,
namely r, occurring in the (i, j) spot. Show that

trace e12(r)) ® en(r)) ® .. Qeni(rn) =11 ® -+ Ory.
Then show that for any permutation o of {1,2,---,n}

f®---®r, ifoeC,

trace €51,62(r1) ® €gn,o1(rn) = [ 0 if not

where C,, is the subgroup of the symmetric group generated by (12 --- n).

9.6 Cyclic Homology

The simplicial k-module ZR = R ® R®* used to construct the Hochschild
homology modules H, (R, R) has a curious icyclici symmetry, which is sug-
gested by writing a generator ro® 11 ®---® rp, of R ® R®" in the circular
form illustrated here.

r ®
® ®
— oy r;
® ®
ry ®

The arrow — serves as a place marker, and there are n + 1 of the symbols
®. Then + 1 face and degeneracy operators replace the appropriate symbol ®
by aproduct or a“® 1 ®,” respectively. This symmetry defines an action of the
cyclic group Cp+10n R ® R®"; the generator ¢ of Cy41 acts as the operator
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Hro® - - Qry)=r,®rog®---®r, -1. Wemay visuaize t as arotation of the
above circular representation (with the place marker fixed). Clearly 8;¢=1¢9; _
and o;t =to;_; for i > 0; for i = 0 we have 8yt = 8, and opt = r20,. (Check
thisl) This leads to the notion of an abstract cyclic k-module: a simplicial k-
module with this extra cyclic symmetry. After giving the definition in this
fashion, we shall construct a category AC such that a cyclic k-module is a
contravariant functor from AC to k-mod, paralleling the definition in Chapter
8 of asimplicial object.

Definition 9.6.1 A cyclic object A in a category A is a simplicial object to-
gether with an automorphism ¢, of order n + 1 on each A, such that 3;t =
td;—1 and o3t = to;_1 for i £ 0, dpt, = 8, and ooty = t3+la,,. (Writing ¢ in-
stead of 1, is an abuse of notation we shall often employ for legibility.)

We will use the term icyclic modulel for a cyclic object in the category of
modules. For example, there is a cyclic k-module ZR associated to every k-
agebra R; Z,Ris R®"t! and the rest of the structure was described above.

Example 9.6.2 We will also use the term icyclic sefT for a cyclic object in
the category of sets. For example, let G be a group. The smplicia set BG
(8.1.7) may be considered as a cyclic set by defining ¢ on BG, = G”" to be

1(g1, -+ 8n) = (80,81, ..., 8n—1), Where go=(g1. .. g»)~'. Another cyclic
set is ZG, which has (ZG), = G"t1,

(gO,"',gigi+1,“'»gn) lfl <n
3 (go. . .. = e
i(g0....., &) [(gngo,g1,..-,gn—1) ifi=n

Gl(g09 "'7gn)= (g07 sy 8is 1, &i+1, )
(80" + &n) = (&n, 80, &n—1)-

As the notation suggests, there is a natura inclusion BG ¢ ZG and the free
k-modules k(ZG), fit together to form the cyclic k-module Z(kG).

We now propose to construct a category AC containing A such that a cyclic
object in A is the same thing as a contravariant functor from ACto A. Recall
from Chapter 8, section 1 that the simplicia category A has for its objects
the finite (ordered) sets [n] = (0, 1, ---, n}, morphisms being nondecreasing
monotone functions. Let ¢, be the icyclict automorphism of the set [n] defined
by t,(0) =nand t,(j) = j — 1 for j #0.

Definition 9.6.3 Let Homac([n],[p]) denote the family of forma pairs
(a, t)), where 0 <i <n and a:[n]—[p] is a nondecreasing monotone func-
tion. Let Hom¢([r],[p]) denote the family of al set maps ¢: [n] — [p]
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which factor as ¢ = at! for some pair (g, t*) in Homac([n],[p]). Note that
)<+ 1) <--- <p(i— 1) in this case. Therefore the obvious surjec-
tion from Homac([n], [p]) to Home([n1,[p]) is dmost a bijection-that is,
@ uniquely determines (e, t') such that ¢ = at’ unless ¢ is a constant map,
in which case ¢ determines o (a= ¢) but al n + 1 of the pairs (¢, ') yield
the set map ¢. We identify Hom ([n],[p]) as the subset of al pairs («, 1) in
Homac([n], [pD.

There is a subcategory C of Sets, containing A, whose objects are the sets
[n], n= 0, and whose morphisms are the functions in Hom¢({n], [p]). To see
this we need only check that the composition of v = ﬂt,{; and ¢ = at! isin C,
and this follows from the following identities of set functions for the functions
gi:[n—11—[n] and n;: [n + 11— [n] generating A (see exercise 8.1.1)

i=0 2 i=
e = [En . ] and thn; = [ In t’H‘l i 1=0 .
gi—itp—1 >0 Ni—tp+1 1 > 0

Proposition 9.6.4 (A. Connes) The formal pairs in Homac([n], [p]) form
the morphisms of a category AC containing A, the objects being the sets [n]
for n> 0. Moreover, a cyclic object in a category A is the same thing as a
contravariant functor from ACto A.

Proof We need to define the composition (y,t*) of (8,1/) e Homac([m],[n])
and (a, ) e Homac([n], [p]) in such a way that if i =j = 0, then (y, %)=
(@B, 1). If B is not a constant set map, then the composition ¢/ 8¢/ in C is not
constant, so there is a unique (8, t*) such that ¢ g1/ = 't*; we set (y, 1*) =
(@B, t%).If B is constant, we set (y,t%)=(aB, /). By construction, the pro-
jections from Homac to Home are compatible with composition; as C isa
category, it follows that the (id,l) are 2-sided identity maps and that composi-
tion in AC is associative (except possibly for the identity (¢ 0 (B8,t/))oy =
@o((B,t)) o) when 8 is constant, which is easily checked). Thus AC is a
category and A — AC — C are functors. The final assertion is easily checked
using the above identities for ¢¢; and ¢ ;. %

Remark The origind definition given by A. Connes in [Connes] is that
Homac([n], [P]) is the set of equivalence classes of continuous increasing
maps of degree 1 from S!={zeC:|z| =1} to ! sending the (n + 1)** roots
of unity to (p + 1) roots of unity. Connes aso observed that AC is isomor-
phic to its opposite category (AC)°P. See[Loday] for more details.
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Exercise 9.6.1 Show that the automorphisms of {r#] in AC form the cyclic
group Cp 41 of order n + 1.

Definitions 9.6.5 Let A be acyclic object in an abelian category A. The chain
complex C(A) associated to the underlying simplicial object of A (8.2.1)
is caled the Hochschild complex of A. It is traditional to write b for the
differential of C# (A), so that b = 3p—8; + ... %3, goes from C,i(A) = A, to
C,’,‘_1 (A) = A,—1. The Hochschild homology H H,(A) of A is the homology
of C,’}(A); when A = ZR (9.6.1) we will write HH.(R) for HH.(ZR) =
H.( R, R). The acyclic complex of A, C2 (A), is the complex obtained from
C"(A) by omitting the last face operator. Thus C,i(A) = A,, and we write b”
for the resulting differential 89— 91 +---F 8,—; from A,, to Ap—1.

Exercise 9.6.2 Show the iacyclicT complex C2(A) isindeed acyclic. Hint:
The path space PA (8.3.14) is a simplicia resolution of Ag.

Definition 9.6.6 (Tsyganis double complex) If Aisacyclic object in an abe-
lian category, there is an associated first quadrant double complex CC,,(A),
first found by B. Tsygan in [Tsy], and independently by Loday and Quillen in
[LQ]. The columns are periodic of order two: If p is even, the p** column is
the Hochschild complex C* of A; if p is odd, the P column is the acyclic
complex C2 of A with differentiadl —b’. (The minus sign comes from the sign
trick of 1.25) Thus CC,,(A) is A, independently of p. The ¢** row of
CC,,(A) is the periodic complex associated to the action of the cyclic group
C4+10n A, in which the generator acts as multiplication by (—1)?¢. Thus the
differential A, — A, is multiplication by 1 —(—1)?¢ when p is odd; when p
is even it is multiplication by the norm operator

N=1+(=DIt+--+(=D%+... 4 (=174,

bl b L

1-t N 11—t N
Ay «—— A) «— Ay «—— Ay «—

Lo L-v le L-v

1+t N 14t N
Al «—— A «— A} «— A «—

1b - 1b 1

-t N 1—¢ N
A(](—A()(—-Ao(———Ao(——

Tsyganis double complex CC,, (A)
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Definition 9.6.7 The cyclic homology HC.(A) of a cyclic object A is the
homology of Tot CC,,(A). The cyclic homology HC«(R) of an k-agebra
R is the cyclic homology of the cyclic object ZR (= R @ R®*) of 9.6.1. In
particular, HCo(A) = H Hy(A) and HCo(R) = R/[R, R].

One of the advantages of generalizing from agebras to cyclic objects is that
a short exact sequence 0 — A - B— C — 0 of cyclic objects gives rise to
short exact sequences of Hochschild complexes as well as Tsygan complexes,
which in turn give rise to long exact sequences

.« HHy(A) — HHy(B) > HH,(C) > HHyi1(A) - - -
.- HCp(A) —> HCp(B) — HCy(C) —> HCn_1(A) - - -.

Lemma 9.6.8 CC,,(A) is a double complex.

Proof Set n=(—1)9. We have to see that b(1—nt)= (1 + nr)b’ and Nb =
b'N as maps from A, to A;_1. Now b — bi = 53, and the cyclic relations
imply that bt = 8, — tbi, yielding the first relation. The cyclic relations also
imply that

q-1 ) ) q o
b = Z(—t)’aqtq" and b :Z(—t)q"aqt’.
-0 =0

(Check thisl) Since (1 —nt) N =0, we have ! N =n'N onA,. Since N( 1 +
nt) = 0, we have Nt' = (—n)'N on A,4_1. Thus

4
nNb=nY N 8, = n?TIN3, > (1) = No;N,

i=0
q_l . . .
nb'N =ng Z(—t)'aqnq—w = pat! Z(—m)’an = Ng,N.
i=0
This yields the second relation, Nb = &'N. &

Corollary 9.6.9 Let A,/~ denote the quotient of A,, by the action of the
cyclic group. These form a quotient chain complex A,/ ~ of the Hochschild
complex C* (A):

0 <_A0<b_Al/~<b_A2/~<_b_...

Indeed, A,/ ~ is the cokernel of the chain map CCj,— CCos, SO there is a
natural map from H,(A./ ~)to HC,(A).
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Remark Some authors define the cyclic homology of R to be H,(R®**+1/~),
especialy when k = C. The following lemma states that their definition is
equivalent to ours.

Lemma 9.6.10 If k contains @, then HC.(A) may be computed as the ho-
mology of the quotient complex A,/ ~ of the Hochschild complex.

Proof Filtering Tsyganis double complex 9.6.6 by rows yields a spectral se-
guence starting with group homology of the cyclic groups:

Ep, = Hp(Cyp1i Ag) = HCpig(A).

The edge map from HC,(A) to the homology of Eolq = Ho(Cg+1; A) =
A,/ ~ arises from the augmentation CCp, — A4/ ~, S0 the E? edge map

maps H,(A«/~)to HC,(A). In characteristic zero the group homology van-
ishes (6.1.10) and the spectral sequence degenerates at E2. <&

Remark Filtering Tsyganis double complex by columns yields the even more
interesting spectral sequence 9.8.6 (see exercise 9.8.2).

The three basic homomorphisms S, B, and Z relating cyclic and Hochschild
homology are obtained as follows. The inclusion of Ci’ (A) as the column p =
0in CC,(A) yidds a map I: H H,(A) — HC,(A). Now let CC9! denote the
double subcomplex of CC,,(A) consisting of the columns p = 0, 1; the inclu-
sion of C*(A) into CCY! induces an isomorphism H H,(A) = H, Tot(CCYl)
because the quotient is the acyclic complex CZ(A). The quotient double com-
plex CC[—2] =CC/CC, which consgists of the columns p > 2, is isomor-
phic to CC,, except that it has been trandated 2 columns to the right. The quo-
tient map Tot(C Cy) = Tot(CC[—2]) therefore yidlds a map S: HC,(A) —
HC,_»2(A). The short exact sequence of double complexes

0-cc® L cen) 5 ccr-21- 0
yields the map B: H C,—; (A) — H H, (A) and the following “SBI” sequence.

Proposition 9.6.11 (SBI sequence) For any cyclic object A there is a long
exact 1SBZT sequence

c  HCpy1(A) =5 HCy_1(A) 25 HH,(A) -5 HCo(A) 5> HCon(A) . . ..
In particular; there is a long exact sequence for every algebra R:

CHCni1(R) =5 HCo1(R) 25 HA(R, R) -5 HCo(R) =25 HCoa(R) - -
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Remark In the literature the 1SBIT sequence is also called iConnesi se-
quencel and the 16ysini sequence. See exercise 9.7.4 for an explanation.

Corollary 9.6.12 If A Al is a morphism of cyclic objects with H H,, (A) N
H H, (Al), then the induced maps HC,(A)— HC, (Ai) are all isomorphisms.

Proof This follows from induction on » via the 5-lemma and 9.6.7. 2

Application 9.6.13 Let R be a k-agebra. The explicit formula in 9.5.7 for
the trace map Z(Mm R) — Z(R) shows that it is actualy a map of cyclic
k-modules. Since it induces isomorphisms on Hochschild homology, it aso
induces isomorphisms

HC.(M,R) —=> HC.(R).

Exercise 9.6.3 For m < n, show that the nonunital inclusion ¢ M,(R) <
M,,(R) of exercise 9.5.3 induces a cyclic map ZM,,(R)— ZM,(R), which
in turn induces isomorphisms

tx: HC M, (R) = HC, .M, (R).

Example 9.6.14 Since H,(k,k) =0 for n# 0O, the SBI sequence quickly
yields

k ifniseven

HCu(k) = {o if n iss odd,

with the maps S: HC,3(k) - HCr (k) al isomorphisms. The same calcula
tion applies for any finite separable algebra R over afield k because we saw in
9.2.11 that H,(R,R) =0 for all n# 0.

HC, 9.6.15 The SBI sequence interprets HC1(R) as a quotient of H (R, R):

Ho(R, R) —2> Hi(R, R) — HC1(R) — 0.

Now suppose that R is commutative, so that Hp( R, R) =R and H; (R, R) =
Qpg/k. The map B: R — Qg ¢ maps r € R to dr. (Check this!) Therefore we
may identify B with d and make the identification

HC((R) = Qpg/k/(dR).



9.6 Cyclic Homology 337

Example 9.6.16 Since H,(k[x],k[x])=0for n> 2, the S: HC,417(k[x]) —>
HC, (k[x]) are isomorphisms for all n> 1 and there is an exact sequence

0 — HCy(k[x]) —> klx] —d>9km/k > HCy(kIx)) — 0.

If k contains Q, then x"dx =d(x"*!/n+ 1) for dl n>0, so d is onto and
HC\ (k[x]) = 0. This yields the calculation

kix] ifn=0
HC,(k[x]) ={ k if n > 2 is even
0 if n>1isodd.

Similar remarks pertain to the Laurent polynomia ring k[x,x '], except that
the map d: k[x, x~'1— R, 1), = klx, x~'] has cokernel k (on dx/x)
when Q C k. Thus when Q € k we have

HC,(kix,x D=k foradl n>1

Remark We will compute HC,(R) for a smooth algebra R in 9.8.11 and
9.8.12 in terms of de Rham cohomology.

Exercise 9.6.4 Consider the truncated polynomial ring R = k[x]/(x"!) over
a field k of characteristic 0. We saw in exercise 9.1.4 that dimy H; (R, R) =
n for i > 0. Show explicitly that HC{(R)=0. Then use the SBI sequence
to show that HC; (R) = 0 for al odd i, while for even i#0 HC; (R) =
HC; (k) ® H; (R, R) = k™!, Another approach will be given in exercise 9.9.2.

9.6.1 Variations: HP and HN

9.6.17 We may use the periodicity of Tsyganis first quadrant double complex
CC,,(A) to extend it to the left, obtaining an upper half-plane double complex
CCF (A). (See 9.6.6.) The periodic cyclic homology of A is the homology of
the product total complex

HP,(A) = H, Tot'l(CCP (A)).

If we truncate CCE, to the left of the 2 p** column, we obtain Tsyganis double
complex 9.6.6 trandated 2p times. These truncations {CC..[—2p]} form a
tower of double chain complexes in the sense of Chapter 3, section 5. The
homology of this tower of double complexes is the tower of k-modules

N N N
o > HCyy4(A) — HCpi2(A) —> HCy(A).
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Aswe saw in 3.5.8, this means that there is an exact sequence

0 — lim YHCpi2pr1(A) = HP,(A) — lim HCp125(A) — 0.

Moreover, it is visualy clear from the periodicity of CC.&(A) that each map
S:H P, 2(A)— HP,, (A) is an isomorphism. This accounts for the name ipe-
riodic cyclic homologyT: the modules HP,, (A) are periodic of order 2.

Similarly, we can consider the Tnegativel subcomplex CCX (A) of the peri-
odic complex CCF, (A) consisting of the columns with p < 0. Thisis a second
quadrant double complex. The negative cyclic homology of A is defined to be
the homology of the product total complex of CCﬁ(A):

HN,(A) = H, Tot"(CCX (4)).

We leave it to the reader to check that there is an SBI exact sequence 9.6.11
for I: HN, — HP* fitting into the following commutative diagram:

HPyy1(A) —> HCo_y(A) —> HNu(A) —> H P, (A ) —> HCua(A) ---
ls 1= l 1S i‘
Y B I S
HCpy1(A) — HCy_y(A) — HH,(A) — HCn(A) — HCp_3(A)

1 ° L l=

HN,(A) HNp1(A) = HN,_1(4)

9.7 Group Rings

In this section we fix a commutative ring k and a group G. Our god is to
compute H H, and HC, of the group ring G (9.7.5 and 9.7.9). To prepare
for this we calculate HC, of kBG, which we cal HC.(G).

In 9.6.2 we saw that BG could be regarded as a cyclic set by defining
t(g1,-+»8n) = ((81---8n)"", 81.-+ . 8n—1). Applying the free k-module
functor to BG therefore yields a cyclic k-module kBG. If we adopt the no-
tation HH,(G)=HH,.(kBG),HC,(G) = HC,(kBG), and so on, then we
see (using 8.2.3) that

HH,(G) = m(kBG) = H,(BG; k) = Hy(G; k).
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Theorem 9.7.1 (Karoubi) For each group G,

HCy(G) = Hn(G; K) @ Hy—2(G3 k) Hy 4 (G K) D - . ..

Moreover, the maps S: HC,(G)— HC,_2(G) are the natural projections
with kernel H,(G; k), and the maps B are zero.

Remark It is suggested to write Karoubiis Theorem in the form HC,(G) =
H(G; k) ® HCy(k).

Proof Consider the path space EG = P(BG) of BG (8.3.14 and exercise
8.3.8), which as a smplicia set has (EG), = G™*!and 9i(go, . .., gn) =
(-..,88&+1,..)foriz£nandd,(go,..., 8 =(g0,...,8n—1). If wedefine

1(20, > 8n) = (80~ 8n» (81" 8n) 1, 81,82, &nm1),s

then the cyclic identities (#"*! =1,8;r=19;_1, etc.) are readily verified. (Do
sol) Therefore EG is dso a cyclic set, and the projection m: EG — BG,
which forgets gg, is a morphism of cyclic sets. Applying the free k-module
functor, 7:kEG — kBG is a morphism of cyclic k-modules. More is true:
The group G acts on EG by g(go, g1, - - ) = (880, 81, .+) in a way that
makes kE G into a cyclic left kG-module, and kBG = k Qi kEG. In partic-
ular, Tsyganis double complex CC.(kEG) is a double complex of free kG-
modules and CCy(kBG) = Kk kg CCxx(KEG). It follows that HC«(G) =
H, Tot(CCyi(kBG)) is the hyperhomology H«(G; TotCCyx(kEG)) of the
group G (6.1.15), because each summand CCpy(kEG) of TotCCy(KEG) is
afree (hence flat) kG-module.

We saw in exercise 8.3.7 that the augmentation EG — 1 is a simplicia
homotopy equivalence. Applying the free module functor, the augmentation
kEG — kis a simplicid homotopy equivalence. Hence CH(kEG) is a res-
olution of the trivial kG-module k, just as C2(kEG) is a resolution of the
kG-module 0. Fitting these together, Tsyganis double complex CCux(kEG)
is a iresolutiont (in the sense of hyperhomology) of the trivia chain complex

KOk« Q0«—k<—0«k<--.

which has K; =0 for i<O0or iodd and K;=k for i even, i > 0. But the
hyperhomology of K is easy to compute:

HCn(G) =Hy(G; K) = P Hn-2:(G: k) =D Hn—2i(G; ).
i=0
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The assertions that the maps S: HC,,(G) — HC,—2(G) are the natural projec-
tions with kernd H H,(G) = H,(G; k), and that the maps B: HC,_1(G) —
H H, (G) are thus dl zero, follow from a visual inspection of H.(G;K.). 0

Corollary 9.7.2

[T H2i(G; k), n even

MPAG) = Im G (@)= [H""on-H(G-k) n odd
i=l ) y ’

Exercise 9.7.1 When Q ck, use kBG/~ to compute HC.(G).

We now turn to the Hochschild homology of the group ring kG. Let < G >
denote the set of conjugacy classes of elements of G. Our first step isto find a
decomposition of the cyclic set ZG of 9.6.2 and the cyclic module Z(kG) =
k(ZG) which is indexed by <G >. There is a cyclic set map from ZG to the
trivial cyclic set < G >, which sends (go, g1, . . ., gn) € (ZG), = G"*' to the
conjugacy class of the product go . . . g, in < G >. (Check this!) For n = 0 this
yields an isomorphism

HCo(kG) = HHo(kG) —> k <G> = P

<G>

Indeed, the kernel of the surjection kG — k < G > is generated by the el-
ements X —gxg”lzg_'(gx)—(gx)g_lzb(g‘l®gx), and HColk< G >) =
k<G>.

Definition 9.7.3 For x € G, let Z,(G, X) denote the subset of G"=27,6
consisting of al (go,.., g,) such that go- .. gn is conjugate to x, that is,
Z.(G, X) is the inverse image of <x>e< G >.Asn varies, these form
a cyclic subset Z(G, x) of ZG. Note that Z(G, 1) is isomorphic to the
cyclic set BG (forget go). Applying the free k-module functor gives cyclic
k-submodules kZ(G, x) of kZ(G), one for each conjugacy class. We shall
write HH,(G, x) for HH,(kZ(G, x)), HC«(G, x) for HC,(kZ(G, x)), etc.
for simplicity. As Z(G) is the digoint union of the cyclic sets Z(G, x), kZ(G)
is the direct sum of the kZ(G, x). Therefore H H.(kG)= &, H H,(G, x) and
HC.(kG) =P, HC«(G, Xx).

To describe H H,(G, x) etc. we recall that the centralizer subgroup of x €
G is the subgroup Cg(x) = (g€ G: gxg~! = x}. If xi is conjugate to x, then
Cg(x") and Cg(x) are conjugate subgroups of G. In fact, if we let G act on
itself by conjugation, then Cg(x) is the stabilizer subgroup of x; if we choose
aset (y} of coset representativesfor G/ Cg(x), then for each xi conjugate to x
there is a unique coset representative y such that yx'y~!=x.
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Proposition 9.7.4 For each x € G the inclusion Cg(x)< G induces isomor-
phisms HH(Cg(x),x) = HH,.(G, x) and HC«(Cg(x), x) = HC«(G, X).

Proof Write H for Cg(x), and choose a set (y) of coset representatives
for G/H, the coset of H being represented by y = 1. Given (go,. .., g€
Zy(G, x), let y; be the (unique) coset representative such that y;(gi+1. - gz80
.--gi)yi“1 = x and set

—1 —1 =1 —1
0080, . .7 8n) = Vn&0Yg +Yo81YL ...+ Yi—1&Yi » "+ Yn—18nYn )

Each y,_,8;y; ' isinH (check this!), so p(go. . . ., g) € Zs(H.x). By in-
spection, p: Z(G,X) = Z(H,x) is a cyclic morphism splitting the inclusion
t:Z(H,x) == Z(G, x). There is a smplicial homotopy h from the identity
map of Z(G, x) to ¢p defined by

-1 . -1
hj(go.. > 8n) =1{(80Yy +Yo&1 Y1 1,-‘,yj_1g,-yj 7yj5gj+1""’gn)7

j=0,---,n. (Check this!) Hence the incluson Z(H,x) € Z(G, x) is asim-
plicial homotopy equivalence. This implies that kZ( H, x) € kZ(G, x) is
also a homotopy equivalence. Hence H H.(H,x) =m«kZ(H, x) is isomor-
phic to H H«(G, x) = m«k Z(G, x), which in turn implies that HC.(H, x) =
HC.(G, x). <&

Corollary 9.7.5 For each x € G, HH.(G, x) = H,.(Cg(x); k). Hence

HH.(kG) = @) H.(Cc); k).

x€<G>

Proof We have to show that H H,(Cg(x), x) is isomorphic to H.(Cg (x); k)
for each x, so suppose x is in the center of G. There is an isomorphism

Z(G,1) = Z(G, x) of simplicial sets given by (go, . . ., &g)+>(xg0,81.-->
gn). Therefore H.(G; k) = HH.(kBG)= HH,(G, 1) is isomorphic to
HH,.(G, x). <

Remark One might naively guess from the above calculation that HC«(kG)
would be the sum of the modules HC«(Cg(x)) = Hi(Cg(x); k) @ HC. (k).
However, when G is the infinite cyclic group T and Q C k, we saw in 9.6.16
that forn>1

HC,(kT) = HC,(k[t,t™'D = k = HC,(T).

Therefore if Q C k, then for all x# 1in T we have HC,(T,x) =0, n #0.
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Exercise 9.7.2 Show that "' ® 1€ Z(kT, ") represents the differential
"drin HH, (kT)= Q71 /4, and use this to conclude that for genera k.

k, i=0
HC(T,t")={ k/nk, i>1odd
Tor(k,Z/n), i>2even.

Lemma 9.7.6 If QC k and x&€ G is a central element ofjinite order, then
HC.(G, x) ZHCL.(G)= Hy(G; k) @ HC (k).

Proof Let G denote the quotient of G by the subgroup {x} generated by x,
and write z for the image of ge G in G. The map of cydlic sets Z(G, x) —»
Z(G, 1) sending (go, - - -, gn) t0 (80, - - -, ) induces the natura map from
H.(G; k) = HH(G,x) to H(G; k) = HH,(G,1), because its composition
with the simplicial isomorphism Z(G, 1) — Z(G, x) is the natura quotient
map. The Hochschild-Serre spectral sequence Ej, = H,(G; Hy({x}; k) =
Hp 1 4(G; k) degenerates since Q ¢ k (6.1.10) to show that the natural map
Hy(G; k) —>H,,(G; k) is in fact an isomorphism. This yields HC,(G)=
HC,(G) by Karoubifs Theorem 9.7.1, as well as HC,(G,x) = HC,(G, 1) =
HC.(G). o

Corollary 9.7.7 If Q Ck and G is a finite group, then

HC,(kG) = @) HC.(Ca(x)) = k<G> @HC4(K).
xe<G>

Remark When kis a field of characteristic zero, Maschkeis Theorem states
that kG is a semisimple (hence separable) k-algebra. In 9.2.11 we saw that this
implied that H H, (kG) =0 for n 0, so the SBI sequence yields an aternate
proof of this corollary.

Example 9.7.8 (G = C3) Things are more complicated for genera k, even
when G is the cyclic group C2 ={1, x} of order 2. For example, when k=2
the group HC,(C», x) is Z for n even and O for n odd, which together with
Karoubiis Theorem for H C, (C,) yields

a7, n even

HC,(ZCy) :[ (Z/Z)("'H)/z, n odd .

This calculation may be found in {G. Cortifias, J. Guccione, and 0. Villa-
mayor, iCyclic homology of K[Z/pZ] K-theory 2 (1989),603-616}.
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Exercise 9.7.3 (Kassal) Set k = Z and show that H P,,(ZC?>) is not the inverse
limit of the groups H Cp,+2i (ZC3) by showing that

H Py(Ca, x) = lim ' HCyi11(Ca, x) = 75/,

where 22 denotes the 2-adic integers. Hint: Show that the SBI sequence breaks
up, conclude that S is multiplication by 2, and use 3.5.5.

Theorem 9.7.9 (Burghelea) Suppose that @ c k. Then HC,(kG) is the di-
rect sum of

D HCu(Co(x) = @ HCo(x); k) ® HC.(K)

x€<G> x€<G>
finite order finite order

and

P HWe;b.
x€<G>
infinite order

Here W(n) denotes the quotient group Cg(x)/{x"}.

Proof We have dready seen that HC.(kG) is the direct sum over dl x in
< G > of the groups HC, (Cg (X), X), and that if x has finite order this equals
HC,(Cg(x)). Therefore it remains to suppose that x € G is a central element
of infinite order and prove that HC.(G, x)= H(G/T; k), where T is the
subgroup of G generated by x. For this, we pull back the path space E(G/ T)
of 9.7.1 to Z(G, x).

Let E be the cyclic subset of E(G/T)x Z(G, x) consisting of al pairs
(e, z) which agree in B(G/T). Forgetting the redundant first coordinates of
e and z, we may identify E, with (G/T) x G" in such a way that (for go €
G/T,g1€ G):

(g()gl,gL..-,gn), |:O
(20, 81, "> 8n) = { (80, ---, 8i&i+1,--), O<i<n
(80, 81> -. .+ &n—1)> i=n

t(g07 81, "':gn) = (gogna (gl "'gﬂ)_lv 81, ""gn—l)-

As in the proof of Karoubiis theorem 9.7.1, the action of G/ T on the go co-
ordinate makes E into a cyclic G/T-set and makes the morphism of cyclic
sets 7: E — Z(G, x) into a principa G/T-fibration (exercise 8.2.6). There-
fore kZ(G,x) = k ®g/r kE, Tsyganis double complex CCy«(kE) consists
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of free kG/T-modules and CC.kZ(G, x) = K Qi1 CCix(kE). We will
prove that TotCCy4(kE) isafree kG/ T-module resolution of k, so that

HC.(G, X) = Hy(k ®rc/7 TOtCCyu(KE)) = H,(G/T; k).

The homotopy sequence for the principd G/ T-fibration E — Z(G, X)
(exercise 8.2.6 and 8.3.5) shows that m;(EYy=0fori# land m(E)=T.
The natural cyclic map Z(T, X) — E, which sends (g, -, ;) € T"*t! to
(1, t1,... . th)€ E,= (G/T) x G" induces isomorphisms on simplicial ho-
motopy groups and therefore on simplicia homology (see 8.2.3). That is,
HH,(T,x) = HH,(kE). It follows that if Q C k, then

k n=0

HC,(kE)= HCW(T, X) :{o n 0

Hence the natural map from CCoo(kE) = kG/T to k = HCy(kE) provides
the augmentation making Tot CC,.(kE) — k into a free kG/ T-resolution of
k, as claimed. <

Exercise 9.7.4 Show that the SBI sequence for Z(G, x) may be identified
with the Gysin sequence of 6.8.6:

coinf

< Hy(G; K) —> Hy(G/T; K) > Hy 2(G/T; K) = Hy—1(G; k) - - -.

Hint: Compare C*(G, x) > CC.(G, x) to the coinflation map for G —
GI/T.

9.8 Mixed Complexes

We can eliminate the odd (acyclic) columns in Tsyganis double complex 9.6.6
CC,,(A), and obtain a double complex B,,(A) due to A. Connes. To do this,
fix the chain contraction s, = to,: A, = Ap4 Of the acyclic complex C2(A)
and define B: A,, — A, to be the composite (1 + (—1)"t)sN, where N
is the norm operator on A,. (Exercise: Show that s is a chain contraction.)
Setting = (—1)", we have

B = (1 —nt)sN(1+nt)sN =0
bB + Bb = b(1+nt)sN + (L —nt)sNb = (1 —nt)('s + sb')N
(1 —nt)N = 0.
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Connesi double complex B,,(A) is formed using b and B as vertica and
horizontal differentials, with B,y = A4_, for p > 0. We can formalize this
congtruction as follows.

B B B
M3 «— M, «— M; «— My

1b IR IR
B B
M2 «— M «— M
lo 1b
B

My «— My

Lb

Mo

Definition 9.8.1 (Kassdl) A mixed complex (M, b, B) in an abelian category
A is agraded object {M,,: m> 0) endowed with two families of morphisms
b: My —> Mm—1 and B: My — M4y Such that b2=B2=5bB + Bb = 0.
Thus amixed complex is both a chain and acochain complex.

The above calculation shows that every cyclic object A givesriseto a
mixed complex (A, b, B), where A is considered as a graded object, b is the
Hochschild differential on A andB is the map constructed as above.

Definition 9.8.2 (Connesi double complex) Let (M, b, B) be a mixed com-
plex. Define a first quadrant double chain complex B,«(M) as follows. By,
iSMy—p if 0 <p=<q and zero otherwise. The vertical differentials are the b
maps, and the horizontal differentials are the B maps.

We write H,(M) for the homology of the chain complex (M, b), and
HC,(M) for the homology of the total complex Tot(B.(M)). HC.(M) is
cdled the cyclic homology of the mixed complex (M, b, B), a terminology
which is justified by the following result.

Proposition 9.8.3 If A is a cyclic object, then HC,(A) is naturally isomor-
phic to the cyclic homology of the mixed complex (A, b, B).

Proof For each 0 <p <gq,sett=qg—p and map Bpy = A 10 CC2p: ®
CCap-1,+1= A @® Ary1 by the map (1, sN). The direct sum over p, g gives
amorphism of chain complexes Tot(B) — Tot(CCxs). (Check this!) These
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two complexes compute HC,(A, b, B) and HC,(A), respectively by 9.8.2
and 9.6.6; we have to see that this morphism is a quasi-isomorphism. For
this we filter B4y by columns and select the idouble columnt filtration for
cc,, : FpCC =@{CCy:t <2p}. The morphism Tot(Bys) — Tot(CC.y) is
filtration-preserving, so it induces a morphism of the corresponding spectral
sequences 5.4.1. To compare these spectral sequences we must compute the
E! terms. Clearly E},q(B) =H,;_,(A).Let T, denote the total complex of the
2-column double complex obtained from the (2p —1)* and (2p)™* columns
of cc,,; the degree p + q part of T,iSCCzp 4 p® CCap_1,4—p+1. The
translates (1.28) of C2(A) and Ci‘(A)ﬁt into a short exact sequence 0 —
CHA1- 2p]l - Tp— Ci’(A)[—2p] — 0, so the spectral sequence 5.4.1
associated to the double column filtration of CC has qu =(Tp)p+q and

Epy(CC) = Hpiq(Tp) = Hpy 4 (CL(A)—2p]) = Hyp(A).

By inspection, the map E},q(B)—>E},q(CC) is an isomorphism for al p
and g. By the Comparison Theorem (5.2.12), Tot(B) — Tot(CC) is a quasi-
isomorphism. <

Remark If Ais a cyclic object, any other choice of the chain contraction
s, such as s, = (—1)"a,, will yield a dightly different mixed complex M =
(A, b, Bi). The proof of the above proposition shows that we would still have
HC.(M)=HC,(A). Our choice is dictated by the next application and by the
historical sdlection s(ro®---®r,)=1Qry® ---Qr, for A=7ZR in [LQ].

Application 9.8.4 (Normalized mixed complex) By the Dold-Kan Theorem
84.1, the Hochschild homology of a cyclic k-module A may be computed
using either the unnormalized chain complex C#(A) or the normalized chain
complex Ci(A) = C*(A)/D.(A), obtained by modding out by the degener-
ate subcomplex D,(A). Since D,(A) is preserved by ¢ (why?) as well as our
choice of s, it is preserved by B = (1 £ ¢)s(3_ £ ). Hence B passes to the
guotient complex C,(A), yielding a mixed complex (C,(A), b, B). Since the
morphism of mixed complexes from (A, b, B) to (C,(A), b, B) induces an
isomorphism on homology, it follows (say from the SBI sequence 9.8.7 be-
low) that it also induces an isomorphism on cyclic homology: HC,(A)=
HC.(Cx(A)).

One advantage of the normalized mixed complex is that it simplifies the
expression for B = (1 +¢)sN. Since ts = 126, = gt = 0 on C,(A), we have

B=to,N =to, + (—=1)"?0u_1 + -« + (=D"i o + - + (=1)""tgy
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In particular, if R is a k-algebra and A = ZR, then in C,(A) = B,(R, R):

n

Bn®... @)=y (~)"®r® - @r®rn® - ®r_i.
i=0

Example 9.8.5 (Tensor algebra) Let T = T(V) be the tensor algebra (7.3.1)
of a k-module V. If vy,---,vj€V, write (v1---v;) for their product in the
degree j part V®/ of T; the generator o of the cyclic group C; acts on V®/
by o(vr...vj) =(jvr---vj-1).In9.1.6 we saw that H;(T, T) =0 fori #0,
50 to use Connesi double complex 9.8.2 it suffices to describe the map

B: Ho(T, T) = Pv®)e > P v®)” = Hy(T, 7).

Of course the definition of B: T—>T@ Tyidds B(r) = 1®r +r ® 1 for
every r € R. If we modify this by elements of the form b(ro®ri®r) =
ror1®r2—ro®rira + r2ro ® rp we obtain a different representative of the
same element of H (T, T). Thus for r =(v; .. .v;) we have

By =r®1+18r~u®® v) @ v)ov rel
~UIv2) @ (U3---u)+ (V3 - - . V1) ® vy
+ (n-uj) Buir®dl

"’Z(Ui—b-l"'vjvl"' vi—1) Qui+r @ 1.

Upon identifying the degree j part of T ® V with V®/ and ignoring the degen-
erate term r ® 1 by passing to C,, we see that B(r) = (L + o +---+a/Vr
as a map from (V®/), to (V®/)?. Identifying B with the norm map for the
action of Cj on V®/, we see from Connesi complex and 6.2.2 that

o0

HCy(T) = HCa(k) ® @ HA(Cj; V).

j=l1

In particular, if Q@ €k, then HC,(T) = HC,(k) for al n# 0.

Exercise 9.8.1 If R has an ideal I with 2= 0and R/I =k, show that

n+41 .
HCA(R) = HCo(6) & €D Hn1-5(Ci 1)),
j=1
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Connesi Spectral Sequence 9.8.6 The increasing filtration by columns on
B« (M) gives a spectra sequence converging to HC.(M), asin 5.6.1. Since
the p** column is the trandate M[-p] of (M, %+ b), we have

Ep, = Hy p(M)= HCpiq(M)

d! differential Hi(M) — H;41 (M) induced by Connesi operator B.
This quickly yields HCo(M) = Ho(M), HC (M) = H{(M)/B(Mp) and a se-
guence of low degree terms

Hi(M) 25 Hy(M) -5 HCo (M) — Ho(M) 2> Hy(M)—> HC (M) — 0.

In order to extend this sequence to the left, it is convenient to proceed as
follows. The inclusion of M, as the column p = 0 of B = B..(M) yidlds a
short exact sequence of chain complexes

0 — M, s Tot(B) -3 Tot(B)[—2] — O,

since B/ M, is the double complex obtained by trandating B up and to the
right. The associated long exact sequence in homology is what we sought:

C HCpp (M) =55 HC,_ (M) 25 H,, (M) L5 HC(M) 25 HCu_p(M) -
(9.8.7)

We call this the 1SBI sequencel of the mixed complex M, since the proof
of 9.8.3 above shows that when M = (A, b, B) is the mixed complex of a
cyclic object A this sequence is naturaly isomorphic to the SBI sequence of
A constructed in 9.6.11. As in loc. cit., if M — M’ is a morphism of mixed
complexes such that H,(M) = H,(M"), then HC,(M)= HC,(M") as well.

Exercise 9.8.2 Show that the spectral sequence 5.6.1 arising from Tsyganis
double complex CC,,(A), which has E%pq = HH,(A), has for its d? differ-
ential themap H Hy(A) - H Hy41 (A) induced by Connesi operator B. Then
show that this spectral sequence is isomorphic (after reindexing) to Connes

spectral sequence 9.8.6. Hint: Show that the exact couple 5.9.3 of thefiltration
on B, is the derived couple of the exact couple associated to CC,,(A).

Notational consistency Our uses of the letter BT are compatible. The map
B: M, = M, defining the mixed complex M induces the d! differentias
B: H,(M) -, H,,+1 (M) in Connesi spectral sequence because it is used for
the horizontal arrows in Connesi double complex 9.8.2. This is the same
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map as the composition BI: H,,,(M) - HC,,,(M)— H,, . 1(M) in the SBI se-
quence (9.8.7). (Exercise!)

Trivial Mixed Complexes 9.8.8 If (C,, b) is any chain complex, we can
regard it as a trivia mixed complex (C,, b, 0) by taking B = 0. Since the
horizontal differentials vanish in Connesi double complex we have

HCy(Cx,5,0) = Hi(C)® Hp2(C) O Hi4(O)® . . ..

Similarly, if (C*, B) is any cochain complex, we can regard it as the trivial
mixed complex (C*, 0, B). Since the rows of Connesi double complex are the
various brutal truncations (1.2.7) of C, we have

HCh(C* 0,B) = C"/B(C" HYo H" A(C)o H" *(C)o - --.

The de Rham complex 9.8.9 provides us with an important example of this
phenomenon.

9.8.1 de Rham Cohomology

9.89 LetRbe a commutative k-algebra and Q% the exterior algebra of
Kihler differentials discussed in sections 9.2 and 9.4. The de Rham differential
d: %k —»QR/k is characterized by the formula

d(rodria---Adr,) =drgadria---Adr, (r;€ R).

We leave it to the reader to check (using the presentation of Qg/x in 8.8.1;
see [EGA, 1V.16.6.2)) that d is well defined. Since d? =0, we have a cochain
complex (QR/k, d) called the de Rham complex; the cohomology modules
Hip(R)= H*(QR/k) are called the (algebraic) de Rham cohomology of R.
All thisis an algebraic parallel to the usual construction of de Rham cohomol-
ogy for manifolds in differential geometry and has applications to algebraic
geometry that we will not pursue here. The material here is based on [LQ)].

Exercise 9.8.3 Show that d makes Q}}/k into a differential graded algebra
(4.5.2), and conclude that H} (R) is a graded-commutative k-algebra.

If we consider (QR/k, d) as a trivid mixed complex with b = 0, then by
9.8.8

HC (i 0, d) = Qp/1/dUp @ HIRZ(R) D - -
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In many ways, this serves as a model for the cyclic homology of R. For ex-
ample, in 9.4.4 we constructed a ring homomorphism w:Q}}/k—>H*(R,R),
which was an isomorphism if R is smooth over k (9.4.7). The following result
allows usto interpret the d! differentials in Connesi spectral sequence.

Lemma 9.8.10 The following square commutes:

o . HQR.R
R/k n{,

al 1B

v
Q'y — Har1(R,R).

Proof Given a generator @ = rodria--- Adry of Q% ., ¥ (w) is the class of

(ro®@r)V(A R r)V--- V(1 ®rp) =nley(ro® - @)
= Z(—I)Ur() K ra—l(l) R---R ro—l(n)
o
where ¢ ranges over al permutations of (1, ---,n}and V denotes the shuf-
fle product on B(R,R) given in 9.4.2. Passing to the normalized complex

B,(R, R), defining o(0)= 0 and applying B, the description in 9.8.4
gives us

Z(— 1)0’ Z (-l)ll ®ra_1t_1(0)® ra-1t—1(1)® - ® ra—lt—l(n)
o t

where ¢ ranges over the cyclic permutations p+—p +iof {0, 1, ---,n}. Since
every permutation p of (0, 1,---, rn} can be written uniquely as a composite
to, this expression equals the representative of Y (droadria--Adryp):

N+ DEnl®n® - @r)= ) (~DF®ri® ®ryi(y. 0
I

Porism Suppose that 1/(n +1)!e R. The above proof shows that

B(nle))(ro® . -®ry) = (n + Digy1(1®@rg® - @ ry)
= n!£n+1B(r0®"®rn)-

Dividing by n! gives the identity BEe, = £,+1 B.
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Corallary 9.8.11 zf R is smooth over k, the E? terms of Connesi spectral
sequence are

q H —
2 Q% /A, i p=0
P | HIP(R)  ifp>0.

We will now show that in characteristic zero this spectral sequence collapses
a E*; we do not know if it collapses in general. Of course, when R is smooth,
the sequence of low-degree terms always yields the extension (split if 1/2 €
R):

0 > Q% 1 /dQrsk > HC2R) —> H&(R) — 0.

9.8.12 Assuming that R is commutative and Q c R, we saw in 9.4.4 that the
maps e R®"+1—’9'1'e/k defined by e(ro® ---) =rodria--- Adrp/n! sdis-
fied eb = 0 and ey = identity. In fact, e is a morphism of mixed complexes
from (R®**1 b, B) to (k1> 0, d) because by 9.8.4

1 in
eB("o®"')=Z (( +)l)'dr, AdrpAdrgA - Adri—1 =de(rp® -+ -).

Therefore e induces natural maps

HCn(R) > HCp(Qp 1) = Ui/ A7, ® HI(R) @ Hi'(RY @ - -

Theorem 9.8.13 zf R is a smooth commutative algebra, essentially of finite
type over a field k of characteristic 0, then e induces natural isomorphisms

HCy(R) = Q1 /dSU74 & Hyg (R) © Hig* (R & -,
HP,(Ry= [ HIZF* B
ieZ

Proof On Hochschild homology, e induces maps Hu(R.R) — H H, (2} k) 0=
% /x- When Ris smooth, the Hochschild-Kostant-Rosenberg Theorem 9.4.7

states that these are isomorphisms. It follows (9.8.7) that e induces isomor-
phisms on HC, and H Py as well. 0

Exercise 9.8.4 When R is commutative and Q C R, show that Q% /k/dQR/k

and Hd R 2 R) are dways direct summands of H Cj, (R). | do not know if the
other H}1z % (R) are direct summands.
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Exercise 9.8.5 Show that the SBI sequence for a trivia mixed comple:
(C*, 0, B) is not split in general. Conclude that the SBI sequence of a smootl
algebra R need not split in low degrees. Of course, if R is smooth and finitely
generated, we observed in 9.4.8 that H,(R,R) =0 for n>d = dim(R), s
the first possible non-split map is S: HC44+1(R)— HC4-1(R).

9.8.2 Hodge Decomposition

There is a decomposition for cyclic homology analogous to that for Hoch
schild homology. To construct it we consider Connesi double complex B,
(9.8.2) for the normalized mixed complex (C*(R), b, B). Lemma 9.8.15 be
low shows that B sends CH(R)® to C%_ | (R)@+D. Therefore there is a doublt
subcomplex BY of B, whose p™* column is the complex C%(R)¢~P shiftec
p places verticaly.

-y B _—4_py B B .

C,(,') «— Cr(lt—l) — . — C;S—)i+1 «~—0

1b 1o 1®

- (: B . B B
Ci(le — — Cél) «— 0

Lo Lo Lo

- (; B . B B _ B

Cl.(’) «— C(:J_)l — C§1) «— R «—0
Lo L Lo

0 0 0

Definition 9.8.14 (Loday) If i >1, then HC?(R) = H,, Tot BY). Because
e,(,O) =0for n#0, HC,SO)( R) = HC(()O)( R) = R. The Hodge decomposition of
HC, for n> 1is

HCy(R) = HCP(R)@ HCP @ - @ HC{(R).
efliill) B= Bef,i)for everynandi<n.

Proof When n=i= 1 we have Be. (ro®r)) = Bro®r)= 1 @ro®ri—
1 ® ri®ro, which is e2B(ro®r1). More generdly, if i =n, the equality
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Exercise 9.8.5 Show that the SBI sequence for a trivial mixed complex
(C*, 0, B) is not split in general. Conclude that the SBI sequence of a smooth
algebra R need not split in low degrees. Of course, if R is smooth and finitely
generated, we observed in 9.4.8 that H,(R,R) =0 for n>d = dim(R), so
the first possible non-split map is S: HCy+1(R)— HCg4—1(R).

9.8.2 Hodge Decomposition

There is a decomposition for cyclic homology analogous to that for Hoch-
schild homology. To construct it we consider Connesi double complex B
(9.8.2) for the normalized mixed complex (C%(R), b, B). Lemma 9.8.15 be-
low shows that B sends C#(R)® to C2, | (R)U*D. Therefore there is a double
subcomplex BE) of B, whose p™ column is the complex C*(R)4—P) shifted
p places vertically.

- B i B B
R
1o 1o 1b
B -

CO «— 'Y — Y —o0
Lo Ls Lo

B -
co 2ot Nl 2 e 2R o
Lo L Lo
0 0 0

Definition 9.8.14 (Loday) If i > 1, then HC{?(R) = H, Tot BY). Because

e,(,o) =0forn#0,H C(O) (R)=H C((,O) (R) = R. The Hodge decomposition of
HC,forn>1is

HC,(R) = HCP(R @ HCP @ --- ® HC(R).

Lemma 9.8.15 ef,’III)B Bel for every nand i <n.

Proof When n =i = 1 we have Begl)(r()@rl) =B(ro®r)=1Qro®ri—
1 ® r1®rog, which is e2B(ro @ r1). More generaly, if i = n, the equality



en+1B = Be,, was established in the porism to lemma 9.8.10. For i < n, we
proceed by induction. Set F =e’ B~ Bel. The following calculation
shows that b(F) =

belt B = e{*DbB = —c(*VBb = —Be) b= —Bbel) = +bBe{).
Now observe that there is an element u of QX, such that
(i+1)

u(1®ro® - @ra) =en, 'Bro®-+-® 1) —Bel(ro®--- @ rn).

By Barris Lemma 9.4.9, u =ce, and it suffices to evauate the constant c.
Because i < n we have s,,+1e( i+1) = 0 and sne,(,') = 0. Therefore

ent1u(1®r0® ... @rn) = —£n11Be (0@ - Q1)

= —Bene,(li)(ro ®R...80r,)
=0.
This gives the desired relation u = gp41u = 0. <

Corollary 9.8.16 HC{"(R) = Q. /d¥ 1.

Proof Filtering Bi’;,) by columns and looking in the lower left-hand corner,
we see that HCYV(R) is the cokernel of the map B = d: H™" V(R,R) >

H™(R,R). >

Theorem 9.8.17 When Q C R, the SBI sequence breaks up into the direct
sum of exact sequences

HCD (R 2> HC D (R E> HOR, B -5 HCP(R) -5 HC " R) |

Proof The quotient double complex BE/CHR)® is atrandate of BE V. ¢
Corollary 9.8.18 Let k be a field of characteristic zero. Then
HCO(R) = HV(R, R) = Dp—1(R/k)

(André-Quillen homology) for n> 3, while for n = 2 there is an exact se-
quence

0 — Dy(R/k)— HC{Y — HIx(R/k) — 0.
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Exercise 9.8.6 Show that if R is smooth over k, then HC,(,i)(R) =0fori<
n/2, while if n/2 <i<nwe have HC\?(R)= H2"(R/k).

Exercise 9.8.7 Show that there is also a Hodge decomposition for HP*(R):
HP,(R) = TTHP{)(R).
If R is smooth, show that HP,(€)(R) = HZ:"(R/ k).

Remark 9.8.19 (Schemes) It is possible to extend Hochschild and cyclic
homology to schemes over k by formaly replacing R by Ox and R®" by
(9;‘?" to get chain complexes of sheaves on X, and then taking hyperco-
homology (Chapter 5, section 7). For details, see [G-W]. If X is smooth
over k and contains Q, it turns out that HH,fi)(X)’EH"‘"(X,Q")() and
HP,E)(X) = Hdzj;”(x). If X is a smooth projective scheme and p=i—n,
then HCY (X) isthe p™ level FPH2:-"(X) of the classical Hodge filtration
on Hjp(X)= H*(X(C); k). This direct connection to the classical Hodge
filtration of HJ,(X) justifies our use of the term THodge decomposition.”

9.9 Graded Algebras

Let R = ®R; be a graded k-agebra. If rg,---,r, are homogeneous eements,
define the weight of rg®--- ® rp € R®P*1 to be w = ¥ |r;], where |ry| = j
means that r; € R;. This makes the tensor product R®P+1 into a graded -
module, (R®P+1),, being generated by elements of weight w. Since the face
and degeneracy maps, as well as the cyclic operator ¢, all preserve weight,
the {(R®P*1),} form a cyclic submodule (ZR), of ZR = R®**! and al-
lows us to view Z R = @(ZR),, as a graded cyclic module or cyclic ob-
ject in the abelian category of graded k-modules (9.6.1). As our definitions
work in any abelian category, this provides each H H,(R)=H H,(ZR) and
HC,(R)=HC,(ZR) with the structure of graded k-modules: H Hp(R)y =
HH,((ZR)y) and HC,(R),= HC,((ZR)y). We are going to prove the fol-
lowing theorem, due to T. Goodwillie [Gw].

Goodwillieis Theorem 9.9.1 If R is a graded k-algebra, then the image of
S:HCp(R)y—> HCp_2(R)y is annihilated by multiplication by w. In par-
ticular, if Q C R, then S =0o0n HC,(R),, for w# 0, and the SBZ sequence
splits up into short exact sequences

0 = HCp_1(R)y —> HHp(R)w —> HCp(R)y — 0.
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If R is positively graded (R = Rg@® R1® - --), then clearly (Z R)g =Z (Ryp),
so that the missing piece w = 0 of the theorem has H C (R)p=H C (Rp) .

Corollary 9.9.2 If R is positively graded and Q c R, then HP,(R) =
H P,(Ro).

Corollary 9.9.3 (Poincaré Lemma) If R is commutative, positively graded,
and Q c R, then

Hjr(R) = Hyr(Ro).

Proof It suffices to show that the weight w part of the de Rham complex
(%> d) of 9.8.9 is zero for w # 0. This is a direct summand (by 9.4.4,
exercise 9.4.4) of the chain complex (H H.(R)y,BI), which is exact because
the kernel of BI: HH,(R)y— HHp11(R)yiSHC,_1(R)y. &

Example 9.9.4 The tensor dgebra T = T(V) of a k-module V may be
graded by setting T; = V®. We saw in 9.1.6 that H H,(T) =0 for n#0, 1.
If Q C k, this immediately yiddds HC,(T)y,=0for n# 0 and w# 0, and
hence we have HC,(T)=HCp(k) for n#£0. If Q ¢ k, the explicit calcu-
lation in 9.8.5 shows that HC,(T)y = H,(Cy; V®?), which is a group of
exponent w as the cyclic group Cy, has order w.

Exercise 9.9.1 Given a k-module V we can form the ring R = k @ V with
V2=0. If we grade R with Ry=V and fix w # 0, show that

HCy(R)y = Hyp1-3(Cy; VEY).

Exercise 9.9.2 Let R be the truncated polynomial ring k[x1/(x™*1), and sup-
pose that Q ¢ k. We saw that H H, (R) =™ for dl n# 0 in exercise 9.1.4.
Show that HC,(R) =0 for n odd, while for n even HC,(R)=k™*!. Com-
pare this approach with that of exercise 9.6.4.

Exercise 9.9.3 (Generating functions) Let k be a field of characteristic zero,
and suppose that R is a positively graded k-algebra with each R; finite-
dimensional. Show that A(n,w) = dim H H,(R),, is finite and that for every
w #% 0 we have

dim HCy(R)w = (-1)T Z(—l)ih(i, w).
i=0
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Now set h(t) = 3 h(n, w)t", fyu(t) = Y. dim HC,(R), 1", and show that
() = (1 + 0 fult).

In order to prove Goodwillieis Theorem, we work with the normalized
mixed complex C,(R) of R. First we describe those maps F: R®"+1
C.(R) which are natural with respect to the graded ring R (and k). For
each sequence of weights w = (wg, . . ., w,) we must give a map F,, from
Ruyy® - ® Ry, to C.(R). Let T, denote the free k-agebra on elements
X0, "+, Xm, Oraded so that x; has weight w;. Given r;€ R, there is a graded
algebra map T, — R sending x; to r;; the map Cn(Ty) — Cn(R) must send
y=Fu(x0® - ®xm) to Fyu(ro® -+ - ®ry). Thus F,, is determined by the
dement y = y(xo, -+, Xm) Of Cn(Ty) = Tw® T, ®- -, that is, by a k-linear
combination of terms Mo ® --- ® M,, where the M; are noncommutative
monomials in the x;, and M;# 1 for i 0. In order for y to induce a natural
map Fy, we must have multilinearity:

AYy(x, -+, Xm)= y(x0, - - . AXi,r, Xm)

for al i and al A € k. Changing k if necessary (so that for each j thereis a
A€k such that A/ # 1), this means there can be at most one occurrence of
each x; in each monomia My ® --- @My iny (xg,-- -, Xm).

If n>m+ 2, then at least two of the monomias M; must be one in each
term Mo ® --- ® M, of y. Thisis impossible unlessy = 0. If n=m + 1, then
we must have Mo = 1 in each term, and y must be a linear combination of the
monomials 1 ® xo9 ® -+ - ® Xom 8o runsover al permutations of {0, -- -, m}.
An example of such a natura map is B; the universal formula in this case
isgivenby y = B(xo® - -- ® x»), where only cyclic permutations are used.
From this we make the following deduction.

Lemma 9.9.5 Any natural map F: R®" 1 C,,1(R) must satisfy FB =
BF = 0, and induces a map F:Cp(R)— Cmi1(R).

Examples 9.9.6 If m = n, there is a naturd map D: Cpr(R) = Cm(R) Which
is multiplication by w = Y w; on Ry, ® ---® R,,. When m =0, D is the
map from R =Co(R) to itself sending r € Ry, to wr. The formula

ero ®-- ®rm) = (—1)" N (Dr)rn®@r®- - @ rm—1

gives a natural map e Cu(R)— Cp_1 (R). This map is of interest because
eb + be = 0 (check this!), and also because of its resemblance to the face
map 8, (which is natural on R®”+! but does not induce a natural map Cn, —
(—:m-l)-



9.9 Graded Algebras 357

Proof of Theorem 9.9.1 Since D commutes with B and b, it is a map of
mixed complexes and induces an endomorphism of HCy(R)— namely, it is
multiplication by w on HC,(R)y. We must show that DS = 0. To do this we
construct a chain contraction Se + SE of DS: Tot, B — Tot,—2 By, Where
Byx is Connesi double complex for the normalized complex C,(R) and S is
the periodicity map Bpq — Bp—1,4—1- The map e Bpg—> Bp+1,4 is the map
Cm—> Cm—1 given in 9.9.6, and E will be a map Bpg — Bp q+1 induced by
natural maps E,: Cyn — Cmy 1. If we choose E so that D equals

(*) (e+ EYB+b)+(B+b)(e+ E)=eB+ Be+ Eb+ bE
Cm—H
TE
- B - e -
Cny1 «— szqu —> Cp-

1o

Cm—l

on Cm(R), then S(e + E) will be a chain contraction of DS. Note that the term
eB of (x) does not make sense on By, but the term SeB does.

All that remains is to construct E,; Crn(R) = Cm+1(R), and we do this by
induction on m, starting with Eo = 0 and E1 (ro ® r1) =1 ® Dr; ® ro. Because

(eB + Be)(rp) = e(1® ro) = Dro,
(eB+ Be +bE)(ro®@r)=e(1®r0®r1—1®r® ro)
+ B(Dri)ro + bE1(ro®r1)
=—Dri®ro+Dro®r;
+1®Dryro b(1® Dri®ro)
Dro®ry ®Drq
D(ro@r1),
%) C®  CB®). =

Em—_1,Em_2 constructed; for each w we need to find dements y € Crmt1(Tw)
such that

by + (eB En-1D)(x0® - @ xm) =D(x0 ® -+ @ Xm)

in Cpn(T,). Set z= (D —eB — Be — Ep_1b)(x0 ® - - - ® Xxn); by induction
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and (),

bz = (Db + ebB + Bbe —bEp_1b—Ep_2b?)(x0 Q- ® Xm)
= (D —eB—Be —bEp_1—En2b)b(x0® -+ ® xm)
=0.

We saw in 9.1.6 that H,,(Ty,Ty)=0 for m > 2, so the normalized complex
C.(T,) and hence its summand C,( Ty,)y of weight w are exact at m. Thus
there is an dement y in Cpy1(Ty)w SUch that by = z. Since y has weight w;
with respect to each x;, there can be at most one occurrence of each x; in each
monomia in y(xg,---, xn). Hence if we define

Em(r0®"'®rm):y(r0"'.,rm)’

then E,, is a natural map from Cp, (R) to Cprs1 (R) such that () equals D
on C,,(R). This finishes the construction of E and hence the proof of Good-
Willieis Theorem. <&

Remark 9.9.7 The iweightT map D:R — R is a derivation, and Good-
Willieis Theorem 9.9.1 holds more generdly for any derivation acting on a
k-algebra R; see [Gw]. All the basic formulas in the proof-such as the for-
mula (x) for D-were discovered by G. Rinehart 20 years earlier; see sections
9, 10 of iDifferential forms on general commutative algebras, Trans. AMS 108
(1963), 195-222.

As an application of Goodwillieis Theorem, suppose that / isanided inak-
algebra R. Let Z(R,I) denote the kernel of the surjection Z(R) — Z(R/I);
we define the cyclic homology modules HC.(R,I) to be the cyclic homol-
ogy of the cyclic module Z(R, ). Since cyclic homology takes short exact
sequences of cyclic modules to long exact sequences, we have a long exact
sequence

- HCpy1(R) > HCp 1 (R/I) > HCy(R,I) > HCy(R) > HC,(R/I) - .

Thus HC,(R,I) measures the difference between HC.(R) and HC(R/I).

We can filter each module Z,R = R®?*! by the submodules F/, generated
by al the I'°®...®I'» with ip + ---+i,=i. Since the structure maps
3;,0;,t preserve this filtration, the F;' are cyclic submodules of ZR. As F*l
isZ(R,I), we have FO/F! = Z(R/I).

Exercise 9.9.4 If kis a field, show that the graded cyclic vector spaces
@®F!/Fit! and Z(grR) are isomorphic, where gr(R) = RIZ ©1/1*°® ---®
1™/t g . . . s the associated graded algebra of 7¢R.
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Proposition 9.9.8 Let k be a field of characteristic zero. Zf I"*1= 0, then the
maps Si:HCp+2i(R,I)—+HC,,(R,I) are zero fori> m(p + 1).

Proof By the above exercise, HCx(grR), = HC(F¥/F¥*1). Since gr(R)
is graded, the map S is zero on al but the degree zero part of HC(grR).
Hence S’ =0 on HC.(F!/F'*!). Since Fi*'=0 for i =m(p +1), the map
St factors as

. Sl .
HCpi2i(R, 1) — HCpi2i(F}/FITYy = HC,(F!/FI™") = HC,(R, 1),
which is the zero map. <

Corollary 9.9.9 If Zis a nilpotent ideal of R, then H P.( R, Z) = 0 and
HP,(R) = HP.(R/I).

Proof The tower {H C,+2; (R, I)} satisfies the trivial Mittag-Leffler condition.
<&

Exercise 9.9.5 If Z isanilpotent ideal of R and k is a field with char(k) = 0,
show that Hx(R)= Hjr(R/I). Hint: Study the complex (H H.(R), BZ).

9.9.1 Homology of DG-Algebras

9.9.10 Itisnot hard to extend Hochschild and cyclic homology to DG-alge-
bras, that is, graded agebras with a differentia d: R, — R,—1 satisfying the
Leibnitz identity d(rori) = (dro)ri + (- )"lrg(dry); see 4.5.2. (Here |rol = j
if oeR;.) If we forget the differential, we can consider ZR (9.6.1) as a
graded cyclic module as in Goodwillieis Theorem 9.9.1. If we lay out the
Hochschild complex in the plane with (R®7+1), in the (p, q) spot, then there
is also a Thorizontal® differential given by

q
dro® - ®rg=Y ()t t-lye.  ®@dre. . ®r.
i=0

Thus the Hochschild complex becomes a double complex C% (R | d),; we de-
fine the Hochschild homology H H 2% (R) to be the homology of Tot®C%(R)..
If R is positively graded, then C*(R, d) lies in the first quadrant and there is
a spectra sequence converging to HHPCY(R) with E2, = HX(H Hy(R)).
Warning: If Ris a graded algebra endowed with differential d = 0, then
HHPY(R) is the sum of the H Hy(R)p with p + ¢ =n and not H Hy(R).
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In the literature (e.g., in [MacH, X]) one often considers DG-algebras to
have a differential d: R* — R"*! and R"=0for n < 0. If we reindex R"
asR_, this is a negatively graded DG-algebra. It is more natura to convert
C!(R, d), into a cochain double complex in the fourth quadrant and to write
HH} - (R) for HHPS(R).

Exercise 9.9.6 If RO =k and R'=0, construct a convergent fourth quadrant
spectral sequence converging to H H},; (R) with EY=HPHH_4 (R).

Exercise 9.9.7 Let (R,, d) be a DG-algebra and M a chain complex that is
also a graded R-module in such a way that the Leibnitz identity holds with
roe M, rie R. Define H*DG (R, M) to be the homology of the total complex
(M ® R®7),, obtained by taking roe M in 9.9.10. If M and R are positively
graded, show that there is a spectral sequence

2 h
Epq = HyHe(R, M) = HPS (R, M).

We now return to the cyclic viewpoint. The chain complexes Z,(R), =
(R®9+1), fit together to form a cyclic object Z(R, d) in Ch(k-mod), the
abelian category of chain complexes, provided that we use the sign trick to
insert @sign of (—1)rallrol++lrg-1D in the formulas for §, and . (Check
thisl) Asin any abelian category, we can form H H, and HC, in Ch(k-mod).
However, since Cf(Z(R,d)) is really a double complex whose total complex
yidds H HPY(R) it makes good sense to imitate 9.6.7 and define HCPY(R)
as H, Tot® CC.Z (R, d). If R is positively graded, then we can define
HPPC(R) using the product total complex of CCF. z(R,d). All the maor
structural results for ordinary cyclic homology clearly carry over to this DG-
setting.

Proposition 9.9.11 If f: (R, d) — (Ri, di) is a homomorphism of flat DG-
algebras such that H,(R) = H,(R’), then f induces isomorphisms

HHP®(R) ~ HHP®(R) and HCPC(R) = HCPC(R).
Proof As each R®"is aso flat as a k-module, the chain maps
f n+1, R®n+1 — R®n ® R/ — (R/)®n+1

are quasi-isomorphisms for all n. Filtering by rows 5.6.2 yields a convergent
spectral sequence

E,, = Hy(R®"*) = HHPS (R).
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By the Comparison Theorem 5.2.12, we have H HP¢(R,d) = H HPS (R, d).
The isomorphism on HCPS follows formally using the 5-lemma and the SBI
sequence 9.6.11. 0

Vista 9.9.12 (Free loop spaces) Suppose that X is a fixed simply connected
topological space, and write C*(X) for the DG-algebra of singular chains
on X with coefficients in a field k; the singular cohomology H*(X) of X is
the cohomology of C*(X). Let X/ denote the space of al maps f: I — X, I
denoting the interval [0,1]; the free loop space AX is{f e X!:f(0) = f(1))
and if x€ X is fixed, the loop space QX is{f e Xi: f(0) = f(1) =*}. The
general machinery of the iEilenberg-Moore spectral sequencel [Smith] for the
diagram

QX — AX — Xx!

! ! !

A
* —> X — X xX

yields isomorphisms:

H"(QX)= HH:(C*(X), k) = HHPC (C*(X), k);
H™(AX) = HH2:(C*(X)) = HHPS (C*(x)).

We say that a space X is formal (over k) if there are DG-agebra homo-
morphisms C*(X) <« R — H*(X) that induce isomorphisms in cohomol-
ogy. Here we regard the graded ring H*(X) as a DG-algebra with d = 0,
either positively graded as a cochain complex or negatively graded as a
chain complex. Proposition 9.9.11 above states that for forma spaces we
may replace C*(X) by H*(X) in the above formulas for H"(2X) and
HM"(AX).

All this has an analogue for cyclic homology, using the fact that the topo-
logical group S! acts on AX by rotating loops. The equivariant homology
HS'(AX) of the S'-space AX is defined to be H,(AX xgi ESP), the sin-
gular homology of the topological space AX x g1 ES!={(,€) e AX x
ESi: A(1) = n(e)). Severa authors (see [Gw], for example) have identified
H*SI(AX ) with the cydlic homology HCPC(R,) of the DG-agebra R, whose
homology is H«(2X).
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9.10 Lie Algebras of Matrices

In this section we fix a field k of characteristic zero and an associative k-
algebra with unit R. Our goal is to relate the homology of the Lie agebra
gl,.(R) = Lie(M,,(R)) of m x m matrices, described in Chapter 7, to the
cyclic homology of R. This relationship was discovered in 1983 by J.-L. Lo-
day and D. Quilien [LQ], and independently by B. Feigin and B. Tsygan. We
shall follow the exposition in [LQ].

The key to this relationship is the map

HE (g1, (R): K) > HCy(Mu(R) = HCA(R)

constructed as follows. Recall from 7.7.3 that the homology of a Lie algebra g
can be computed as the homology of the Chevalley-Eilenberg complex A*g=
k®ug V.(9), with differential

A

d(xiA. .. A Xp) =Z(—1)i+j[xi,xj]Ax1A...Afc,'A-..ijA...Axp.
i<j

On the other hand, we saw in 9.6.10 that the cyclic homology of R may be
computed using the quotient complex C,(R) = Cf(R) / ~ of the Hochschild
complex C*(R). Define A: APT1gl,,(R) = C«(Mn(R)) by

AxoA . AXp)=(=DPY (1) X ®X1® . .. ® Xap,
g

where the sum is over al possible permutations o of { 1, ---, p}. (Exercise:
Why is A well defined?)

Lemma 9.10.1 X is a morphism of chain complexes, and induces maps
At Hpi1(gl, (R); k) > HCp(R)

Moreover A is compatible with the usual nonunital inclusion ¢: M,,,(R) —

M, 1(R), «(g) :[ ‘gl in the sense that the following diagram commutes.

et x trace
AT gL, (R)  —>  Gi(Mpu(R)) —— C,(R)
Lief)) | Lo I

.t by trace
AT gl (R) —> CuMpt1(R)) ——> Cu(R).
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Proof Commutativity of the right square amounts to the assertion that ¢, is
compatible with the trace maps, and was established in exercise 9.5.3. Now set
w=xg9 A--- Axp with x; € gl,,,(R). The formula for A shows that ¢, (Aw) =
Aixg A - Axp) = A(tw), which gives commutativity of the left square. It
also shows that

bA@) = (=" Y (=D’ x5 ® 2@ - - @ 1y,

the sum being over al permutations v of {0, 1, ---, p}. Since
o= (_1)i+f+1xi/\xj/\x0A...Afc,-A...Afch A X

fori<j,itisreadily verified (do so!) that A(dw) = b(Aw). This proves that A
is a morphism of complexes. <

Primitive Elements 9.10.2 An element x in a coalgebra H (6.7.13) is called
primitive if A(X) = x® 1+1® x. The primitive elements form a submodule
Prim(H) of the k-module underlying H. If H is a graded coalgebraand A isa
graded map, the homogeneous components of any primitive element must be
primitive, so Prim(H) is a graded submodule of H.

We saw in exercise 7.3.8 that the homology H = H,(g; k) of any Lie age-
bra g is a graded coalgebra with coproduct A: H —H ® H induced by the
diagonal g— g X g. When g is the Lie algebra gl(R) = Ugl,,(R), we are go-
ing to prove in 9.10.10 that Prim H;(g;: k) = HC;_1(R).

Thefirst step in the proof is to recall from exercise 7.7.6 that any Lie group g
actson A"g by the formula [x1 A - AXxy, g1 =D X1 A AlXi8IA - Axy.
This makes the Chevalley-Eilenberg complex A*g into a chain complex of
right g-modules, and g acts trivially on H,(g; k) = H,(A*g), again by exercise
7.7.6. Applying this to gl,,(R), we observe that A*gl,,(R) is a chain complex
of modules over gl,, (R) and hence over the simple Lie algebra s, = s, (k) of
matrices over k with trace 0 (7.1.3, 7.8. 1). Therefore we may take coinvariants
to form the chain complex Hy(sl,,; A*gl,, (R)).

Proposition 9.10.3 Taking coinvariants gives a quasi-isomorphism of com-
plexes

A*gl, (R) = Hy(sln; A*gl,(R)).

Proof Weylis Theorem 7.8.11 states that, like every finite-dimensiona sl,,-
module, A"gl,, (k) is adirect sum of simple modules. As R is a free k-module,
each A"gl,, (R) = A"gl,, (k) ® R is adso adirect sum of simple modules. Write
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Q" for the direct sum of the smple modules on which sl,, acts non-trivialy,
so that A*gl,,,(R) = Q* @ Ho(slm; A*gl,,(R)) as an sl,-module complex. As
sl actstrividly on the homology of A*gl,,(R) by exercise 7.7.6, the complex
Q* hasto be acyclic, proving the proposition. 0

Corollary 9.10.4 If m> n the maps H,(gl,,(R); k) => HC,_1(R) are split
surjections.

Proof Let e;;(r) denote the matrix which is rin the (i, j) spot and zero
elsewhere. Exercise 9.5.4 showed that if we set

w=ow(r, -, m)=epr) Aesr) N Aep 1n(ra—1) A en1(ra),
then w € A"gl,(R) satisfies trace(Aw) = (—1)""1r;®--- ® r,. Moreover

—dw = ep(rirp A -+ +ep(r) Aex(rar) A---
+ (=" Mena(rar) Aes(r) A - - -

Modulo coinvariants this equals —w (b(r1® --- ® ry)). Therefore w defines a
chain complex homomorphism from the trandated cyclic complex R®*/~=
(R®*+1/ ~)[—1] to Ho(sln; A*gl,(R)). As w is split by trace(k), the result
follows upon taking homology. 0

Invariant Theory Calculation 9.10.5 Let X, be the symmetric group of per-
mutations of (1, ---, n) and (sgn) the I-dimensiona X,-module on which
oeX, acts as multiplication by its signature (—1)°. If =, acts on V®" by
permuting coordinates, then A"V =V®" @5 (sgn). In particular,

A"gl,(R) = (gl,,(k) ® R)®" Ry, (sgn) = (gl,,(K)®" ® R®") ®ysx, (sgn).

To compute the coinvariants, we pull a rabbit out of the ihatT of classical in-
variant theory. The action of X, on V®" gives a homomorphism from kZ, to
End( V®") = End(V) ®"; the Lie dgebra g associated (7.1.2) to the associa-
tive algebra End(V) aso acts on V®" and the action of X, is g-invariant, so
the image of kX, belongs to the invariant submodule (End(V)®")8 = (g®")8.
The classical invariant theory of [Weyl] asserts that k=, 2 (g®")8 whenever
dim(V) =n. If dim(V) = m, then g =gl,, (k)= k x sl,, (k) and the abelian
Lie algebra k acts trivially on (g®*). By Weylis Theorem (7.8.11), g®" isa
direct sum of simple al, (k)-modules, so

kZ, = (g% = @®)e, 0, m > n.
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Tensoring with the trivial g-module R®" therefore yields (for m > n):
Ho(stm: A"gl, (k) = Ho(slm; (81" ® R®") @4, (sgn))
(Ho(sln; 913" @ R®") @3, (sgn)
(kZ, ® R®") @z, (sgn).

The action of £, on kX, in the final term is by conjugation.

Corollary 9.10.6 (Stabilization) For every associative k-algebra R and every
n the following stabilization homomorphisms are isomorphisms:

Hy(gl,(R); k) = Hp(gl,11(R); K) = - - = Hy(gl(R); K).

Proof The invariant theory calculation shows that the first n + 1 terms (resp.
n terms) of the chain complex Ho(slm; A*gl,,(R)) are independent of m, as
long as m>n + 1 (resp. m > n). This yieds a surjection H,(gl,(R); k) —
Hy, (gl (R); k) and stability for m > n + 1. For the more subtle invariant
theory needed to establish stability form = n, we cite [Loday, 10.3.5]. &

Remark 9.10.7 (Loday-Quillen) It is possible to describe the obstruction to
improving the stability result to m = n — 1. If R is commutative, we have a
naturally split exact sequence

A — _
Hn(gl,_1(R); K) = Hu(gl,(R); k) —> Q1 /d Q% — 0,

The right-hand map is the composite of A.: Hp(gl,(R); k) > HC,_1(R), de-
fined in 9.10.1, and the projection HCi(R)—> Qg /dg ;. of 9.8.12. The
proof of this assertion uses dightly more invariant theory and proposition
9.10.9 below; see [LQ, 6.91. If R is not commutative, we only need to replace
Q’}J,ﬁ /dQ’}Q,% by a suitable quotient of A”"R; see [Loday, 10.3.3 and 10.3.7]
for details.

9.10.8 In order to state our next proposition, we need to introduce some stan-
dard facts about DG-coalgebras, expanding upon the discussion of graded
coalgebrasin 6.7.13 and 9.10.2.

If Vis any vector space, the exterior algebra A*(V) is a graded coalgebra
with counit £: A*(V)— A*(O) = k induced by V — 0 and coproduct

A A*(V) = AX(V X V) 2 (A*V)® (A*V)

induced by the diagona V — V x V. (Check this!) In particular, A*gisa
graded coalgebra for every Lie agebra g. Sinceg —>0andg—gx g ae
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Lie algebra maps, Ho(h; A*g) is a coalgebra for every Lie subalgebra b of
g. (Check thisl) In particular, Ho(slm(k); A*gl,.(R)) is a graded coalgebra for
each m.

A differential graded coalgebra (or DG-coalgebra) C is a graded coalgebra
endowed with a differential d making it into a chain complex in such a way
that £: C4, — k and A: C — C® C are morphisms of complexes. For example,
A*g and Ho(sly(k); A*gl, (R)) are DG-coalgebras because € and A arise
from Lie algebra homomorphisms. By the Ktinneth formula 3.6.3, A induces

amap
H(C)-H(C®O)= H,(C) ® H,(C),

making the homology of a DG-coalgebra C again into a graded coalgebra.
Moreover, if x € Cy is primitive (9.10.2), then dx € C,_1 is primitive, because

Aldx)=dAX)=dx®1+1®x)=(dx) @1+ 1® (dx).

Therefore the graded submodule Prim(C) is a chain subcomplex of C.

Proposition 9.10.9 The chain complex L, = Ho(sl(k); A*gl(R)) is a DG-
coalgebra whose primitive part Prim( L,) is the translate Cs— (R) = R®*/~
of the chain complex for cyclic homology.

Proof Recall from the discussion 9.10.5 on invariant theory that we have
L, = (KT, ® R®") &z, (sgn).

This &-module splits into a direct sum of modules, one for each conjugacy
class of elements of X,. Let U, be the conjugacy class of the cyclic permuta
tion T =(12- .. n); we first prove that Prim(L,) is (kU, ® R") Qxx, (sgn). If
o€, and r;e R, then consder the element x=o @ (r1® ... ry) of Ly
We have

A@=) (1@ ®r®.. NOWO/R(.-®r;®.."),
1,J

where the sum is over dl partitions (I,J) of {1,---,n} such that (I} =1
and o (J) = J, and where o; (resp. o) denotes the restriction of o to I (resp.
to J). (Check this!) By inspection, x is primitive if and only if ¢ admits no
nontrivia partitions (I, J), that is, if and only if o €U,.

Now X, acts on U, by conjugation, the stabilizer of © being the cyclic group
C, generated by 7 . Hence U, is isomorphic to the coset space X,/ Cy = {Cyo]}
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and k[Z,/C,] = k ®c, kE,. From this we deduce the following sequence of
isomorphisms:

Prim(L,) = (kU, ® R®") s, (sgn)
2 (k[Zn/Cn] ® R®") 15, (sgn)
= R®" ®c, (sgn)

>~ RO/ ~,

because R®" ®xc, (sgn) is the quotient of R®” by 1 —(—1)"z. Note that this
sequence of isomorphism sends the class of

w = ep(r) A en(r) A--- A eq(rp) € A"gl,(R)

to (—1)" " 1r®---®r,. We leave it as an exercise for the reader to show that
the class of dweA"‘lg[,,(R) issent to b(r1®---®ry). This identifies the
differential d on Prim(L,) with the differential b of R®*/ ~ upto asign. <

Theorem 9. 10. 10 (Loday-Quillen, Feigin-Tsygan) Let k be a field of charac-
teristic zero and R an associative k-algebra. Then

1. The restriction of trace(h) to primitive elements is an isomorphism
Prim H,(gl(R); k) = HC,_1(R).
2. H,(gl(R); k) is a graded Hopf algebra, isomorphic to the tensor product

Sym <€B HCoi-i (R)) ®k A* (EB chi<R>> :

i=1 i=0

Proof The direct sums &: gl,,(R) X gl,(R) — gl,, . ,(R) sending (X, y) to
xXOy= (g (y’> yield chain complex homomorphisms

tmn: Ho(sbn; A*gl, (R)) ® Ho(sln; A*&(R)) — Ho(8lmin; A*&+,(R)).

Because we have taken coinvariants, which allow us to move the indices
of glntn around inside ghpin+1> the Maps Mmns Hmntt, ad Umt1,n are
compatible. Taking the limit as m, n — oo yields an associative product w
on L, = Hy(sl; A*gl(R)). This makes L, into a DG-algebra as well as a
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DG-coalgebra. In fact Ly is a graded Hopf algebra (6.7.15) because the for-
mula (x,X) @ (y,y) ~&x @y, x®y)in glpin(R) X gl 1, (R) shows that
A: Ly— L.®L, is an agebra map. It follows that H.(gl(R); k) = Hx(L4)
is also a Hopf agebra.

The classification of graded-commutative Hopf algebras H, over afield & of
characteristic zero is known [MM]. If Hg =k, then H, = Sym(P.) ® A*(P,),
where P, (resp. P,) is the sum of the Prim(H;) with i even (resp. i odd). Thus
(2) implies (2). Applying this classification to L., a simple calculation (exer-
cisel) shows that Prim H, (L)< H,Prim(L,). But H,Prim(L,) = HC,_(R)
by Proposition 9.10.9. ¢

Exercise 9.10.11 (Bloch, Kassel-Loday) Use the Hochschild-Serre spectral
sequence (7.5.2) for sl c gl to show that Ha(sl2(R); k) = HC1(R).



10
The Derived Category

There are many formal similarities between homological agebra and algebraic
topology. The Dold-Kan correspondence, for example, provides a dictionary
between positive complexes and simplicial theory. The agebraic notions of
chain homotopy, mapping cones, and mapping cylinders have their historical
origins in simplicia topology.

The derived category D(A) of an abelian category is the agebraic ana-
logue of the homotopy category of topologica spaces. D(d) is obtained from
the category Ch(.A) of (cochain) complexes in two stages. First one con-
structs a quotient K(d) of Ch(d) by equating chain homotopy equivalent
maps between complexes. Then one ilocalizesT K(d) by inverting quasi-
isomorphisms via a calculus of fractions. These steps will be explained below
in sections 10.1 and 10.3. The topological analogue is given in section 10.9.

10.1 The Category K(d)

Let A be an abelian category, and consider the category Ch = Ch(d) of
cochain complexes in A. The quotient category K = K(d) of Ch is defined as
follows. The objects of K are cochain complexes (the objects of Ch) and the
morphisms of K are the chain homotopy equivalence classes of maps in Ch.
That is, Homk (A, B) is the set Homcn (A, B)/ ~ of equivalence classes of
maps in Ch. We saw in exercise 1.4.5 that K is well defined as a category and
that K is an additive category in such away that the quotient Ch(d) — K(d)
is an additive functor.

It is useful to consider categories of complexes having specia properties. If
C is any full subcategory of Ch(d), let & denote the full subcategory of K(d)
whose objects are the cochain complexesin C. X is a iquotient categoryT of C
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in the sense that
Homg (A, B) = Homgk(A, B) = Homcp(A, B)/ ~ = Hom¢(A, B)/ ~ .

If Cisclosed under & and contains the zero object, then by 1.6.2 both C and
K are additive categories and C — K is dso an additive functor.

We write K?(A), K-(d), and K+(d) for the full subcategories of K (d)
corresponding to the full subcategories Ch®,Ch~, and Ch™ of bounded,
bounded above, and bounded below cochain complexes described in section
1.1. These will be useful in section 5 below.

Of course, we could have equally well considered chain complexes in-
stead of cochain complexes when constructing K. However, the historical ori-
gins of derived categories were in Grothendieckis study of sheaf cohomology
[HartRD], and the choice to use cochains is fixed in the literature.

Having introduced the cast of categories, we turn to their properties.

Lemma 10.1.1 The cohomology H*(C) of a cochain complex C induces a
family of well-defined functors H' from the category K(d) to A.

Proof As we saw in 1.4.5, the map u*: Hi(A) — H!(B) induced by u: A —
B is independent of the chain homotopy equivalence class of u. ¢

Proposition 10.1.2 (Universal property) Let F: Ch(d) — D be any functor
that sends chain homotopy equivalences to isomorphisms. Then F factors
uniquely through K(d).

Ch(A) — D
L/
K(d)

Proof Let cyl(B) denote the mapping cylinder of the identity map of B; it
has B"@® B" '@ B" in degree n. We saw in exercise 15.4 that the inclusion
a(b) = (0, 0, b)of Binto cyl(B) is a chain homotopy equivalence with ho-
mopy inverse B(¥’, b,T b) = bi +b; Ba=idp and af ~ idcyi(p). By assump-
tion, F(a): F(B) — F(cyl(B)) is an isomorphism with inverse F(8). Now
the map o’: B — cyl(B) defined by ai(b) = (b, 0, 0) has Ba’ =idp, SO

F@) = F@F(B)F@) = F@F(B) = F(a).

Now suppose there is a chain homotopy s between two maps f,g: B — C.
Then y = (f, s,g):cyl(B)— Cis a chain complex map (exercise 15.3).
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Moreover, ya’ = f and yo = g. Hence in D we have

F(f)=Fy)F@)=Fy)F(@)=F(g).

It follows that F factors through the quotient K(A) of Ch(A). 2%

Exercise 10.1.1 Taking F to be Ch(A) — K(A), the proof shows that
o’: B — ¢cyl(B) is a chain homotopy equivalence. Use an involution on cyl(B)
to produce an explicit chain homotopy Bo’ ~ idcyi(s).

Definition 10.1.3 (Triangles in K(A)) Let u: A — B be a morphism in Ch.
Recdl from 1.5.2 that the mapping cone of u fits into an exact sequence

0— B %> cone(u) —> A[—1] — 0

in Ch. (The degree n part of cone(u) is A"t1@ B" and A"t is the degree n
part of A[- 1]; see 1.2.8.) The strict triangle on u is the triple (u, v, §) of maps
in K; this data is usualy written in the form

cone(u)

Now consider three fixed cochain complexes A, B and C. Suppose we are
given three maps u: A — B, v: B — C, and w: C — A[-1] in K. We say
that (u, v, w) is an exact triangle on (A, B, C) if it is Tisomorphici to a strict
triangle (uf, v/, 6) on ui: Ai — BI in the sense that there is a diagram of chain
complexes,

n v w
A— B — C — A[-1]

f.1 4-g Lh Lr-n

! 7

. u . 5
Al — Bi — cone(u’) — A'[—1],

commuting in K (i.e., commuting in Ch up to chain homotopy equivalences)
and such that the maps f, g, # are isomorphisms in K (i.e, chain homotopy
equivalences). If we replace u, v, and w by chain homotopy equivalent maps,
we get the same diagram in K. This alows us to think of (u, v, w) as atriangle
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in the category K. A triangle is usually written as follows:

C
v/ N

u

A - B.

Corollary 10.1.4 Given an exact triangle (u, v, w) on (A, B, C), the coho-
mology sequence

2 HA) S HB) S HC) S HT ) S
is exact. Here we have identified H?(A[—1]) and Hi+(A).

Proof For a drict triangle, this is precisely the long exact cohomology se-
guence of 1.5.2. Exactness for any exact triangle follows from this by the def-
inition of a triangle and the fact that each H' is a functor on K. <

Example 10.1.5 The endomorphisms 0 and 1 of A fit into the exact triangles

A @ A[-1] 0
v N < N
A ——>0 A A —1> A.

Indeed, cone(O) = A& A[-1] and we saw in exercise 1.5.1 that cone(l) is a
split exact complex, that is, cone( 1) isisomorphic to zero in K.

Example 10.1.6 (Rotation) If (u, Vv, w) is an exact triangle, then so are its
irotates”

Al—1] B
—u[-11/ Nw v/ N
v =w([1]
B — C and Cl+1] —— A.

To see this, we may suppose that C = cone(u). In this case, the assertions
amount to saying that the maps cone(v) — A[- 1] and B[- 11— cone(J)
are chain homotopy equivalences. The first was verified in exercises 1.5.6
and 1.5.8, and the second assertion follows from the observation that
cone(d) = cyl(—u)[—1].
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Remark 10.1.7 Given a short exact sequence 0 — A —» B —> C — 0 of
complexes, there may be no map C =5 A[-1] making (u, v, w) into an exact
triangle in K(A), even though there is a long exact cohomology sequence
begging to be seen as coming from an exact triangle (but see 10.4.9 below).
This cohomology sequence does arise from the mapping cylinder triangle

cone(u)
wy” N
A - cyl(w)

and the quasi-isomorphisms B:cyl(¥) — B and ¢: cone(u) — C of exer-
cises1.5.4 and 1.5.8.

Exercise 10.1.2 Regard the abelian groups Z/2 and Z/4 as cochain com-
plexes concentrated in degree zero, and show that the short exact sequence
0 —+Z/2—2>Z/4—1—>Z/2—> 0 cannot be made into an exact triangle (2, 1,
w)yon(Z/2,Z/4, Z/2) in the category K(A).

10.2 Triangulated Categories

The notion of triangulated category generalizes the structure that exact trian-
gles give to K(A). One should think of exact triangles as substitutes for short
exact sequences.

Suppose given a category K equipped with an automorphism T. A triangle
on an ordered triple (A, B, C) of objects of K is a triple (u, v, w) of mor-
phisms, where u: A — B, v:B — C, and w: C — T(A). A triangle is usualy
displayed as follows:

C
wy N
u
A — B
A morphism of triangles is atriple (f, g, h) forming a commutative diagram
inK:
u v w
A — B — C — TA

If le o lrr

/ ’

. u v .w
Al — B —» Ci —TA".
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Definition 10.2.1 (Verdier) An additive category K is called a triangulated
category if it is equipped with an automorphism T: K — K (called the trans-
lationfunctor) and with a distinguished family of triangles (u, v,w) (called
the exact triangles in K), which are subject to the following four axioms:

(TR1) Every morphism u: A — B can be embedded in an exact triangle
(u, v, w). If A=B and C = 0, then the triangle (id4, 0, 0) is exact.
If (u, v,w) is atriangle on (A, B, C), isomorphic to an exact triangle
(u',v', wi) on (Af, Bf, CIi), then(u, v,w) isalso exact.

u v w
A — B — C — TA
l il l l
u

/, /v, /u/ !
Al — B — C — TA

1R
R
14
R

(TR2) (Rotation). If (u, v, w) is an exact triangle on (A, B, C), then both
its irotatest (v,w,—Tu) and (=T 'w,u,v) are exact triangles on
(B, C, TA) and (T~!C, A, B), respectively.

(TR3) (Morphisms). Given two exact triangles

C c’
w/ \v and w’/ \v’

u

A — B A 2 B

with morphisms f: A — Ail, g:B — Bi such that gu =u’f, there exists
amorphism h: C — Ci so that (f, g, h) is a morphism of triangles.

u v w
A — B — C — TA

Lr le  aln Lrr

u/ !

v w
A — B — C — TA
(TR4) (The octahedral axiom). Given objects A, B, C, Ai, Bi, Ci inK, sup-

pose there are three exact triangles: (u, j,d)on (A, B, Ci); (v, X, i) on
(B, C, A); (vu, y,8)on (A, C, Bi). Then thereis a fourth exact triangle
(f.&.(THi)on(C',B', AY)

A’

apiy N

ci — B’
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such that in the following octahedron we have (1) the four exact triangles
form four of the faces; (2) the remaining four faces commute (that is,a =
Sf: ¢’ Bi »>TAandx=gy:C —» B’ — Ai); 3)yv=1j:B—> B
and (4) us =ig: Bi —B.

Cl

Exercise 10.2.1 If (u, v, w) is an exact triangle, show that the compositions
vu, wv, and (Tu)w are zero in K. Hint: Compare the triangles (id4, 0, 0) and
(u,v, w).

Exercise 10.2.2 (5-lemma) If (F, g, h) isamorphism of exact triangles, and
both ¥ and g are isomorphisms, show that k is also an isomorphism.

A — B — C — TA

Ls le  aln lrr

Al — B — C' — TA

Remark 10.2.2 Every exact triargle iS determined up to isrmorphism by any
one of its maps. Indeed, (TR3) gives a morphism between any two exact tri-

angles (u, v, w) on (A, B, C) and (u, v/, w’) on (A, B, Ci), and the 5-lemma
shows that it is an isomorphism. In particular, the data of the octahedral axiom
are completely determined by the two maps A —» B — C.

Exegesis 10.2.3 The octahehral axiom (TR4) is sufficiently confusing that it
is worth giving another visualization of this axiom, following [BBD]. Write
the triangles as straight lines (ignoring the morphism C — T(A)), and form
the diagram
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/\

/ \ / \

) / \ N

The octahedral axiom states that the three lines through A, B, and C determine
the fourth line through (Ci, Bi, Af). This visudization omits the identity 8 =

8f.
Proposition 10.2.4 K(A) is a triangulated category.

Proof The trandation TA = A[-1] is defined in 1.2.8. We have aready seen
that axioms (TR1) and (TR2) hold. For (TR3) we may suppose that C =
cong(u) and Ci = cone(u’); the map h is given by the naturality of the map-
ping cone construction.

It remains to check the octahedral axiom (TR4). For this we may assume
that the given triangles are strict, that is, that Ci = cone(u), Ai = cone(u), and
Bi = cone(vu). Define f* from (Ci)T = B*"@ A to(B")" = C* @ A"H
by f"(b, @) = (v(b), a), and define g”" from (Bi)T = C"@® A" lto (AI)T =
C"@ B"t by g"(c, a) = (c, u(a)). Manifestly, these are chain maps, 8 = 8f
and x = gy. Since the degree n part of cone(f) is (CT @ AT+) & (B"*'g
A"2) thereis anatural inclusion y of AT into cone(f) such that the following
diagram of chain complexes commutes.

, .8 s (T
¢'— Bl — A — C'[-1]

I I Ly I
ci —f> Bi —» cone(f) — C'[-1]

To see that y is a chain homotopy equivalence, define ¢: cone(f) — Ai by
¢(c,an+1,b, ans2) = (c, b + ula,4+1)). We leave it to the reader to check that
@ isachain map, that ¢y =id4 and that y ¢ is chain homotopic to the identity
map on cone(f). (Exercise!) This shows that (f, g,(Tj)i) is an exact triangle,
because it is isomorphic to the strict triangle of f. <

Corollary 10.2.5 Let C he a full subcategory of Ch(A) and X its correspond-
ing quotient category. Suppose that C is an additive category and is closed
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under translation and the formation of mapping cones. Then K is a triangu-
lated category.
In particular; Kb(4), K-(d), and K+(d) are triangulated categories.

Definition 10.2.6 A morphism F: Ki — K of triangulated categories is an
additive functor that commutes with the trandation functor T and sends exact
triangles to exact triangles. There is a category of triangulated categories and
their morphisms. We say that K® isatriangulated subcategory of K if Ki isa
full subcategory of K, the inclusion is a morphism of triangulated categories,
and if every exact triangle in K is exact in Ki.

For example, K, K+, and K~ are triangulated subcategories of K(d).
More generadly, K is atriangulated subcategory of K in the above corollary.

Definition 10.2.7 Let K be a triangulated category and .4 an abelian cate-
gory. An additive functor H: K — A is caled a (covariant) cohomological
functor if whenever (u, v, w) is an exact triangle on (A, B, C) the long se-
quence

. L*)H(TIA)”ﬂH(TlB)—gH(TlC)ﬂ)H(T“HA)L*) o

isexact in A.  We often write H(A) for H(T'A) and HY(A) for H(A) be-
cause, as we saw in 10.1.1, the zero’” conomology H?: K(d) — Aisthe
eponymous example of a cohomological functor. Here is another important
cohomologica functor:

Example 10.2.8 (Horn) If X is an object of a triangulated category K, then

Homk (X, —) is a cohomologica functor from K to Ab. To see this, we have

to see that for every exact triangle (u, v,w)on (A, B, C) that the sequence
Homg(X, A) —> Homk(X, B) — Homk(X,C)

is exact; exactness elsewhere will follow from (TR2). The composition is zero
since vu = 0. Given g e Homg (X, B) such that vg = 0 we apply (TR3) and
(TR2) to

X = X — 0 —>TX

3| f le lo alrs
U v w

A— B — C — TA

and conclude that there exists an f € Homg (X, A) so that uf = g.
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Exercise 10.2.3 If K is triangulated, show that the opposite category K°
is also triangulated. A covariant cohomological functor H from K°P to A is
sometimes called a contravariant cohomological functor on K. If Y isany
object of K, show that Homk(—, Y) is a contravariant cohomological functor
on K.

Exercise 10.2.4 Let AZ be the category of graded objectsin A, a morphism
from A = {A]] to B = { B,} being a family of morphisms f,: A, = B,. De-
fine TA to be the trandated graded object A[—1}, and call (u, v,w) an exact
triangle on (A, B, C) if for all n the sequence

u v w u
Ay — By —> Cy —> Ap—1 — By

is exact. Show that axioms (TR1) and (TR2) hold, but that (TR3) fails for
A=Ab. If A is the category of vector spaces over a field, show that AZ is
a triangulated category, and that cohomology H*: K(d) — .AZ is a morphism
of triangulated categories.

Exercise 10.2.5 Let H be a cohomological functor on a triangulated category
K, and let Ky denote the full subcategory of K consisting of those objects
A such that Hi(A) = 0 for all i. Show that Ky is a triangulated subcategory
of K.

Exercise 10.2.6 (Verdier) Show that every commutative square on the left in
the diagram below can be completed to the diagram on the right, in which all
the rows and columns are exact triangles and all the squares commute, except
the one marked “~” which anticommutes. Hint: Use (TR1) to construct every-
thing except the third column, and construct an exact triangle on (A, B’, D).
Then use the octahedral axiom to construct exact triangles on (C, D, BT),
(AT D, Ci), and findly (Ci, CT, C).

A — B A — B —j> C —k> T(A)
ul ! ul ! ! Lru
Ai — B A — Bi — C — T(AD)
il ! ! i
Al — Bl — CT — T(AT)
ol ! [

Ti Tj Tk 2
T(A) — T(B) — T(C) —T°(A)
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10.3 Localization and the Calculus of Fractions

The derived category D(d) is defined to be the localization Q~'K(.A) of
category K(d) at the collection Q of quasi-isomorphisms, in the sense of the
following definition.

Definition 10.3.1 Let S be a collection of morphisms in a category C. A
localization of C with respeci .o S is a category $~'C, together with a functor
q:C — S~IC such that

1. q(s) is a isomorphism in S™IC for every seS.

2. Any functor F: C — D such that F(s) is an isomorphism for al s€S§
factors in a unique way through g. (It follows that $~!C is unique up to
equivaence.)

Examples 10.3.2

1. Let S bethe collection of chain homotopy equivaencesin Ch(d) . The
universal property 10.1.2 for Ch(d) — K(d) showsthat K(d) isthe
localization $~'Ch(A). B

2. Let @ be the collection of al quasi-isomorphisms in Ch(d). Since @
contains the S of part (1), it follows that

07 'Ch(A) = 07 1(57ICh(A) = 07'K(A) =D(A).

Therefore we could have defined the derived category to be the localization
0~ 1Ch(A). However, in order to prove that 0~ !Ch(A) exists we must first
prove that Q'K (A) exists, by giving an explicit description of the mor-
phisms.

Set-Theoretic Remark 10.3.3 If C is a small category, every localization
S~1C of C exists. (Add inverses to the presentation of C by generators and
relations; see [MacH, 11.81.) It is also not hard to see that 5~!C exists when
the class S is a set. However, when the class S is not a set, the existence of
localizations is a delicate set-theoretic question.

The standard references [Verd], [HarRD], [GZ] al ignore these set-theoretic
problems. Some adherents of the Grothendieck school avoid these difficulties
by imagining the existence of a larger universe in which C is small and con-
structing the localization in that universe. Nevertheless, the issue of whether
or not §~IC exists in our universe is important to other schools of thought,
and in particular to topologists who need to localize with respect to homology
theories; see [A, I11. 14].
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In this section we shall consider a specia case in which localizations S~1C
may be constructed within our universe, the case in which § is a ilocaly small
multiplicative system.T This is due to the presence of a kind of calculus of
fractions.

In section 10.4 we will see that the multiplicative system Q of quasi-
isomorphisms in K(d) is localy smal when A is either mod-R or
Sheaves(X). This will prove that D(d) exists within our universe. We will
aso see that if A has enough injectives (resp. projectives), the existence of
Cartan-Eilenberg resolutions 5.7.1 alows us to forget about the set-theoretical
difficulties in asserting that D (.A) exists (resp. that D™ (A) exists).

Definition 10.3.4 A collection § of morphisms in a category C is caled a
multiplicative system in C if it satisfies the following three self-dual axioms:

1. § is closed under composition (if s,t €S are composable, then st € S)
and contains all identity morphisms (idx € S for al objects X in C).

2. (Ore condition) If t: Z— Y isin S, then for every g: X — Y in C there
is a commutative diagram igs = ¢f” in Cwith s in §.

f
W — Z

sl X
X —g> Y
(The dlogan is “t~1g= fs~! for some f and 5.”) Moreover, the sym-
metric statement (whose slogan is “fs~!=¢"1g for some r and g”) is
also valid.
3. (Cancdllation) If f,g: X — Y are paralel morphisms in C, then the fol-
lowing two conditions are equivalent:

(8 sf =sg for some s€ S with source Y.
(b) ft=gtfor some t €S with target X.

Prototype 10.3.5 (Localizations of rings) An associative ring R with unit
may be considered as an additive category R with one object - viaR =
Endgr(-). Let S be a subset of R closed under muiltiplication and containing
1. If R is commutative, or more generdly if S isin the center of R, then § is
dways a multiplicative system in R; the usual ring of fractions S~!R isaso
the localization $~!R of the category R.

If § is not central, then S is a multiplicative system in R if and only if
S is a 12-sided denominator set in R in the sense of [Faith]. The classical
ring of fractions S™!R is easy to construct in this case, each element being
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represented as either fs~'ort~!g(f,ge Rand s,t€S), and again S™!R is
the localization of the category R.

The construction of the ring of fractions S~!R serves as the prototype for
the construction of the localization S~'C. We call achain in C of the form

fshx <S—X1 —f—> Y

a (left) ifractiont ifsisin S. Cal fs~!equivalent to X <L—X2—3>Yjust in
case thereis afraction X <« X3 — Y fitting into a commutative diagram in C:

X1
W TN
X «— X3 — Y.

Nl e
X3

It is easy to see that thisis an equivaence relation. Write Homg(X, Y) for the
family of equivalence classes of such fractions. Unfortunately, there is no a
priori reason for this to be a set, unless Sis ilocaly smdlT in the following
sense.

Set-Theoretic Considerations 10.3.6 A multiplicative system Sis called lo-
cally small (on the I€eft) if for each X there exists a set Sy of morphismsin S,
al having target X, such that for every X;1— X in Sthereisamap X, — X,
in C so that the composite X; — X1 — X isin Sx.

If Sislocdly smal, then Homg(X,Y) is a set for every X and Y. To see
this, we make Sy the objects of a small category, a morphism from X =5 X
to X3 LN X beingamap X; —» X;inC sothattis X, — X -5 X.The Ore
condition says that by enlarging Sx slightly we can make it a filtered category
(2.6.13). There is a functor Hom¢(—, Y) from Sy to Sets sending s to the set
of al fractions fs—l, and Homg(X, Y) is the colimit of this functor.

Composition of fractions is defined as follows. To compose X « Xi Ly
with Y «— Yi — Z we use the @re condition to find adiagram

f

W —>Y — Z
Ls i

X — x 5 v
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with s in S; the composite is the class of the fraction X <« W — Z ir
Homg(X, Z). The sogan for the Ore condition, t~!g = fs~!, is a symbolic
description of composition. It is not hard to see that the equivaence clas:
of the composite is independent of the choice of Xi and Y1, so that we have
defined a pairing

Homg(X, Y) X Homg(Y, Z) > Homgs(X, Z).

(Check thigl) It is clear from the construction that composition is associative
and that X = X = X is a 2-sided identity element. Hence the Homg(X, Y) (i
they are sets) form the morphisms of a category having the same objects as C
it will be our localization $~1C.

Gabriel-Zisman Theorem 10.3.7 ([GZ]) Let S be a locally small multiplica
tive system of morphisms in a category C. Then the category S~!C constructec
above exists and is a localization of C with respect to S. The universal functo

g: C — S~IC sends f: X — Y to the sequence X = X —£+ Y.

Proof To see that q: C — S~!C is a functor, observe that the compositior

of X=X L yady =y Zisx =x 25 Z since we can choost
t=idyand f = g. IfsisinS, thenq(s) isanisomorphism because the com
position of X = X —>Y andY «— X =X isX = X = X (take W = X)
Finally, suppose that F: C — D is another functor sending S to isomorphisms
Define S~ F:5~1C — D by sending the fraction f s~!to F(f) F(s)-6. Giver
g and ¢, the equality gs =tf in C shows that F(g)F(s) = F(t)F(f),ol
F('g)=F(fs™";itfollowsthat S~!F respects composition and is a func
tor. It isclear that F = (S~!F)oq and that this factorization is unique. C

Corollary 10.3.8 S~!'C can be constructed using equivalence classes o

iright fractionsT ¢~ !g:X Eovi Loy, provided that S is Tlocally smal
on the rightT (the dual notion to locally small, involving maps Y — Yi in S).

Proof S$° is a multiplicative system in C°P. Since C° — (§°P)~!CP isa
localization, so isits dual C — [(S°P)~1(C°P)]°P. But this is constructed using
the fractions t ~!g. C

Corollary 10.3.9 Two parallel maps f,g: X — Y in C become identijed in
S~ICifand only if sf = sg for some s: X3 — X in S.
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Exercise 10.3.1

1. If Z isazero object (resp. an initial object, a terminal object) in C, show
that q(Z) is a zero object (resp. an initial object, a termina object) in
s-le.

2. If the product X x Y exists in C, show that g(X x Y) = q(X) x q(Y) in
s-Ic.

Corollary 10.3.10 Suppose that C has a zero object. Then for every X in C:

q(X) =0in S~!C« S contains the zero map X 2 X

Proof Since ¢ (0) is a zero object in S~1C, q(x) = 0 if and only if the paralel
maps 0, idx: X — X become identified in S~!IC, that is, iff 0 = s0 = 5 for
some s. <

Corollary 10.3.11 IfC is an additive category, then so is S7!C, and g is an
additive functor.

Proof If C is an additive category, we can add fractions from X to Y as
follows. Given fractions flsl~1 and fas5 l,we use the @re condition to find
ans Xo— X inSand ff, f3: X2~ Y so that fys;7'~ fis~Vand f,5," ~
fs7 1 the sum (f] + f3)s~!is well defined up to equivalence. (Check this!)
Since ¢(X xY)= q(X) x q(Y) in S~C (exercise 10.3.1), it follows that
S~1¢ is an additive category (A.4.1) and that g is an additive functor. <&

It is often useful to compare the localizations of subcategories with $~1C.
For this we introduce the following definition.

Definition 10.3.12 (Localizing subcategories) Let B be a full subcategory of
C, and let S be a locally smal multiplicative system in C whose restriction
SN Bto Bisaso amultiplicative system. B is called a localizing subcategory
(for §) if it satisfies any of the equivaent conditions of the following lemma.
For legibility, we shall write S~!B for (SN B)~!B.

Lemma 10.3.13 The following conditions are equivalent:

1. The natural functor S~'B—S~1C is fully faithful. That is, it identifies
S~ 1B with the full subcategory of $~1C on the objects of B.
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2. Whenever C — B is a morphism in S with B in B, there is a morphism
Bi — Cin C with B”in B such that the composite Bi — BisinS.

3. Whenever B — C is a morphism in § with B in B, there is a morphism
C — B’ in C with B’ in B such that the composite B — B’ is in S.

Proof (2) implies that the maps Homgnp(B, Bi) — Homg(B, Bi) are bijec-
tive for each B and Bi in B (check this!), which is equivalent to (1). Con-
versely, if (1) holds, then the fraction s~'s: B «— C —> B must be equiva-
lent to B = B = B, which gives (2). The equivalence of (1) and (3) is dua to
this. 0

Corollary 10.3.14 If B is a localizing subcategory of C, and for every object
C in C there is a morphism C — B in S with B in B, then S~!Bx=s~1¢.
Suppose in addition that S N B consists of isomorphisms. Then

B=s18=s7c.

Example 10.3.15 Assume D(d) exists. The subcategories K?(.A4), K+(d),
and K-(d) of K(d) are localizing for Q (check this). Thus their localizations
exist and are the full subcategories D?(A), Dt (A), and D~ (.A) of D(d) whose
objects are the cochain complexes which are bounded, bounded below, and
bounded above, respectively.

Example 10.3.16 Let S be a multiplicative system in a ring, and let X be
the collection of al morphisms A — B in mod-R such that S~'A —» $~!'B
is an isomorphism. It is not hard to see that X' is a multiplicative system in
mod-R. The subcategory mod-S~!R is localizing, because the natural map
A —S~!Aisin X for every R-module A. Since ¥ Nmod—S~!R consists of
isomorphisms, we therefore have

mod-S~'R = ¥ 'mod-R.

Exercise 10.3.2 (Serre subcategories) Let A be an abelian category. An
abelian subcategory B is cdled a Serre subcategory if it is closed under sub-
objects, quotients, and extensions. Suppose that B is a Serre subcategory of A,
and let ¥ be the family of al morphisms f in A with ker(f) and coker(f)
inB.

1. Show that X is a multiplicative system in A. We write d/t? for the
localization £ ~! A (provided that it exists).
2. Show that q(X) =0 in A/B if and only if X isin .
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3. Assume that B is a small category, and show that X' is locally small. This
is one case in which A/B =X~! A exists. More generaly, A/t3 exists
whenever A iswell-powered, that is, whenever the family of subobjects
of any object of A isaset; see [Swan, pp.44ff].

4. Show that .A/B is an abelian category, and that g: A — A/B is an exact
functor.

5. Let S be a multiplicative system in a ring R, and let modsR denote
the full subcategory of R-modules A such that S~!A20. Show that
modsR isaSerre subcategory of mod-R. Conclude that mod-S~!R=
mod-R/modsR.

10.4 The Derived Category

In this section we show that D(A) is a triangulated category and that D (A)
is determined by maps between bounded below complexes of injectives. We
also show that D(A) exists within our universe, at least if A ismod-R or
Sheaves(X) .

For this we generdize dightly. Let K be a triangulated category. The system
S arising from a cohomologica functor H: K — A is the collection of al
morphisms s in K such that Hi(s) is an isomorphism for all integers i. For
example, the quasi-isomorphisms Q arise from the cohomological functor H°.

Proposition 10.4.1 If S arises from a cohomological functor, then

I. S is a multiplicative system.
2.5~ 'K is a triangulated category, and K — S~!K is a morphism of tri-
angulated categories (in any universe containing s1 K).

Proof We first show that the system S is multiplicative (10.3.4). Axiom (1)
is trivial. To prove (2),letf: X — Y and s Z— Y be given. Embed s in an
exact triangle (s, u, ) on(Z, Y, C) using (TR1). Complete uf: X — C into
an exact triangle (t, uf, v) on (W, X, C). By axiom (TR3) there is a morphism
g such that

t uf v
W — X — C — W[-1]
gl Ls I Lre
s u I}
Z — Y — C — ZI-1}

is a morphism of triangles. If H*(s) is a isomorphism, then H*(C) = O.
Applying this to the long exact sequence of the other triangle, we see that
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H*(t) is dso an isomorphism. The symmetric assertion may be proven simi-
larly, or by appea to K°P — A°P,

To verify axiom (3), we consider the differenceh =f — g. Givens. Y — Y’
in Swith sf = sg, embed s in an exact triangle (u, s, §) on (Z, Y, Yi). Note
that H*(Z) = 0. Since Homg (X, —) is a cohomological functor (by 10.2.8),

Homk (X, Z) — Homgk (X, Y) — Homgk (X, ¥’)

is exact. Since s(f —0) =0, thereisag: X — Z in K such that f —g= ug.
Embed g in an exact triangle (z, g, w) on (Xi, X, Z). Since gt =0, (f —g)t =
ugt = 0, whence ft=gt. And since H*(Z) = 0, the long exact sequence for
H shows that H*(X’y= H*(X), that is, t € S. The other implication of axiom
(3) is analogous and may be deduced from the above by appea to K — AP,

Now suppose that S™!'K exists. The formula T (fs~ )= T(f)T(s)"! de-
fines a trandation functor T on S1K. To show that S~'K is triangulated,
we need to define exact triangles. Given usl_lt A — B, vs{': B— C, and
ws_{lz C « Ci — T(A), the Ore condition for S yields morphisms¢;: Al — A
andt: Bi —BinSandui: Ai — Bi, v': Bl — Ci inC sothat usl_lg tzu’tl_1
and v;vzlz S3U,t:/:l. We say that (usl_l,vsz‘l,ws;') is an exact triangle in
S7IK just in case (uf, v/, w) is an exact triangle in K. The verification that
S~IK is triangulated is left to the reader as an exercise, being straightforward
but lengthy; one uses the fact that Homg(X, Y) may aso be caculated using
fractions of the form ¢~!g. <

Corollary 10.4.2 (Universal property) Let F: K — L be a morphism of tri-
angulated categories such that F(s) is an isomorphism for all s in S, where
S arises from a cohomological functor. Since q: K — S~'K is a localization,
there is a unique functor Fi: S~!K — L such that F = Fi o q. Infact, F'is a
morphism of triangulated categories.

Corollary 10.4.3 D(d), D?(A), D+(d) and D~ (A) are triangulated cate-
gories (in any universe containing them).

Proposition 10.4.4 Let R be a ring. Then D(d) exists and is a triangulated
category if A is mod-R, or either of
« Presheaves(X), presheaves of R-modules on a topological space X, or

« Sheaves(X), sheaves of R-modules on a topological space X.

Proof We have to prove that the multiplicative system Q is locdly small
(10.3.6). Given afixed cochain complex of R-modules A, choose an infinite
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cardinal number «larger than the cardinality of the sets underlying the Ai and
R. Call a cochain complex B petite if its underlying sets have cardindity <«;
there is a set of isomorphism classes of petite cochain complexes, hence a set
Sx of isomorphism classes of quasi-isomorphisms Ai — A with Al petite.

Given a quasi-isomorphism B — A, it suffices to show that B contains a
petite subcomplex Bi quasi-isomorphic to A. Since H*(A) has cardindity
<k, there is a petite subcomplex By of B such that the map f: H*(Bg) —
H*(A) is onto. Since ker(fy) has cardinaity <«,we can enlarge By to a
petite subcomplex By such that ker( f) vanishes in H*(By). Inductively, we
can construct an increasing sequence of petite subcomplexes B, of B such that
the kernel of H*(B,)-—> H*(A) vanishes in H*(B,+1). But then their union
Bi = U B, isapetite subcomplex of B with

H*(B")=lim H*(By) = H*(A).

The proof for presheaves is identical, except that « must bound the number
of open subsets U as well as the cardinality of A(U) for every open subset
U of X. The proof for sheaves is similar, using the following three additional
facts, which may be found in [Hart] or [Gode]: (1) if « bounds card A(U)
for al U and the number of such U, then «adso bounds the cardinality of
the stalks A, for xeX (2.3.12); (2) amap B — Ais a quasi-isomorphism in
Sheaves(X) iff every map of stalks By — A, is a quasi-isomorphism; and (3)
for every directed system of sheaves we have H*(l_lg} B,,) = li_r)nH*(B,,). <&

Remark 10.4.5 (Gabber) The proof shows that D(A) exists within our uni-
verse for every well-powered abelian category A that satisfies (AB5) and has
a set of generators.

We conclude with a discussion of the derived category D+(d). Assuming
that .4 has enough injectives and we are willing to always pass to complexes
of injectives, there is no need to leave the homotopy category K+(d) . In
particular, D+(d) will exist in our universe even if D(d) may not.

Lemma 10.4.6 Let Y be a bounded below cochain complex of injectives.
Every quasi-isomorphism t: Y — Z of complexes is a split injection in K(d) -

Proof The mapping cone cone(t) = T(Y) & Z is exact (1.5.4), and there is a
natural map ¢: cone(t) — T(Y). The Comparison Theorem of 2.3.7 (or rather
its proof; see 2.2.6) shows that ¢ is null-homotopic, say, by a chain homotopy
v =(k, 9 from T(Y) @ Zto Y. tne first coordinate of the equation —y =
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o(y, z) = (vd + dv)(y, z) yields the eguation
y = (kdy + sty — dky) + (dsz — sdz).

Thus ds = sd (i.e, s is a morphism of complexes) and st =idy + dk — kd,
that is, k is a chain homotopy equivalence sz >~ idy. Hence st =idy in K+(A).
<

Corollary 10.4.7 If | is a bounded below cochain complex of injectives, then
Homp4)(X, I) = Homg (X, I)

for every X. Dually, if P is a bounded above cochain complex of projectives,
then

Homp4)(P, X) = Homg4)(P, X).

Proof We prove the assertion for Y = I, using the notation of the lemma. Ev-
ery right fraction t—1g: X %> Z <~ Y is equivalent to sg = (st)t~'g: X —
Y. Conversdly, if two paradld arrows f,g: X — Y in K(d) become identified
in D(d) = Q~1K(A), then tf = tg for some quasi-isomorphism t: Y — Z by
10.3.9, which implies that f = stf = stg = g in K(d). <&

Exercise 10.4.1 In the situation of the lemma, show that (tk, 1): cone(t) —
Z induces an isomorphism Z =Y & cone(t) in K(d).

Theorem 10.4.8 Suppose that .4 has enough injectives. Then D+(d) exists in
our universe because it is equivalent to the full subcategory K*(Z) of K+(d)
whose objects are bounded below cochain complexes of injectives

DY(A) = KT (D).

Dually, if A has enoughprojectives, then the localization D~ (A) of K- (d)
exists and is equivalent to the full subcategory K-(P) of bounded above
cochain complexes of projectives in K—(A) :

D™ (A) =K~ (P).

Proof Recall from 5.7.2 that every X in Ch™(A) has a Cartan-Eilenberg reso-
lution X — I with Tot(Z) in K*(Z); since X is bounded below, thisis a quasi-
isomorphism (exercise 5.7.1). If Y — X is a quasi-isomorphism, then so is
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Y — Tot(2); by 10.3.13(3), K*(Z) is a localizing subcategory of K*(.A). This
proves that D+(d) = S~'K*(Z), and by 10.3.14 it suffices to show that every
quasi-isomorphism in K*(Z) is an isomorphism. Let Y and X be bounded be-
low cochain complexes of injectives and t: Y — X a quasi-isomorphism. By
lemma 10.4.6, thereisamap s: X — Y so that st =idy in K*(A). Interchang-
ing theroles of X and Y, s and t, we see that us = idx for some u. Hencer is
an isomorphism in K+(Z) with t~1=s.

Dudly, if A has enough projectives, then .A°P has enough injectives and
D~ (A) = DT (A%)P = K+(PP)P = K-(P). 2

Example 10.4.9 Every short exact sequence 0 — A —» B —> C — 0 of
cochain complexes fits into an exact triangle in D(d), isomorphic to the strict
triangle on u. Indeed, the quasi-isomorphism ¢: cone(u) — C of 1.5.8 alows
us to form the exact triangle (u,v, 8¢~ ') on (A, B, C). This construction
should be contrasted with the observation in 10.1.7 that there may be no simi-
lar exact triangle (i, v, w) in K(d).

Note that the construction of D(d) implies the following two useful criteria.
A chain complex X is isomorphic to 0 in D(d) iff it is exact. A morphism
f: X = Y in Ch(d) becomes the zero map in D(d) iff there is a quasi-
isomorphism s: Y — Yi such that sf is null homotopic (chain homotopic to
zero). The following exercise shows the subtlety of being zero.

Exercise 10.4.2 Give examples of maps f, gin Ch{A) such that (1) f =
0 in D(d), but f is not null homotopic, and (2) g induces the zero map

on cohomology, but g # 0 in D(d). Hint: For (2) try X: 0 7575 0,
Y07 —57/3-0,g=(1,2).

Exercise 10.4.3 (Kg(A) and Da(d)) Let B be a Serre subcategory of A, and
let #: A— A/B be the quotient map constructed in exercise 10.3.2.

1. Show that H = H%: K(d) — A — .A/Bis acohomologica functor,
so that Ky (.A) is atriangulated category by exercise 10.2.5. The notation
Kp(A) is often used for Ky (.A), because of the description in part (2).

2. Show that X isin Kp(.A) iff the conomology Hi(X) isin B for al i.

3. Show that Kg(A) is alocdizing subcategory of K(d), and conclude that
itslocalization Da(d) isatriangulated subcategory of D(d) (10.2.6).

4. Suppose that B has enough injectives and that every injective object of
B is aso injective in A. Show that there is an equivalence D (B) =
D (A).
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Exercise 10.4.4 (Change of Universe) This is a continuation of the previ-
ous exercise. Suppose that our universe is contained in a larger universe U,
and that mod-R and Sheaves(X) are smal categories in U.Let MOD-R
and SHEAVES(X) denote the categories of modules and sheaves in U,
respectively. Show that mod-R and Sheaves(X) are Serre subcategories
of MOD-R and SHEAVES(X), respectively. Conclude that D(mod-R) =
Dmod-—g(MOD-R) and D(Sheaves(X)) = Dspeaves(x)(SHEAVES(X)).

Exercise 10.4.5 Here is a construction of D(d) when 4 is mod-R, valid
whenever A has enough projectives and satisfies (AB5). It is based on the
construction of CW spectra in algebraic topology [LMS]. Call a chain complex
C cellular if it is the increasing union of subcomplexes C,, with Cp = 0, such
that each quotient C,/C,_1 is a complex of projectives with all differentials
zero. Let Ky denote the full subcategory of K(d) consisting of cellular
complexes. Show that

1. For every X there is a quasi-isomorphism C — X with C cdlular.

2. If Cis cdlular and X is acyclic, then every map C — X is null-
homotopic.

3. If Ciscdlular and f: X — Y is a quasi-isomorphism, then

e :HomK(A)(C, X)= HomK(A)(C, Y).

4. (Whiteheadis Theorem) If f:C — D is a quasi-isomorphism of cellular
complexes, then f is a homotopy equivalence, that is, C = D in K(d).

5. Keeii is a localizing triangulated subcategory of K(d).

6. The natural map is an equivalence: K= D(d).

Exercise 10.4.6 Let R be a noetherian ring, and let M(R) denote the category
of all finitely generated R-modules. Let Dy ( R) denote the full subcategory of
D(mod-R) consisting of complexes A whose cohomology modules Hi(A) are
al finitely generated, that is, the category Dmz)(mod—R) of exercise 10.4.3.
Show that Dy (R) is a triangulated category and that there is an equivalence
D~ (M(R))= D,(R). Hint: M(R) is a Serre subcategory of mod-R (exer-
cise 10.3.2).

10.5 Derived Functors

There is a category of triangulated categories; a morphism F: K — Ki of
triangulated categories is a (covariant) additive functor that commutes with the
trandation functor T and sends exact triangles to exact triangles. Morphisms
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are sometimes called covuriant 8-functors; amorphism K°P — Ki is of course
a contravariant d-functor.

For example, suppose given an additive functor F: A — B between two
abelian categories. Since F preserves chain homotopy equivalences, it extends
to additive functors Ch(d) — Ch(B) and K(d) — K(B). Since F commutes
with trandation of chain complexes, it even preserves mapping cones and ex-
act triangles. Thus F: K(d) — K(B) isamorphism of triangulated categories.

We would like to extend F to a functor D(d) — D(D). If Fzd — Bis
exact, this is easy. However, if F is not exact, then the functor K(d) — K(B)
will not preserve quasi-isomorphisms, and this may not be possible. The thing
to expect is that if F is left or right exact, then the derived functors of F will
be needed to extend something like the hyper-derived functors of F.

Our experience in Chapter 5, section 7 tells us that the right hyper-derived
functors R F work best if we restrict attention to bounded below cochain
complexes. With this in mind, let K denote K+(d) or any other localizing
triangulated subcategory of K(d), and let D denote the full subcategory of the
derived category D(d) corresponding to K.

Definition 10.51 Let F: K — K(B) be a morphism of triangulated cate-
gories. A (total) right derived functor of F on K is a morphism RF: D —
D(B) of triangulated categories, together with a naturd transformation & from
g F: K— K(B) = D(B) to (RF)g: K — D — D(B) which is universa in
the sense that if G: D — D(B) is another morphism equipped with a natura
transformation ¢ :q F = Gq, then there exists a unique natural transformation
n:RF= G sothat {a =nq4 0 &4 for every AinD.

This universal property guarantees that if RF exists, then it is unique up to
natural isomorphism, and that if Ki ¢ K, then there is a natural transformation
from the right derived functor RiF on Di to the restriction of RF to Di. If there
is a chance of confusion, we will write R F,R* F, Rg F, and so on for the
derived functors of F onK?(A4), K+(d), Ka(A),etc.

Similarly, a (total) left derived functor of F is a morphism LF: D — D(B)
together with a natural transformation §: (L F)q = g F satisfying the dual uni-
versal property (G factors through n: G = LF). Since LF is R(#°P)°P, where
FoP: K — K(B°P), we can trandate any statement about RF into a dua
statement about LF.

Exact Functors 10.5.2 If F. A — B is an exact functor, F preserves quasi-
isomorphisms. Hence F extends trividly to F: D(d) — D(B). In effect, Fis
its own left and derived functor. The following two examples generdlize this
observation.
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Example 10.5.3 Let KT(Z) denote the triangulated category of bounded be-
low complexes of injectives. We saw in 10.4.8 that every quasi-isomorphism
in K+ (2) is an isomorphism, so K*(Z) is isomorphic to its derived category
D*(Z). The functor gFg~!: D™ (Z) = K+(2) > K+(B) - DT(B) satisfies
g F=(qFq g, so it is both the left and right total derived functor of F.

Similarly, for the category K~ (P) of bounded above cochain complexes of
projectives, we have K~ (P)= D-(P). Again, g F¢g~!is both the left and right
derived functor of F.

Definition 10.5.4 Let F: K — K(B) be a morphism of triangulated cate-
gories. A complex X in K is caled F-acyclic if F(X) is acyclic, that is, if
H(FX) =0 for al i. (Compare with 2.4.3))

Example 10.5.5 (F-acyclic complexes) Suppose that K is a triangulated
subcategory of K(d) such that every acyclic complex in K is F-acydlic. If
s. X — Y is a quasi-isomorphism in K, then cone(s) and hence F (cone(s))
is acyclic. Since F preserves exact triangles, the cohnomology sequence shows
that F(s)* : H¥(FX)= H*(FY), that is, that F(s) is a quasi-isomorphism.
By the universal property of the localization D = Q'K there is a unique
functor Q=1 F from D to D(B) such that ¢ F = (Q~! F)q. Once again, Q"' F
is both the left and right derived functor of F.

Existence Theorem 10.5.6 Let F: K+(d) — K(B) be a morphism of trian-
gulated categories. If .4 has enough injectives, then the right derived functor
RTF exists on D+(d), and if | is a bounded below complex of injectives, then

RYF(I)x=qF()

Dually, if A has enough projectives, then the left derived functor L-F exists
on D-(d), and if P is a bounded above cochain complex of projectives, then

L-F(P) = qF(P).

Proof Choose an equivalence U:D(A) =, K+(Z) inverse to the natura

map T: K+(I)-E—> D+(d) of 10.4.8, and define RF to be the composite
qFU:

~

D+(d) —> K+2) —>K+(B) - D+(a).
To construct & we use the natural isomorphism of 10.4.7

Homp+(4y(¢ X, TUgX) = Homg+(4y(X, Ug X).



10.5 Derived Functors 393

Under this isomorphism there is a natural map fx: X = UgX in K+(A) cor-
responding to the augmentation n:gX — T UqX in D+(d). We define &x to
be the naturd transformation gF(fx):qF(X)—qF(UqgX)=(qFU)(gX).
It is not hard to see that & has the required universal property, making
(RF, &) into a right derived functor of F. As usual, the dual assertion that
the composite

D-(d) = K-(P) - K-(B) - D-(B)
is a left derived functor of F follows by passage to F°P. <

Corollary 10.5.7 Let F: A — B be an additive jiinctor between abelian cat-
egories.

I.If A has enough injectives, the hyper-derived functors R F(X) are the
cohomology of RF (X): RIF(X) = H'RYF(X) foralli.

2. If A has enough projectives, the hyper-derived functors L ; F (X) are the
cohomology of LF(X): L;F(X)= H'L™F(X) for all i.

Remark 10.5.8 The assumption in 5.7.4 that F be left or right exact was
not necessary to define R F or L; F; it was made to retain the connection
with F. Suppose that we consider an object A of A as a complex concen-
trated in degree zero. The assumption that F be left exact is needed to ensure
that the R’ F (A) are the ordinary derived functors R*F (A) and in particu-
lar that R8F(A)= F(A). Similarly, the assumption that F be right exact is
needed to ensure that [L; F(A) is the ordinary derived functor L; F(A), and that
LoF(A) = F(A).

Exercise 10.5.1 Suppose that F: K*(A) — K(C) is a morphism of triangu-
lated categories and that B is a Serre subcategory of A. If A has enough in-
jectives, show that the restriction of R*F to Djj(A) is the derived functor
RZ; F. If in addition B has enough injectives, which are also injective in A,  this
proves that the composition D+(B) — D+(d) L D+(C) isthe derived func-

tor RT F|B of the restriction F|B of F to B, since we saw in exercise 10.4.3
that in this case D+(B) = D} (A).

Generalized Existence Theorem 10.5.9 ([HartRD, 1.5.11) Suppose that K’
is a triangulated subcategory of K such that

I. Every X in K has a quasi-isomorphism X — Xi to an object
of Ki.
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2. Every exact complex in Ki is F-acyclic (10.54).

Then Di =>DandRF: D =~ D" X% D(B) is aright derived functor of F.

By (1) and 10.3.14, Ki islocalizing and Di =, D. Now modify the
proof of the Existence Theorem 10.5.6, using F-acyclic complexes. o

Definition 10.5.10 Let F: A — B be an additive functor between abelian cat-
egories. When A has enough injectives, so that the usual derived functors R F
(of Chapter 2) exist, we say that F has cohomological dimension n if R F=0
for al i>n, yet R*F # 0. Dualy, when A has enough projectives, so that the
usua derived functors L; F exist, we say that F has homological dimension n
if LyF=0forali>n,yetL,F#D0.

Exercise 10.5.2 If F has finite cohomological dimension, show that every
exact complex of F-acyclic objects (2.4.3) is an F-acyclic complex in the
sense of 105.4.

Corollary 10.5.11 Let F: A — B be an additive functor If F has finite coho-
mological dimension n, then RF exists on D(d), and its restriction to D*(A)

is RTF. Dually, if F has finite homological dimension n, then LF exists on
D(d), and its restriction to D-(d) isL-F.

Proof Let Ki  bethe full subcategory of K(d) consisting of complexes of F-
acyclic objects in A (2.4.3). We need to show that every complex X has a
guasi-isomorphism X — Xi with Xi a complex of F-acyclic objects. To see
this, choose a Cartan-Eilenberg resolution Xi — I and let 1 be the double
subcomplex of 1 obtained by taking the good truncation t<, (1 ") of each col-
umn (1.2.7). Since each X? — I” is an injective resolution, each t<,(I7)isa
finite resolution of X? by F-acyclic objects. Therefore Xi = Tot(zI)isachain
complex of F-acyclic objects. The bounded spectra sequence HPH(t1)=
HPT4(X') degenerates to yield H*(X) 5 H*(X'), that is, X — Xi is a
quasi-isomorphism. 0

10.6 The Total Tensor Product

Let R be aring. In order to avoid notational problems, we shall use the letters
A, B, and so on to denote cochain complexes of R-modules. For each cochain
complex A of right R-modules the total tensor product complex 2.7.1 is a
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functor F(B) = Tot®(A ® ¢ B) from K(R-mod) to K(Ab). Since R-mod has
enough projectives, its derived functor L-F: D™ (R-mod) — D(Ab) exists by
10.5.6.

Definition 10.6.1 Thetotal tensor product of A and B is
A ®% B = L™ Tot®(4 ®& -)B.

Lemma 10.6.2 If A, Ai, and B are bounded above cochain complexes and
A — Al is a quasi-isomorphism, then A ®k B Al ®113 B.

Proof We may change B up to quasi-isomorphism to suppose that B is a
complex of flat modules. In this case A ®k B is Tot®(A ®g B) and Al ®113 B
is Tot®(A’ ®g B) by 10.55. Now apply the Comparison Theorem 5.2.12 to
E}Y(A)— EPY(A"), where

EP9(A) = H1(A) ®g BP = HP*1(A Q% B).

The spectral sequences converge when A, Af, and B are bounded above 5.6.2.
<

Theorem 10.6.3 The total tensor product is a functor
®%: D~ (mod-R) X D~ (R-mod) — D~ (Ab).
Its cohomology is the hypertor of 5.7.8:
Torf(A, B) = H™'(A®% B).

Proof For each fixed B, the functor F(A) = A ®I§ B from K™ (mod-R) to
D~ (Ab) sends quasi-isomorphisms to isomorphisms, so F factors through the
localization D~ (med-R) of K~ (mod-R). If P and Q are chain complexes
of flat modules, then by definition the hypertor groups Torf(P, Q) are the
homology of Tot® P @z Q. Reindexing the chain complexes as cochain com-
plexes, the cochain complex Tot®( P ®x Q) is isomorphic to P ®ﬁ Q. <&

Corollary 10.6.4 If A and B are R-modules, the usual Tor-group Torl.R(A, B)

of Chapter 3 is- H-8(A ®k B), where A and B are considered as cochain
complexes in degree zero.

Exercise 10.6.1 Form the derived functor L Tot®(— ®g B) and show that
A ®I§ B is naturally isomorphic to L~ Tot®(— ®z B) A in D(Ab). This iso-
morphism underlies the fact that hypertor is a balanced functor (2.7.7).
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Exercise 10.6.2 If A is a complex of Ri—R bimodules, and B is
of R—R; bimodules, A ®g B is a double complex of R{—R» bimodules. Show
that the total tensor product may be refined to a functor

®% : D™(R1-mod-R) x D™ (R-mod-R;) — D~ (R;-mod-Ry).

By irefinel we mean that the composition to D(Ab) induced by the usud
forgetful functor is the total tensor product in D(Ab). Then show that if Risa
commutative ring, we may refine it to a functor

®%:D~ (R-mod) x D~ (R-mod) — D~ (R-mod),
and that there is a natural isomorphism A ®II; B=B ®II;, A

Remark 10.6.5 (see [HartRD, 11.41) If X is atopologica space with a sheaf
Ogx of rings, there is a category of Ox-modules [Hart]. This category has
enough flat modules (see [Hart, exercise I11.6.4]), even though it may not
have enough projectives, and this suffices to construct the total tensor product
£ ®'(5X.7-' of complexes of @x-modules.

10.6.1 Ring Homomorphisms and L f *

10.6.6 Let f:R — S be aring homomorphism. By the Existence Theorem
105.6, the functor f*=-—Q®pg$§ from R-modules to S-modules has a left-
derived functor

Lf* = L(- ®& S) : D" (mod-R) — D (nod-S).
The discussion in 5.7.8 shows that the hypertor groups are
Torf(A, S) =L; f*(A) = H/(Lf*A).

If S has finite flat dimension n(4.1.1),then f* has homological dimen-
sion n, and we may extend the derived functor L f* using 10.5.11 to L f*:
D(mod-R) —» D(mod-S).

The forgetful functor f,:moed—S — mod-R is exact, so it Tist its own de-
rived functor fi: D(mod-S)—> D(mod-R). The composite f,(Lf*)A isthe
total tensor product A ®'1; S because, when A is a bounded above complex of
flat modules, both objects of the derived category are represented by A ®z S.
We will see in the next section that fi (=R f,) and L f* are adjoint functors
in a suitable sense.
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Remark If we pass from rings to schemes, the map f reverses direction, going
from Spec(S) to Spec(R). This explains the use of the notation fi, which
suggests a covariant functor on Spec(R). Of course fy is not always exact
when we pass to more general schemes, and one needs to replace fi« by R fs;
see [HartRD, I1.5.5].

Lemma 10.6.7 If f: R — § is a commutative ring homomorphism, there is a
natural isomorphism in D~ (mod-S) for every A, B in D™ (mod-R):

Lf*(A) @5 Lf*(B) > Lf*(A gk B).

Proof Replacing A and B by complexes of flat R-modules, this is just the
natural isomorphism (A ®x S) @s (S®rB)= (A®g B) ®r S. <

Exercise 10.6.3 (finite Tor-dimension) The Tor-dimension of a bounded
complex A of right R-modules is the smallest n such that the hypertor
TorX (A, B) vanish for al modules B when i > n. If A is a module, the Tor-
dimension is just the flat dimension of 4.1.1.

1. Show that A has finite Tor-dimension if and only if there is a quasi-
isomorphism P — A with P a bounded complex of flat R-modules.

2. If A has finite Tor-dimension, show that the derived functor A ®%— on
D~ ( R-mod) extends to a functor

L(A®g): D(R-mod) — D(Ab).

3. Let f:R—S be aring map, with S of finite flat dimension over R.
Show that the forgetful functor fi:D?(mod—S)— D?(mod-R) sends
complexes of finite Tor-dimension over S to complexes of finite Tor-
dimension over R.

10.6.2 The Derived Functors of I" and fx

10.6.8 Let X be a topologica space, and I' the global sections functor
from Sheaves(X) (sheaves of abelian groups) to Ab; see 2.5.4. For sm-
plicity, we shall write D(X), DT(X), and so on for the derived categories
D(Sheaves(X)), D" (Sheaves(X)), and so on. By 2.3.12 the category
Sheaves(X) has enough injectives. Therefore I' has a right-derived functor
RTI:D*(X)— DT (Ab), and for every sheaf F the usual cohomology func-
tors H' (X, 3) of 2.5.4 are the groups H' (R*T'(F)). More generdly, if F*is



398 The Derived Category

a bounded below complex of sheaves on X, then the hypercohomology groups
of 5.7.10 are given by:

Hi(X, F*) = H'RTT (F).

In algebraic geometry, one usualy works with topological spaces that are
noetherian (the closed subspaces satisfy the descending chain condition) and
have finite Krull dimension n (the longest chain of irreducible closed subsets
has length n). Grothendieck proved in [Tohuku, 3.6.5] (see [Hart, 111.2.7]) that
for such a space the functors Hi(X, -) vanish for i > n, that is, that I" has
cohomological dimension 1. As we have seen in 10.5.11, this permits us to
extend R*T to a functor

RI: D(X) —> D(Ab).

Now let f: X — Y be a continuous map of topological spaces. Just as for
I", the direct image sheaf functor f, (2.6.6) has a derived functor

R fi: D+(X) = D+(Y).
If F isasheaf on X, its higher direct image sheaves (2.6.6) are the sheaves
R'f(F) = H'R fu(F).

When X is noetherian of finite Krull dimension, the functor f, has finite
cohomological dimension because, by [Hart, II1.8.1], R'f,(F) is the sheaf on
Y associated to the presheaf sending U to H (f-6(U), F). Once again, we
can extend R f, from D+(X) to a functor R f,: D(X) — D(Y).

RI isjust a specia case of R f,. Indeed, if Y is a point, then Sheaves(Y) =
Ab and T is f,; it follows that RT" iSR f,.

10.7 Ext and RHom

Let A and B be cochain complexes. In 2.7.4 we constructed the total Horn
cochain complex Hom'(A, B), and observed that H” Hom'(A, B) is the group
of chain homotopy equivaence classes of morphisms A — B[-n]. That is,

Homg4y(A, T"B) = H"(Hom (A, B)).

Both Hom'(A, -) and Hom'(—, B) are morphisms of triangulated functors,
from K(d) and K(.4)°P to K(Ab), respectively. In fact, Hom- is a bimorphism

Hom': K(A)? x K(d) — K(AD).
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(Exercise!) In this section we construct an object RHom(A, B) in the derived
category D(A) and prove that if A and B are bounded below, then

Homp4)(A, T"B) = H"(RHom(A, B)).
Since D+(A) is a full subcategory of D(A), this motivates the following.

Definition 10.7.1 Let A and B be cochain complexes in an abelian category
A. The n** hyperext of A and B is the abelian group

Ext"(A, B) = HomD(A)(A,T"B).

Note that since D(A) is a triangulated category, its Horn-functors Ext"(A,—)
and Ext"(—, B) are cohomologica functors, that is, they convert exact trian-
gles into long exact sequences (10.2.8). Since K(A) is a triangulated category,
its Horn-functors H®" Hom (A, —) and H* Hom'(—, B) are also cohomologi-
cal functors, and there are canonical morphisms

H"” Hom' (A, B) = Homg(4)(A, T" B) - Homp4)(A,T"B) = Ext"(A, B).

Definition 10.7.2 Suppose that A has enough injectives, so that the derived
functor RT Hom'(A, —): D+(A) — D(Ab) exists for every cochain complex
A. We write RHom(A, B) for the object R* Hom'(A, -)B of D(Ab).

Lemma 10.7.3 If A— Al is a quasi-isomorphism, then RHom(Afi, B) =
RHom(A, B).

Proof We may change B up to quasi-isomorphism to suppose that B is a
bounded below cochain complex of injectives. But then RHom(Ai, B)=
Hom'(A’, B) is quasi-isomorphic to RHom(A, B) = Hom'(4, B), because
we saw in 10.4.7 that

H" Hom'(A’, B) = Homg4)(A’, T"B)
= Homp4),(A’, T" B) = Homp4)(A,T" B)
= Homg(4)(A,T"B) = H" Hom'(A, B). 0
Theorem 10.7.4 If A has enough injectives, then RHom is a bifunctor
RHom: D(4)® x D*(A) - D(Ab).
Dually, if A has enough projectives, then RHom is a bifunctor

RHom: D™ (A)°? x D(A) — D(Ab).
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In both cases, we have Ext"(A, B) =~ H"(RHom(A, B)).

Proof The lemma shows that, for each fixed B, the functor F(A) = RHom(A,
B) from K(A)° to D(Ab) sends quasi-isomorphisms to isomorphisms, so
F factors through the localization D(.A)°P of K(.A)°°. Therefore, to com-
pute H"(RHom(A, B)) we may suppose that B is a bounded below cochain
complex of injectives. But then by the construction of RHom(A, B) as
Hom'(A, B) we have

H" RHom(A, B) = H" Hom'(A, B) = Homg 4)(4, B) = Homp4)(4, B). <

Corollary 10.7.5 If A has enough injectives, or enough projectives, then for
any A and B in A the group Ext" (A, B) is the usual Ext-group of Chapter 3.

Proof If B — I is an injective resolution, then the usual definition of Ext"(A,
B) is H®" Hom(A, I) = H™ Tot Hom(A, I)= H" RHom(A, B). Smilarly, if
P — Ais a projective resolution, the usua Ext®(A, B) is H® Hom(P, B) =
H" RHom(A, B). <

Exercise 10.7.1 (balancing RHom) Suppose that .4 has both enough injec-
tives and enough projectives. Show that the two ways of defining the functor
RHom: D~ (A)°? x DT (4) — D*(Ab) are canonicaly isomorphic.

Exercise 10.7.2 Suppose that .A has enough injectives. We say that a bounded
below complex B has injective dimension n if Ext! (4, B) =0 for dl i >n and
al Ain A, and Ext"(A, B) # 0 for some A.

1. Show that B has finite injective dimension < there is a quasi-isomorph-
ism B — I into a bounded complex | of injectives.

2. If B has finite injective dimension, show that RHom(-, B): D(A)°P —»
D(Ab) of 10.7.4 is the derived functor 10.51 of Hom(-, B).

10.7.1 Adjointness of L f * and f

We can refine the above construction dightly when A is the category R-mod
of modules over a commutative ring R. For simplicity we shal write D(R),
D*(R), and so on for the derived categories D(R-mod), D*(R—mod), and
so on. Write Homy(A, B) for Hom'(A, B), considered as a complex of R-
modules. If we replace D(Ab) by D(R) in the above construction, we obtain
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an object RHomg (A, B) in D(R) whose image under D(R) — D(ADb) is the
unrefined RHom(A, B) of 10.7.2.

Suppose now that f: R — § is a map of commutative rings. The forget-
ful functor f,: mod-S — mod-R is exact, so it is its own derived functor
f«:D(S) = D(R). If Alisin D(S), the functor f. RHomg(A,—): D+(S) —
D(R) is the right derived functor of f, Homgs(A, -) because if I is a complex
of injectives, then f, RHomg(A,I)= f, Homg(A,I). The universa property
of derived functors yields a natural map:

) ¢: f« RHomg(A, B) —> RHomg(fiA, f«B).

Theorem 10.7.6 If f: R — S is a map of commutative rings, then the functor
Lf* D (R)—»>D~(S) is adjointto f,:D(S)— DT (R). Thatis, for Ain
D~ (R) and B in D+(S) there is a natural isomorphism

(%) Homps)(Lf *A, B) —> Homp(r)(A, f,B).

The adjunction morphismsare n4: A — fiLf *Aand eg:L.f *(f.B) — B, re-
spectively. Moreover, the isomorphism (x) comes from a natural isomorphism

7 f RHoms(Lf*A, B) —> RHomg(A, f.B).

Proof Since fxisexact, fiL f * istheleft derived functor of f« f *; the univer-
sal property gives amap na: A —> L(f« f *)A = fiL f*A. Using (1), this gives
the map

t: fe RHoms(Lf*A, B) —> RHomg(f,Lf*A, f«B) ——> RHomg(A, f+B).

To evauate this map, we suppose that A is a bounded above complex of
projective R-modules. In this case the map t is the isomorphism

Tot(f, Homg(A ®g S, B)) = Tot(Homg(A, Homs(S, B)))
= Tot(Hompg(A, f«B)).

Passing to cohomology, t induces the adjoint isomorphism (x). <

Remark For schemes one needs to be able to localize the above data to form
the Ox-module analogue of RHompg. By 3.3.8 one needs A to be finitely pre-
sented in order to have an isomorphism S~!Homg(A, B) = Homg-1,(S71A,
S~1B). Thus one needs to restrict A to a subcategory of D(X) which is locally
the Dg(R) of exercise 10.4.6; see [HartRD, 11.5.10] for details.
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Exercise 10.7.3 Let X be a topological space. Given two sheaves £, 3 on
X, the sheaf horn isthe sheaf Hom (&, F) is the sheaf on X associated to the
presheaf sending U to Hom(E|U, F|U); see [Hart, exercise 11.1.15]. Mimic
the construction of RHom to obtain a functor

RHom: D(X)P x D+(X) — D(X).

Now suppose that f: X — Y is a continuous map, and that X is noetherian
of finite Krull dimension. Generalize (1) for £ in D-(X), F in D+(X) to
obtain anatural map in DT (Y) :

¢:Rfy RHomx (€, 7)) > RHomy (R f,.€, R f,.F).

10.8 Replacing Spectral Sequences

We have seen that the objects RF(A) in the derived category are more flex-
ible than their cohomology groups, the hyper-derived functors R!F(A)=
H'RF(A). Of course, if we are interested in the groups themselves, we
can use the spectral sequence EJ? = (RPF)(H?A)=RPTIF(A) of 57.9.
Things get more complicated when we compose two or more functors, be-
cause then we need spectral sequences to compute the E>-terms of other
spectral sequences.

Example 10.8.1 Consider the problem of comparing the two ways of form-
ing the total tensor product of three bounded below cochain complexes A €
D~ (mod-R), B e D~ (R-mod-S5), and C e D~ (5-mod). Replacing A and C
by complexes of projectives, we immediately see that there is a natural iso-
morphism

*) A®k(BRYO) = A%B) &Y C.

However, it is quite a different matter to try to establish this quasi-isomorph-
ism by studying the two hypertor modules TorX (A, B) and Torf (B,C)!
Cf. [EGA, 111.6.8.3]. Another way to establish the isomorphism (x) is to set
F = Tot(A®g) and G = Tot(®sC). Since FG = GF, (x) follows immedi-
ately from the following resuilt.

Composition Theorem 10.8.2 Let K c K(d) and Ki ¢ K(B) be localizing
triangulated subcategories, and suppose given two morphisms of triangulated
categories G: K — Ki, F: Ki — K(C). Assume that RF, RG, and R(FG)
exist, with RF(D) € Di. Then:
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1. There is a unique natural transformation ¢ = ¢r.¢: R(FG) = RF o

RG, such that the following diagram commutes in D(C) for each A in K.

£
4FG(A) —>  (RF)(GGA)
lEFG lEG
&g
R(FG)(gA) —s (RF)(RG)(gA)

2. Suppose that there are triangulated subcategories Ko< K, Kj € KI sat-
isfying the hypotheses of the Generalized Existence Theorem 10.5.9 for
G and F, and suppose that G sends Ko to K{,. Then ¢ is an isomorphism

¢: R(FG) = (RF) 0 (RG).

Proof Part (1) follows from the universal property 10.5.1 of R(FG). For (2)
it suffices to observe that if A isin Ky, then

R(FG)(gA) = qFG(A)= RF(q(GA)) =RF(RG(gA)). 26
Corollary 10.8.3 (Grothendieck spectral sequences) Let A, B, and C be

abelian categories such that both .A and B have enough injectives, and sup-
pose given left exact functors G: A — BandF: B— C.

G

A — B

FGN\y [/ F
c

If G sends injective objects of A to F-acyclic objects of 3, then
¢ :RTY(FG)= (R+F) o (RTG).

If in addition G sends acyclic complexes to F-acyclic complexes, and both
F and G have finite cohomological dimension, then R(¥G): D(d) — D(C)
exists, and

{:R(FG) = (RF) o (RG).
In both cases, there is a convergent spectral sequence for all A:
EP? = (RPF)(RYG)(A) = RPT(FG)(A).

If A'is an object of A, this is the Grothendieck spectral sequence of 5.8.3.
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Proof The hypercohomology spectral sequence 5.7.9 converging to
(RPHF)(RG(A)) has Eé"l term (RPFYHI(RG(A)) (RPF)(RIG(A)).
<

Remark 10.8.4 Conceptualy, the composition of functors R(FG) == (RF) o
(RG) is much simpler than the original spectral sequence. The reader having
some familiarity with algebraic geometry may wish to glance at [EGA, 111.61,
and especially at the isix spectral sequencesT of 111.6.6 or 111.6.7.3, to appreci-
ate the convenience of the derived category.

Exercise 10.8.1 If F, G, H are three consecutive morphisms, show that as
natural transformations from R(FGH) to RF 0 RG o RH we have

{6, Ho8F,GH =L{F,G ©LFG,H-

In the rest of this section, we shall enumerate three consequences of the
Composition Theorem 10.8.2, usualy replacing a spectra sequence with an
isomorphism in the derived category. We will implicitly use the dua formula-
tion L F o LG = L (FG) of the Composition Theorem without comment.

10.8.1 The Projection Formula

10.85 Let f:R — S be a ring homomorphism, A a bounded above com-
plex of right R-modules, and B a complex of left S-modules. The func-
tor f*: mod-R — mod-S sends Ato A®g S, so it preserves projectives.
Since f*(A) ®s B = (A ®rS)®s B = A ®r f+«B, the Composition Theorem
10.8.2 yields

*) L/*(4) ®% B > A®% (f.B)

in D(AD). If S is commutative, we may regard B as an S-S bimodule and f, B
as an R-S bimodule. As we saw in exercise 10.6.2, this alows us to interpret
(%) as an isomorphism in D(S). From the standpoint of algebraic geometry,
however, it is better to apply f to obtain the following isomorphism in D(R):

HLA) L B) = A Q% (f.B).

This is sometimes called the iprojection formulal'; see [HartRD, I1.5.6] for the
generalization to schemes. The projection formula underlies the 1Base change
for TorT spectral sequence 5.6.6.
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Exercise 10.8.2 Use the universal property of ®',; to construct the natural
map Lf*(A)®% B — A &% (f.B).

10.8.6 Similarly, if g0 S — T is another ring homomorphism, we have
(gf)*=g*f*. The Composition Theorem 10.8.2 yields a natural isomor-
phism

(Lg*YLfHAZL(gf)*A.

This underlies the spectral sequence TorS (Tort (A, S), T) = Tork (A, T).

10.8.2 Adjointness of ®L and RHom

Theorem 10.8.7 If R is a commutative ring and B is a bounded above com-
plex of R-modules, then ®%B:D~(R) — D~ (R) is left adjoint to the functor
RHomg(B, -): D™(R) — D™ (R). That is, for A in D-(R) and C in D+(R)
there is a natural isomorphism

Homp(gy(A, RHomg(B.C))= Hompk)(A ®% B, C).

This isomorphism arises by applying H° to the isomorphism

~

%) RHomg(A, RHomg(B, C)) —> RHomg(A®% B, C)

in Di(R). The adjunction morphisms are n4: A— RHomg (B, A ®% B) and
ec: RHomg(B, C) ®I,§ B — C.

Proof Fix a projective complex A and an injective complex C. The functor
A ®I§— preserves projectives, while the functor Homg(—, C) sends pro-
jectives to injectives. By the Composition Theorem 10.8.2, the two sides
of (1) are both isomorphic to the derived functors of the composite functor
Hom(A, Hom(B, C)) = Hom(A ®& B, C). <

Exercise 10.8.3 Let R be a commutative ring and C a bounded complex of
finite Tor dimension over R (exercise 10.6.3). Show that there is a natural
isomorphism in D(R):

~

RHomg(4, B) ® } C —> RHomg(4,B® % ©).
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Here A isin D(R) and B isin D*(R). For the scheme version of this result,
see [HartRD, I1.5.14].

We now consider the effect of a ring homomorphism f:R — S upon
RHom. We saw in 2.3.10 that Homg(S,—): mod-R — mod-S preserves in-
jectives. Therefore for every S-module complex A, and every bounded below
R-module complex B, we have

RHomg(A, RHomz(S, B)) = RHompg( f:A, B).

This isomorphism underlies the 1Base change for ExtT spectra sequence of
exercise 5.6.3.

Exercise 10.8.4 Suppose that S is a flat R-module, so that f * is exact and
L f*= f*. Suppose that A is quasi-isomorphic to a bounded above complex
of finitely generated projective modules. Show that we have a natural isomor-
phism for every B in D+(R):

L f*RHomg(A, B) — RHomg(L f*A,Lf*B).
Exercise 10.8.5 (Lyndon/Hochschild-Serre) Let H be a normal subgroup of
agroup G. Show that the functors Ay = A ®zy Z and A¥ = Hompy (Z, A) of
Chapter 6 have derived functors A ®';{ Z: D (G - m—ac)d
RHomgy (Z, D (G- nmMG/H-mod) such that

AREZ= (R4 7 ad
RHomg(Z, A) =RHomg,y(Z, RHomy (Z, A)).

Use these to obtain the Lyndon/Hochschild-Serre spectral sequences 6.8.2.

10.8.3 Leray Spectral Sequences
10.8.8 Suppose that f: X — Y is a continuous map of topological spaces.
repesEs86sthai njectives and that the Leray spectral

sequence

E}? = HP(Y; R1 f,F) = HPT(X; F)



10.9 The Topological Derived Category 407

arose from the fact that I'(X, F) is the composite I' (Y, fxF). The Composi-
tion Theorem 10.8.2 promotes this into an isomorphism for every 3in D+(X):

RI(X, F)= RI-(Y, RfF).

Of coursg, if X and Y are noetherian spaces of finite Krull dimension, then this
isomorphism is valid for every 3 in D(X).

We can generdize this by replacing I'(Y, -) by g«, whereg: Y — Z is
another continuous map. For this, we need the following standard identity.

Lemma 10.8.9 (gf)«F = g«(f«F) for every sheaf 3 on X.

Proof By its very definition (2.6.6), for every open subset U of X we have

@NHLFWU) = FlgH'D)
= F(f g7 '\U) = (uF) g~ 'U) = gu(LF)U). &

Corollary 10.8.10 For every F in D*(X) there is a natural isomorphism

R(gf)+(F) = Rg« (R fu(F))

in D(Z). If moreover X and Y are noetherian of finite Krull dimension, then
this isomorphism holds for every F in D(X).

Exercise 10.8.6 If F isan injective sheaf, the sheaf horn Hom(E, F)isT-
acyclic (iflasquel) by [Gode, I1.7.3.2]. For any two sheaves £ and 3, show
that Homx (€, F)= T'(X,Hom(E,F)). Then use the Composition Theorem
10.8.2 to conclude that there is a natural isomorphism

RHom(&, F)= (Rl o RHem(E, 3)

of bifunctors from D~ (X)°P x D*(X) to D(Ab).

10.9 The Topological Derived Category

At the same time (1962-1963) as Verdier was inventing the algebraic notion
of the derived category [Verd], topologists (e.g., D. Puppe) were discovering
that the stable homotopy category D(S) was indeed a triangulated category.
In this last section we show how to construct this structure with a minimum
of topology, mimicking the passage from chain complexes to the homotopy
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category K(Ab) in section 10.1 and the localization from K(Ab) to the derived
category D(Ab). This provides a rich analogy between derived categories and
stable homotopy theory, which has only recently been exploited (see [Th] and
[Rob], for example).

Our first task is to define the category of spectra S. Here is the imodem”
(coordinatized) definition, following [LMS].

Definition 10.9.1 A spectrum E is a sequence of based topological spaces Ey,

and based homeomorphisms an:EniQEnH. A map of spectra f: E —
F is a sequence of based continuous maps f,: E, — F,, strictly compatible
with the given structural homeomorphisms. As these maps are closed under
composition, the spectra and their maps form a category S. The sequence of
[-point spaces forms a spectrum *, which is the zero object in S, because
Homgs(*, E) = Homg(E, *) = {point} for al E. The product E x F of two
spectra is the spectrum whose n** spaceis E, x F,,.

Historically, spectra arose from the study of iinfinite loop spaces;i Episan
infinite loop space, because we have described it as the p-fold loop space Eg =
QPE, for al p. The most readable reference for thisis part 111 of Adamsi book
[A], athough it is far from optima on the foundations, which had not yet been
worked out in 1974.

Looping and Delooping 10.9.2 If E is a spectrum, we can form its loop
spectrum QE by setting (Q E), = 2 (E,), the structural maps being the
Q(ay). More subtly, we can form the delooping Q7' E by reindexing and
forgetting Eo:(Q ' E)y = Epyy. Clearly QQIE=Q7IQE~E so Qisa
automorphism of the category S. When we construct a triangulated structure
on the stable homotopy category, £2~! will become our itrandlation functor.”

Example 10.9.3 (Sphere spectra) There is a standard map from the m-sphere
5™ to the S™+! (put $™ at the equator of $™*! and use the longitudes). The
n-sphere spectrum S" is obtained by applying £ and taking the colimit

(S"), = colim Q' $"1PH,
=00

Of course, to define the negative sphere spectrum S” we only use i > -n.
The zero-th space of the sphere spectrum S is often written as 2%°5>. Note
that our notational conventions are such that for al integers n and p we have
QPS"=8""P,
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Definition 10.9.4 (The stable category) The homotopy groups of a spectrum
E are:

T E =i (E;) fori=0,n+1i>0.

These groups are independent of the choice of i, because for all m ;41 Ep =
7 (QEy). Wesay that f : E — F isaweak homotopy equivalence if f induces
an isomorphism on homotopy groups. Let W denote the family of al weak
homotopy equivalences in S. The stable homotopy category, or topological
derived category D(S), is the localization W-lSof saWw.

Of course, in order to see that the stable category exists within our universe
we need to prove something. Mimicking the procedure of section 1 and sec-
tion 3, we shall first construct a homotopy category K(S) and prove that the
system W of weak homotopy equivalences form a locally small multiplicative
system in K(S) (10.3.6). Then we shall show that the homotopy category of
1CW spectral forms a localizing subcategory K(Scw) of K(S) (10.3.12), and
that we may take the topologica derived category to be K(Scw). This paral-
lels theorem 10.4.8, that the category D*(Ab) is equivaent to the homotopy
category of bounded below complexes of injective abelian groups.

For this program, we need the notion of homotopy in S and the notion
of a CW spectrum, both of which are constructed using prespectra and the
ispectrificationi functor Q. Let SX denote the usual based suspension of a
topological space X, and recall that maps SX — Y are in I-| correspondence
with maps X — QY.

Definition 10.9.5 A prespectrum D is a sequence of based topological spaces
D,, and based continuous maps S(D,) — D1, or equivalently, maps D, —
QD 1. If Cand D are prespectra, a function f: C — D is a sequence of based
continuous maps f,:Cn, — D, which are strictly compatible with the given
structural maps. There is a category P of prespectra and functions, as well as a
forgetful functor S — P. A CW prespectrum is a prespectrum D in which all

the spaces D, are CW complexes and all the structure maps SD,, = D41 are
cellular inclusions.

Warning: Terminology has changed considerably over the years, even since
the 1970s. A prespectrum used to be called a isuspension spectrum,i and the
present notion of spectrum is slightly stronger than the notion of
1Q-spectrum,T in which the structural maps were only required to be weak
equivalences. Our use of ifunctionT agrees with [A], but the category of CW
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prespectra in [A] has more morphisms than just the functions; see [A, p.140]
or [LMS, p.2] for details.

10.9.6 There is a functor Q®°:P — S, caled ispectrification. It sends a
CW prespectrum D to the spectrum §2°°D whose n*” space is

(2%°D),, = colim Q' Dy,
1—>00

where the colimit is taken with respect to the iterated loops on the maps D; —
Q Dj 1. The structure maps (2% D), — (2% D), are obtained by shifting
the indices, using the fact that £ commutes with colimits. The effect of Q%
on functions should be clear.

A CW spectrum is a spectrum of the form E = 2°°D for some CW prespec-
trum D. The full subcategory of S consisting of CW spectra is written as Scw.
Although the topological spaces E, of a CW spectrum are obviously not CW
complexes themselves, they do have the homotopy type of CW complexes.

Exercise 10.9.1 Show that Q®°E = E in S for every spectrum E.

Topology Exercise 10.9.2 If D isa CW prespectrum, show that the structure
maps D, — D, are closed embeddings. Use this to show that

7, (2%° D) = colim 7,4 (Dngi).
1—>00

Analogy 10.9.7 There is aformal analogy between the theory of spectra and
the theory of (chain complexes of) sheaves. The analogue of a preshesf is a
prespectrum. Just as the forgetful functor from sheaves to presheaves has a
left adjoint (shedfification), the forgetful functor from spectra to prespectra has
Q% as its |eft adjoint. The reader is referred to the Appendix of [LMS] for
the extension of 2 to general spectra, as well as the verification that Q% is
indeed the left adjoint of the forgetful functor.

Just as many standard operations on sheaves (inverse image, direct sum,
cokernels) are defined by shedfification, many standard operations on spectra
(cylinders, wedges, mapping cones) are defined on spectra by applying 2% to
the corresponding operation on prespectra. This is not surprising, since both
are right adjoint functors and therefore must preserve coproducts and colimits
by 2.6.10.

Example 10.9.8 (Coproduct) Recall that the coproduct in the category of
based topologica spacesis the wedge V4 X4, Obtained from the digjoint union
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by identifying the basepoints. If {D,} is a family of prespectra, their wedge
is the prespectrum whose n'* space is (VDg), = V(Dg)x; it is the coproduct
in the category of prespectra. (Why?) Since Q° preserves coproducts, v Dy, =
Q*{v(Dy),}isthe coproduct in the category of spectra.

Example 10.9.9 (Suspension) The suspension SE of a spectrum E is Q%
applied to the prespectrum whose n** space is SE,, and whose structure maps
are the suspensions of the structure maps SE,, — E,4+1. Adams proves in
[A, II1.3.7] that the natural maps E, — Q2S(E,) induce a weak homotopy
equivalence E — Q2SE, and hence a weak homotopy equivaence

Q' SE.

Definition 10.9.10 (Homotopy category) The cylinder spectrum cyl(E) of
a spectrum E is obtained by applying Q2 to the prespectrum (/. AE), =
[0, 11X E,,/[0,1]1x {*}. Just as in ordinary topology, we say that two maps
of spectra fo, f1: E — F are homotopic if thereisamap h: cyl(E)— F such
that the f; are the composites E = {i} X E <> cyl( E) — F. It is not hard to
see that this is an equivalence relation (exercise!).

We write [E, F] for the set of homotopy classes of maps of spectra; these
form the morphisms of the homotopy category K(S) of spectra. The full sub-
category of K(S) consisting of the CW spectra is written as K(Scw).

Exercise 10.9.3 Show that Ex F and E v F are also the product and co-
product in K(S).

Proposition 10.9.11 K(S) is an additive category

Proof Since K(S) has a zero object * and a product E x F, we need only
show that it is an Ab-category (Appendix, A.4.1), that is, that every Hom-
set [E, F] has the structure of an abelian group in such a way that composi-
tion distributes over addition. The standard proof in topology that homotopy
classes of maps into any loop space form an abelian group proves this; one
splits cyl(F) into [0, 1x F/~ and [§,11x F/~ and concatenates loops.
We leave the verification of this to readers familiar with the standard proof. 0

Corollary 10.9.12 The natural map E v F — E x F is an isomorphism
in K(S).

The role of CW spectra is based primarily upon the two following funda-
mental results.
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Proposition 10.9.13 For each spectrum E there is a natural weak homotopy
equivalence C — E, with C a CW spectrum. In particular K(Scw) is a lo-
calizing subcategory of K(S) in the sense of 10.3.12.

Proof Let Sing(X) denote the singular simplicial set (8.2.4) of a topological
space X, and |Sing(X)|— X the natura map. Since [Sing(X)| is a CW com-
plex, the cellular inclusions S|Sing(E,)| <> |Sing(SE,)| < |Sing(E,+1)]
make |Sing(E)| into a CW prespectrum and give us a function of prespec-
tra |Sing( E) | - E. Taking adjoints gives a map of spectra C — E, where
C = Q™|Sing(E)|. Since m,|Sing(X)|= n,(X) for every topological space
X, we have

7 |Sing(Em)| = 7 (Em) = i1 1(Em+1) = miy1|Sing(Epm1)]

for al m and i. Since 7, (C) = colim; - oo Tn+i (|Sing(E,+;) | by the topology
exercise 10.9.2, it follows that C — E is a weak homotopy equivalence. 0

Whiteheadis Theorem 10.9.14

1. If C is a CW spectrum, then for every weak homotopy equivalence
F: E— Fofspectra (10.9.4) we have f,:[C,E]=[C, F].

2. Every weak homotopy equivalence of CW spectra is a homotopy equiva-
lence (10.9.10), that is, an isomorphism in K(S).

Proof See [A, pp.149-150] or [LMS, p.30]. Note that (1) implies (2), by
setting C = F. 0

Corollary 10.9.15 The stable homotopy category D(S) exists and is equiva-
lent to the homotopy category of CW spectra

D(S) = K(Scw)-

Proof The generaities on localizing subcategories in section 3 show that
D(S) =W~ !K(Scw). But by Whiteheadis Theorem we have K(Scw) =
WK (Scw). 0

We are going to show in 10.9.18 that the topological derived category
D(S) = K(Scw) isa triangulated category in the sense of 10.2.1. For this
we need to define exact triangles. The exact triangles will be the cofibration
seguences, aterm that we must now define. In order to avoid explaining a tech-
nical hypothesis (icofibrantT) we shall restrict our attention to CW spectra.
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Mapping Cones 10.9.16 Suppose that u: E — F is a map of spectra. The
sequence of topological mapping cones cone(u,) = cone(E,)U, F, form a
prespectrum (why?), and the mapping cone off is defined to be the spectrum
Q°{cone( f,,)}. Applying 2°° to the prespectrum functions i,: F,, — cone( f;,)
and cone( f,) — SE,, give maps of spectra i: F — cone(f) and j:cone(f)—
SE. The triangle determined by this data is called the Puppe sequence associ-
ated to f:

E -5 F -5 cone(u) Z, SE.

A cojibration sequence in K(S¢w) is any triangle isomorphic to a Puppe se-

guence. Since x— E _d, E — % is a Puppe sequence, the following ele-
mentary exercise shows that cofibration sequences satisfy axioms (TR1) and
(TR2).

Exercise 10.9.4 (Rotation) Use the fact that SE, is homotopy equivalent to
the cone of i,: F,, — cone( f,) to show that SE = cone(i). Then show that
! J —Su
F — cone(u) — SE —— SF
is a cofibration sequence.

We say that a diagram of spectrais homotopy commutative if it commutes
in the homotopy category K(S).

Proposition 10.9.17 Every homotopy commutative square of spectra

u
E — F
If ls
- u
El — F’

can be made to commute. That is, there is a homotopy commutative diagram

U

E — F
I I=
E — cylw)
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in which the bottom square strictly commutes in S and the map =~ is a homo-
topy equivalence.

Proof Let cyl(u,) denote the topologica mapping cylinder of u, (Chapter
1, section 5). The mapping cylinder spectrum cyl(u) is Q% of the prespec-
trum {cyl(u,)}. It is homotopy equivalent to F because the homotopy equiv-
alences Fn—2>cyl(u,,) are canonical. The map cyl(E)— Fi expressing the
homotopy commutativity of the square corresponds to a prespectrum function
from {cyl(E,)} to Fi; together with g they define a prespectrum function from
{eyl(u,)}to Fi and hence a spectrum map gi: cyl(u) — Fi. Theinclusions of
E, into the top of cyl(«,) give the middle row after applying £°°. It is now
a straightforward exercise to check that the diagram homotopy commutes and
that the bottom square commutes. <

Theorem 10.9.18 K(Scw) is a triangulated category.

Proof We have aready seen that axioms (TR1) and (TR2) hold. For (TR3) we
may suppose that C = cone(u) and Ci = cone(x’) and that gu = uif in S; the
map h is given by the naturdity of the mapping cone construction.

It remains to check the octahedral axiom (TR4). For this we may assume
that the given triangles are Puppe sequences, that is, that Ci = cone(u), Al =
cone(u), and Bi = cone(vu). We shall mimic the proof in 10.2.4 that the
octahedral axiom holds in K(A). Define a prespectrum function {f,} from
{cone(u,)} to {cone(v,u,)} by letting f, be the identity on cone(A,) and v,
on B,. Define a prespectrum function {g,} from {cone(v,u,)} to {cone(v,)}
by letting g, be cone(u,):cone(A,)— cone(B,) and the identity on C. Man-
ifestly, these are prespectrum functions, we define f and g by applying 2*°
to{f,} and {g,}. Since it is true at the prespectrum level, a is the composite

cone(u) —f>cone(vu)—8—>SA and x is the composite C —Lcone(vu)—g»
cone(u). (Check this!)

Since cone( f,) is a quotient of the digoint union of cone(cone(Ay)),
coneg(&), and C, the natural maps from cone( B,) and C, to cone( f;,) induce
an injection cone(v,) <> cone( f,;). Asn varies, this forms a function of pre-
spectra. Applying Q% gives a natural map of spectra y : cone(v) — cone(f)
such that the following diagram of spectra commutes in S:

_f . 8 T ,
Ci — Bl — cone(v) —— SC

| | Ly |

f .
ci — B’ — cone(f) — SCi.
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To see that ¥ is a homotopy equivalence, define ¢,: cone( f,,) — cone(vy,) by

sending cone(B,) and C,, to themselves via the identity, and composing the

natural retract cone(cone(A,)) — cone(0 x A,) with cone(u,): cone(A,) —

cone(&). Since the ¢, are natural, they form a function of prespectra; ap-

plying £2°° gives a map of spectra ¢: — cone(v). We leave

reader to check that ¢y yo is homotor
(f. 8, (THi)is

a cofibration sequence (exact triangle), because it is isomorphic to the Puppe

sequence of f. <&

Geometric Realization 10.9.19 By the Dold-Kan correspondence (8.4. 1),
there is a geometric redization functor from Ch(Ab) to Scw. Indeed, if Aisa
chain complex of abelian groups, then the good truncation T A = t>(A) corre-
spondsto asimplicial abelian group, and its realization |t A }isa CW complex.
In the sequence

TA — tcone(A) —6—> T(A[-1]),

the map é is a Kan fibration (8.2.9, exercise 8.2.5). Since the mapping cone
is contractible (exercise 1.5. 1), there is a weak homotopy equivalence |t A|—>
Q|r A[—1]}, and its adjoint S|t A} — |t A[—1]] is a cdlular inclusion. (Check
thisl) Thus the sequence of spaces [tA[—r]{ form a CW prespectrum; ap-
plying 2% gives a spectrum. This construction makes it clear that the func-
tor |7]: Ch(Ab) — Scw sends quasi-isomorphisms to weak equivalences and
sends the trandated chain complex Afn]to 2"t Al. In particular, it induces a
functor on the localized categories | t|: D(Ab) — D(S).

Vista 10.9.20 Let HZ denote the geometric redlization | Z] of the abelian
group Z, regarded as a chain complex concentrated in degree zero. It turns
out that HZ is a Tring spectrumt and that D(Ab) is equivalent to the stable
category of imodule spectrai over HZ. This equivalence takes the total tensor
product ®§i in D(Ab) to smash products of module spectra over HZ. See
[Rob] and (A. ElImendorf, 1. Kriz, and J. P. May, “E~ Modules Over E«, Ring
Spectra, T preprint (1993)}.



Appendix A
Category Theory Language

This Appendix provides a swift summary of some of the basic notions of
category theory used in this book. Many of the terms are defined in Chapters 1
and 2, but we repeat them here for the convenience of the reader.

A.1 Categories

Definition A.l.I A category C consists of the following: a class obj(C) of
objects, a set Hom¢(A, B) of morphisms for every ordered pair (A, B) of
objects, an identity morphism id4 € Hom¢(A, A) for each object A, and a
composition function Hom¢( A, B) x Home( B, C) — Homg (A, C) for every
ordered triple (A, B, C) of objects. We write f: A — B to indicate that f is
a morphism in Hom¢(A, B), and we write gf or go f for the composition of
f:A— B withg: B— C. The above data is subject to two axioms:

Associativity Axiom: (hg) f = h(gf)for f:A—>B,g:B—>C,h:C—D
Unit Axiom: idgof =f=fo idq for f: A — B.

Paradigm A.1.2 The fundamenta category to keep in mind is the category
Sets of sets. The objects are sets and the morphisms are (set) functions, that is,

the elements of Homgets(A, B) are the functions from A to B. Composition of
morphisms is just composition of functions, and id4 is the function id4(a) = a
for al ae A. Note that the objects of Sets do not form a set (or €lse we would
encounter Russellis paradox of a set belonging to itself!); this explains the
pedantic insistence that obj(C) be a class and not a set. Nevertheless, we shall

often use the notation C € C to indicate that C is an object of C.

Examples A.1.3 Another fundamental category is the category Ab of abelian
groups. The objects are abelian groups, and the morphisms are group ho-
momorphisms. Composition is just ordinary composition of homomorphisms.
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The categories Groups of groups (and group maps) and Rings of rings (and
ring maps) are defined similarly.

If Risaring, R-mod isthe category of left R-modules. Here the objects are
left R-modules, the morphisms are R-module homomorphisms, and composi-
tion has its usual meaning. The category mod-R of right R-modules is defined
similarly, and it is the same as R-mod when R is a commutative ring.

A discrete category is one in which every morphism is an identity mor-
phism. Every set (or classl) may be regarded as a discrete category, since com-
position is forced by discreteness.

Small categories A.1.4 A category C is small if obj(C) is a set (not just a
class). Sets, Ab and R-mod are not small, but a poset or a group may be
thought of as a small category as follows.

A partially ordered set, or poset, isaset P with a reflexive, transitive
antisymmetric relation <. We regard a poset as a small category as follows.
Given p, g € P the set Homp(p, q) is the empty set unless p <g, in which
case there is exactly one morphism from p to g (denoted p <g of course).
Composition is given by transitivity and the reflexive axiom (p < p) yields
identity morphisms.

A category with exactly one object * is the same thing as a monoid, that
is, aset M (which will be Hom(x*, x)) equipped with an associative law of
composition and an identity element. In this way we may consider a group as
a category with one object.

The word icategoryT is due to Eilenberg and MacLane (1947) but was
taken from Aristotle and Kant. It is chiefly used as an organizing principle for
familiar notions. It is aso useful to have other words to describe familiar types
of morphisms that we encounter in many different categories; here are a few.

A morphism f: B — Ciscaled an isomorphism in C if there is a morphism
g:C—Bsuch that gf =idg and fg =id¢. The usual proof shows that if
g exists it is unique, and we often write g = f~!. An isomorphism in Sets
is a set bijection; an isomorphism in the category Top of topological spaces
and continuous maps is a homeomorphism; an isomorphism in the category of
smooth manifolds and smooth maps is caled a diffeomorphism. In most alge-
braic categories, isomorphism has its usual meaning. In a group (considered as
a category), every morphism is an isomorphism.

A.15 A morphism f:B — C is caled monic in C if for any two distinct
morphisms ey, e;: A — B we have fe1# f e2; in other words, we can cancel
f on the l€eft. In Sets, Ab, R-mod, ..., in which objects have an underlying
set (iconcretel categories; see A.2.3), the monic morphisms are precisdly the
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morphisms that are set injections (monomorphisms) in the usual sense. If B —
C ismonic, we will sometimes say that B is a subobject of C. (Technicaly a
subobject is an equivalence class of monics, two monics being equivalent if
they factor through each other.)

A morphism f: B— Ciscalled epi in C if for any two distinct morphisms
g1, 82: C — D we have g1 f # g2 f; in other words, we can cancel f on the
right. In Sets, Ab, and R-mod the epi morphisms are precisely the onto maps
(epimorphisms). In other concrete categories such asRings or Top thisfails;
the morphisms whose underlying set map is onto are epi, but there are other

epis.

Exercise A.l.I Show that Z ¢ Q isepi in Rings. Show that Q c Risepi in
the category of Hausdorff topological spaces.

A.l.6. Aninitial object (if it exists) in C is an object Z such that for every
Cin C thereis exactly one morphism from Z to C. A terminal object inC
(if it exists) isan object T such that for every Cin C there is exactly one
morphism from C to T. All initial objects must be isomorphic, and all termina
objects must be isomorphic. For example, in Sets the empty set ¢ istheinitial
object and any |-point set is a terminal object. An object that is both initiad and
terminal is called a zeroobject. There is no zero object in Sets, but O isa zero
object in Ab and inR-mod.

Suppose that C has a zero object 0. Then there is a distinguished element
in each set Home (B, C), namely the composite B — 0 — C; by abuse we
shall write O for this map. A kernel of a morphism f: B — C is a morphism
i: A— Bsuchthat fi= 0 and that satisfies the following universal property:
Every morphism et Ai — B in C such that fe = 0 factorsthrough A ase = ie”
for aunique ei: Ai — A. Every kernel ismonic, and any two kernels of f are
isomorphic in an evident sense; we often identify akerndl of f with the cor-
responding subobject of B. Similarly, a cokernel of f: B — C is a morphism
p: C—> D suchthat pf = 0 and that satisfies the following universal property:
Every morphism g: C — Di such that gF = 0 factors through D as g = gip
for a unique g’: D — D’'. Every cokernel is an epi, and any two cokernels are
isomorphic. In Ab and R-mod, kernel and cokernel have their usual mean-
ings.

Exercise A.1.2 In Groups, show that monics are just injective set maps, and
kernels aremonics whose image is anormal subgroup.

Opposite Category A.1.7 Every category C has an opposite category C°P.
The objects of % are the same as the objects in C, but the morphisms (and



420 Appendix A

composition) are reversed, so that there is a |- correspondence f+» f°P
between morphisms f:B -+ C in C and morphisms f°: C — B in CP. If
f ismonic, then f°P is epi; if f is epi, then f°P ismonic. Similarly, taking
opposites interchanges kernels and cokemels, as well as initiad and terminal
objects. Because of this duality, C°P is also called the dual category of C.

Example A.1.8 If Ris aring (a category with one object), R°P is the ring
with the same underlying set, but in which multiplication is reversed. The cat-
egory (R°P)-mod of left R°P-modules is isomorphic to the category mod-R
of right R-modules. However, (R-mod)°P cannot be S-mod for any ring S
(see AAT).

Exercise A.1.3 (Pontrjagin duality) Show that the category C of finite abelian
groups is isomorphic to its opposite category C°P, but that this fails for the
category 7 of torsion abelian groups. We will see in exercise 6.11.4 that 7°P
is the category of profinite abelian groups.

Products and Coproducts A.1.9 If {C;:iel}isaset of objects of C, a
product [;¢; Ci (if it exists) is an object of C, together with maps 7 ;:[]Ci —
C;(jel) such that for every A e C, and every family of morphisms «;: A —
C; (i €I), there is a unique morphism a: A — [] C; in C such that ;o = ¢;
for al i €l. Warning: Any object of C isomorphic to a product is also a
product, so [TC; is not a well-defined object of C. Of course, if []C; exists,
then it is unique up to isomorphism. If I ={1,2}, then we write C; X C3
for [;e; Ci- Many concrete categories (Sets, Groups, Rings, R-mod, ...
A.2.3) have arbitrary products, but others (e.g., Fields) have no products at
al.

Dually, a coproduct [];c;Ci of a set of objects in C (if it exists) is an
object of C, together with maps ¢;:C; — [ C; (j € I) such that for every
family of morphisms «;:C; — A there is a unique morphism a [JCi— A
such that atj = o for al j € I. That is, a coproduct in C is a product in CP.
If I ={1,2}, then we write Cy Il C; for | [;; Ci. In Sets, the coproduct is
disioint union; in Groups, the coproduct is the free product; in R-mod, the
coproduct is direct sum.

Exercise A.1.4 Show that Hom¢(A,[]CH) =]
Hom¢([ [ Ci, A) 2 [];c; Home(C;, A).

;ey Home(A, C;) and that
Exercise A.1.5 Let {a;: A; — C;} be afamily of mapsin C. Show that

1 If [TA; and [] C; exist, there is a unique map «:[] A; — [] C; such that
i = o for dl i If every o«; ismonic, SO isa.
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2. If [JAiand ] J C; exit, there is a unique map a:[ ] A; — [ ] C; such that
to;=ay; foral i. If every o; isan epi, sois a.

A.2 Functors

By ajiinctor F: C — D from a category C to a category D we mean a rule
that associates an object F(C) (or FC or even F¢) of D to every object C of
C, and a morphism F(f): F(C{)— F(C3)inD to every morphism f:Ci—
C2 in C. We require F to preserve identity morphisms (F (id¢) = idr¢) and
composition (F (gf) = F(g) F (f)). Note that F induces set maps

Hom¢(Cy, C2) — Homp(FCy, FC»)

for every C1,C2in C. If G: D — £ is another functor, the composite G F: C —
£ is defined in the obvious way: (GF)(C) = G(F(C)) and (GF)(f)=
G(F(f)).

The identity functor idg: C — C isthe rule fixing all objects and morphisms,
that is, id¢(C) = C, id¢(f) = f. Clearly, for a functor F: C — D we have
Foid¢=F =idp oF. Except for set-theoretic difficulties, we could form a
category CAT whose objects are categories and whose morphisms are func-
tors. Instead, we form Cat, whose objects are small categories; Homeg¢(C, D)
isthe set (1) of al functors from C to D, the identity of C is id¢, and composi-
tion is composition of functors.

Horn and Tensor Product A.2.1 Let R bearing and M a right R-module.
For every left R-module N the tensor product M ®g N is an abelian group
and M ®g — is a functor from R-mod to Ab. For every right R-module N,
Hompz(M, N) is an abelian group and Hom g (M, —) is a functor from mod-R
to Ab. These two functors are discussed in Chapter 3.

Forgetful Functors A.2.2 A functor that does nothing more than forget some
of the structure of a category is commonly caled a forgetful functor, and
written with aU (for iunderlyingi). For example, there is a forgetful functor
from R-mod to Ab (forget the R-module structure), one from Ab to Sets
(forget the group structure), and their composite from R-mod to Sets.

Faithful Functors A.2.3 A functor F: C — D iscalled faithful if the set maps
Hom¢(C, Ci) — Homp(FC, FCi) are al injections. That is, if f1and f> are
digtinct maps from C to Ci in C, then F(f1)# F(f2). Forgetful functors are
usualy faithful functors, and a category C with a faithful functor U: C — Sets
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is called a concrete category. In a concrete category, morphisms are com-
pletely determined by their effect on the underlying sets. R-mod and Ab are
examples of concrete categories.

A subcategory B of a category C is a collection of some of the objects
and some of the morphisms, such that the morphisms of B are closed under
composition and include idg for every object B in B. A subcategory is a
category in its own right, and there is an (obvious) inclusionfunctor, which
is faithful by definition.

A subcategory B in which Homg(B, Bi) = Hom¢(B, Bi) for every B, Bi in
Biscaled a full subcategory. We often refer to it as ithe full subcategory on
the objectsi obj(B), since this information completely determines B.

A functor F: C — Dis full if the maps Hom¢(C, Ci) — Homp(FC, FCI)
are al surjections. That is, every g: F(C) — F(Ci) in D is of the form g =
F(f) for some f: C — Ci. A functor that is both full and faithful is caled
Jully faithful. For example, the inclusion of a full subcategory is fully faithful.
The Yoneda embedding (see A.3.4) is fully faithful. Ancther example of a
fully faithful functor is ireflectiont onto a skeletal subcategory, which we now
describe.

Skeletal Subcategories A.2.4 By askeletal subcategory S of a category C we
mean a full subcategory such that every object of C is isomorphic to exactly
one object of S. For example, the full subcategory of Sets on the cardinal
numbers 0 = ¢, 1 = {¢}, ... is keletal. The category of finitely generated R-
modules is not a small category, but it has a small skeletal subcategory.

If we can select an object FC in S and an isomorphism 6¢: C = FC for
each C in C, then F extends to a ireflection? functor as follows: if f: B —
C, then F(f) = ¢ f 9;1. Such a reflection functor is fully faithful. We will
discuss reflections and reflective subcategories more in A.6.3 below. The set-
theoretic issues involved here are discussed in [MacCW, 1.61.

Contravariant Functors A.2.5 The functors we have been discussing are
sometimes called covariant functors to distinguish them from contravariant
functors. A contravariant functor F: C — D is by definition just a covariant
functor from C°P to D. That is, it associates an object F(C) of D to every
object C of C, and a morphism F(f): F(Cy)— F(Cy)inD to every f:C1—
C, in C. Moreover, F(id¢) =idpc and F reverses composition: F(gf)=
F(f)F(g).

The most important example in this book will be the contravariant functor
Hom g(—, N) from mod-R to Ab associated with a right R-module N. Its de-
rived functors Exty(—, N) are also contravariant (see 2.5.2). Another example
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isa presheaf on a topological space X; this is by definition a contravariant
functor from the poset of open subspaces of X to the category Ab.

A.3 Natural Transformations

Suppose that F and G are two functors from C to D. A natural transformation
n:F = G is a rule that associates a morphism nc: F(C) = G(C) in D to
every object C of C in such a way that for every morphism f:C— Ci in C
the following diagram commutes:

Ff
F(C) —> F(C))
nl Ln

Gf ,
G(C) —> G(CT).

This gives a precise meaning to the informal usage, ithe map #5¢: F(C) —
G(C) isnatural in C1 If each n¢ is an isomorphism, we say that nisanatural
isomorphism and write n: F = G.

Examples A.3.1

1. Let T(A) denote the torsion subgroup of an abelian group A. Then T
is a functor from Ab to itself, and the inclusion T(A) € A is a natural
transformation T = idap.

2. Leth: M — Mi be an R-module homomorphism of right modules. For
every left module N there is a natural map A® N: M ® g N - M' ®p
N, forming a natura transformation M®pg = M'®g. For every right
module N there is a natural map nx: Homg(M’, N) - Homg(M, N)
given by nx(f) = fh, forming natural transformation Homg(M’,-) =
Homg(M,—). These natura transformations give rise to maps of Tor
and Ext groups, see Chapter 3.

3. In Chapter 2, the definitions of S-functor and universal §-functor will
revolve around natural transformations.

Equivalence A.3.2 We call afunctor F: C — D an equivalence of categories
if there is a functor G: D — C and there are natural isomorphisms id¢ = GF,
idp = FG. For example, the inclusion of a skeletal subcategory is an equiv-
alence (modulo set-theoretic difficulties, which we ignore). The category of
based vector spaces (objects = vector spaces with a fixed basis, morphisms =
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matrices) is equivalent to the usual category of vector spaces by the forg
functor. Equivalence of categories is the useful version of 1isomorphism”
often encountered in practice. As a case in point, the category of based v
spaces is not isomorphic to the category of vector spaces, in which the
choices are not explicitly given.

£7 L — A form the obgects Of the fancior category A, The morphisms in 47
from F to G are the natural transformations n: F = G, the composition ¢p
of n with ¢ : G = H is given by (¢n); = &ini, and the identity morphism of
F is given by (idF); = id ). (Exercise: show that Al is a category.) We list
several examples of functor categories in Chapter 1, section 7 in connection
with abelian categories; if A isan abelian category, then so is Al (exercise
A.4.3). Here is one example: If G is a group, then AbS is the category of G-
modules discussed in Chapter 6.

Example A.3.4 The Yoneda embedding is the functor h: I — Sets!” given by
letting A; be the functor hi(j) = Hom;(j, i). This is a fully faithful functor. If
I is an Ab-category (see A.4.1 below), the Yoneda embedding is sometimes
thought of as a functor from 7 to Ab” (which is an abelian category). In
particular, the Yoneda embedding allows us to think of any Ab-category (or

any additive category) as a full subcategory of an abelian category. We discuss
this more in Chapter 1, section 6.

A.4 Abelian Categories

The notion of abelian category extracts the crucial properties of abelian groups
out of Ab, and gives homological algebra much of its power. We refer the
reader to [MacCW] or Chapter 1, section 3 of this book for more details.

A.4.1 A category A is caled an Ab-category if every horn-set Hom 4(C, D)
in A is given the structure of an abelian group in such a way that composition
distributes over addition. For example, given a diagram in A of the form

f g h
A— B —=3C — D
g

we have h(g + g')f = hgf + hgif in Hom(A, D). Taking A=B =C =D,
we see that each Hom(A, A) is an associative ring. Therefore, an Ab-category
with one object is the same thing as a ring. At the other extreme, R-mod isan
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matrices) is equivalent to the usua category of vector spaces by the forgetful

functor. Equivalence of categories is the useful version of Tisomorphismi most
often encountered in practice. As a case in point, the category of based vector
spaces is not isomorphic to the category of vector spaces, in which the basis
choices are not explicitly given.

Functor Categories A.3.3 Given acategory I and acategory A, the functors
F: I — A form the objects of the functor category A!. The morphisms in A/
from F to G are the natura transformations n: F = G, the composition ¢n
of n with ¢: G = H is given by (¢n); = ¢;n;, and the identity morphism of
F is given by (idr); = idr(;). (Exercise: show that A! is a category.) We list
several examples of functor categories in Chapter 1, section 7 in connection
with abelian categories; if A is an abelian category, then so is A’ (exercise
A.4.3). Here is one example: If G is a group, then AbC is the category of G-
modules discussed in Chapter 6.

Example A.3.4 The Yoneda embedding is the functor h: | — Sets’” given by
letting h; be the functor hi(j) = Homy(j, i). This is a fully faithful functor. If
I is an Ab-category (see A.4.1 below), the Yoneda embedding is sometimes
thought of as a functor from 7 to Ab’ *® (which is an abelian category). In
particular, the Yoneda embedding alows us to think of any Ab-category (or
any additive category) as a full subcategory of an abelian category. We discuss
this more in Chapter 1, section 6.

A.4 Abelian Categories

The notion of abelian category extracts the crucia properties of abelian groups
out of Ab, and gives homological algebra much of its power. We refer the
reader to [MacCW1 or Chapter 1, section 3 of this book for more details.

A.41 A caegory A is caled an Ab-category if every horn-set Hom 4(C, D)
in A is given the structure of an abelian group in such a way that composition
distributes over addition. For example, given a diagram in .4 of the form

’

! g h
A— B —=C — D
g
we have h(g + g') f = hgf + hgif in Hom(A, D). Taking A=B=C =D,
we see that each Hom(A, A) is an associative ring. Therefore, an Ab-category
with one object is the same thing as aring. At the other extreme, R-mod is an
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Ab-category for every ring R, because the sum of R-module homomorphisms
isan R-module homomorphism.

Wecall A an additive category if it isan Ab-category with a zero object
0 and a product A x B for every pair A, B of objects of A. This structure is
enough to make finite products the same as finite coproducts, and it is tradi-
tional to write A@® B for A x B. Again, R-mod is an additive category, but
S0 is the smaller category on objects {0, R, R?, R3,...} with Hom(R", R™) =
al mx nmatricesinR.

Definition A.4.2 An abelian category is an additive category A such that:

1. (AB 1) Every map in A has a kernel and cokernel,
2. (AB2) Every monic in.A isthe kernel of its cokernel, and
3. Every epi in A isthe cokernel of its kernel.

Thus monic = kernel and epi = cokernel in an abelian category. Again,
R-mod is an abelian category (kernel and cokernel have the usual mean-

ings).

Exercise A4l Let A be an Ab-category and f:B— Ca morphism. Show
that:

1. f ismonic < for every nonzeroe A—B, fe#0;
2. fisan epi « for every nonzerog: C— D, gf # 0.

Exercise A.4.2 Show that A° is an abelian category if A is an abelian
category.

Exercise A.4.3 Given a category I and an abelian cateory A, show that the
functor category A is also an abelian category and that the kernel of n:B —
C is the functor A, A(i) = ker(;).

In an abelian category every map f:B — C factors as
e m
B — im(f) —C

with m = ker(coker f) monic and e epi. Indeed, m is obviousy monic; we
leave the proof that e is epi as an exercise. The subobject im( f) of Ciscalled
theimage of f, because in iconcretel abelian categories like R-mod (A.2.3)
theimage isim( f) = [f(b): b € B} as a subset of C.

A sequence A -2 B —%5 C of mapsin an abelian category is called ex-

act (at B) if ker(g)=im( ). This implies in particular that the composite
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gf: A —> C is zero. Homological algebra might be thought of as the study of
the circumstances when seguences are exact in an abelian category.

A.4.3 The following axioms for an abelian category A were introduced by
Grothendieck in [Tohoku]. Axioms (AB 1) and (AB2) were described above.
The next four are discussed in Chapter 1, section 3; Chapter 2, sections 3
and 6; and in Chapter 3, section 5.

(AB3) For every set {A;} of objects of A, the coproduct | [ A; existsin A.
The coproduct is often called the direct sum and is often written as @ A;.
Rather than say that A satisfies (AB3), we often say that A is cocomplete
(see A.5.1).

(AB3*) For every set {A;} of objects of A, the product [] A; existsin A .
Rather than say that A satisfies (AB3%*), we usudly say that .4 is complete
(see AS.1 below).

Example A.4.4 Ab and R-mod satisfy both (AB3) and (AB3*), but the
abelian category of finite abelian groups satisfies neither and the abelian cat-
egory of torsion abelian groups satisfies (AB3) but not (AB3*). For purposes
of homological agebra, it is often enough to assume that [] A; and | | A; exist
for countable sets of objects {A;}; for example, this suffices to construct the

total complexes of a double complex in 1.2.6 or the functor l(iLn1 of Chapter 3,
section 5.

Exercise A.4.4 (Union and intersection) Let { A;} be afamily of subobjects of
an object A. Show that if A is cocomplete, then there is a smallest subobject
3" A; of A containing al of the A;. Show that if A is complete, then there is a
largest subobject NA; of A contained in al the A;.

(AB4) A is cocomplete, and the direct sum of monics is amonic.
(AB4*) Aiscomplete, and the product of episis an epi.

Example A.4.5 Ab and R-mod satisfy both (AB4) and (AB4*). The abelian
category Sheaves(X) of sheaves of abelian groups on a fixed topologica space
X (described in Chapter 1, section 7) is a complete abelian category that does
not satisfy (AB4%).

Exercise A.4.5

1. Let A be a complete abelian category. Show that A satisfies (AB4%)
if and only if products of exact sequences are exact sequences, that is,
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for every family {A; - B; — C;} of exact sequences in .4 the product
sequence

l—[A,‘ — l_[Bi — HC,
is also an exact sequencein A.

2. By considering .A°P, show that a cocomplete abelian category satisfies
(AB4) if and only if direct sums of exact sequences are exact sequences.

A.4.6 For the last two axioms, we assume familiarity with filtered colimits
and inverse limits (see AS.3 below). These axioms are discussed in Chapter 2,
section 6 and Chapter 3, section 5.

(AB5) A is cocomplete, and filtered colimits of exact sequences are exact.
Equivaently, if {A;}isalattice of subobjects of an object A, and B is any
subobject of A, then

> AnB) =B () A).

(AB5*) A is complete, and filtered inverse limits of exact sequences are
exact. Equivdently, if {A;} is a lattice of subobjects of A and B is any
subobject of A, then

N(A; + B) = B + (NA)).

Examples A.4.7

1. We show in 2.6.15 that Ab and R-mod satisfy (AB5). However, they
do not satisfy (AB5*), and this gives rise to the obstruction l(igllA,-

discussed in Chapter 2, section 7. Hence (R-mod)°P cannot be S-mod
for any ring S.
2. Sheaves(X) satisfies (AB5) but not (ABS5*); see A.4.5.
Exercise A.4.6 Show that (AB5) implies (AB4), and (AB5*) implies (AB4*).

Exercise A.4.7 Show that if A # 0, then A cannot satisfy both axiom (AB5)
and axiom (AB5*), Hint: Consider &A; =[] A;.

A.5 Limits and Colimits (see Chapter 2, section 6)

AS.1 The limit of a functor F: | — A (if it exists) is an object L of A,
together with maps m;: L — F;({ € I)in A which are icompatiblel in the
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sense that for every a:j —iin | the map n; factors as Fymj: L — F; — F;,
and that satisfies a universal property: for every Ae A and every system of
icompatibleT maps f;: A — F;there is a unique A: A — L so that f; = m;A.
This universal property guarantees that any two limits of F are isomorphic.
We write lim;¢; F; for such a limit. For example, if I is a discrete category,
then lim;¢; F; = ]"[,-e,Fi,so products are a specia kind of limit.

A category A is called complete if lim F; exists for al functors F: I - A
in which the indexing category I is small. Many familiar categories like Sets,
Ab, R-mod are complete. Completeness of an abelian category agrees with
the notion (AB3*) introduced in A.4.3 by the following exercise, and will be
crucial in our discussion of l(iE 1'in Chapter 3, section 5.

Exercise A.5.1 Show that an abelian category is complete iff it satisfies
(AB3%).

Dualy, the colimit of F: 7 — A (if it exists) is an object C = colim;¢; F;
of A, together with maps ¢;: F; — C in A that are icompatiblel in the sense
that for every a:j —iin I the map :; factors as v; Fo: F; — F; — C, and that
satisfies a universal property: for every A€ A and every system of icompati-
blei maps f;: F;— Athereis auniquey : C — A sothat f; = y¢;. Again, the
universal property guarantees that the colimit is unique up to isomorphism,
and coproducts are a special kind of colimit. Since F: I — A isthesameasa
functor F°P:J°P — AP it isaso clear that a colimitin A is the same thing as
alimitin 4°P.

A category A is caled cocomplete if colim F; exists for al functors F: I —
A in which the indexing category I is small. Many familiar categories like
Sets, Ab, R-mod are also cocomplete. Cocompleteness plays a less visible
role in homological agebra, but we shall discuss it and axiom (AB3) briefly in
Chapter 2, section 6.

Exercise A.5.2 Show that an abelian category is cocomplete iff it satisfies
axiom (AB3).

As a Natural Transformation AS.2 Thereisadiagona functor A: 4 — Af
that sends A € .A to the constant functor: (AA); = A for al i e I. The compat-
ibility of the maps 7;: lim( F;) — F; is nothing more than the assertion that =
is a naturd transformation from A(lim F;) to F. Similarly, the compatibility
of the maps ¢;: F;j— colim F; is nothing more than the assertion that ¢ isa
natura transformation from F to A(colim F;). We will see that lim and colim
are adjoint functors to A in exercise A.6.1.
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Filtered Categories and Direct Limits A.5.3 A poset I iscalled filtered, or
directed, if every two elements i, j € | have an upper bound k e | (i <k and
j <Kk). More generally, a small category I iscalled filtered if

1. Foreveryi, j e Ithereisak e I and arrowsi — k,j — kinI.
2. For every two arrows u,v:i — j thereis an arrow w: j — k such that
wu = wv in Hom(i, k).

This extra generality is to include the following example. Let M be an abelian
monoid and write I for the TtrandationT category whose objects are the €-
ements of M, with Homy (i, j) = {me M:mi = j}. I is a filtered category,
because the upper bound in (1) is k=ij = ji, and in axiom (2) we can take
w =i € Hom;(j, ij).

A filtered colimit in a category .A isjust the colimit of afunctor A: I - A
in which I is afiltered category. We shall give such a colimit the special sym-
bol co_li)m(Ai), although (filtered) colimits over directed posets are often called

direct limits and are often written Ii_rrl A;. We shdll seein Chapter 1, section 6

that filtered colimits in R-mod (and other cocomplete abelian categories) are
well behaved; for example, they are exact and commute with Tor. This pro-
vides an easy proof (3.2.2) that S~!R is a flat R-module, using the trandation
category of the monoid S.

Example A.5.4 Let I be the (directed) poset of nonnegative integers. A func-
tor A: I - A isjust asequence Ag— A1 — Ar—--- of objectsin A, and
the direct limit lim;_, o A; is our filtered colimit coﬁr}n A;. A contravariant

functor from I to A is just a tower --- = A2 —> A;— Ag, and the iinverse
limitT is the filtered limit lim A; we discuss in Chapter 3, section 5.
«—

A.6 Adjoint Functors (see sections 2.3 and 2.6)

A.6.1 A pair of functors L: A — B and R: B— A are caled adjoint if there
is a set bijection for al Ain.4 and B in B:

T = 14p: Homp(L(A), B) —=> Hom 4(A, R(B)),

which is inatura® in A and B in the sense that for al f: A— Ai in.A and
g:B —> Bi in B the following diagram commutes.
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Homp(L(A), B) —— Homs(L(A), B) > Homs(L(4), B i)
l'[ lf lt
Hom 4(A", R(B)) —— HomA(A, R(B)) —> Homu(4, R(B))

That is, v is a natural isomorphism between the functors Homg(L, -) and
Hom 4(—, R) from .A° X B to Sets. We say that L is the left adjoint of R,
and R is the right adjoint of L. We aso say that (L, R) is an adjoint pair.

Here is a familiar example of a pair of adjoint functors. Let k be afield and
L: Sets — (k-vector spaces) the functor sending a set X to the vector space
with basis X. (L(X) is the set of forma linear combinations of elements of
X). This is left adjoint to the forgetful functor U, because Homy(L(X), V) is
the same as Homges( X, U(V)).

We will see many other examples of adjoint functorsin Chapter 2, section 6.
The most important for Chapter 3 is the following adjunction between Horn
and tensor product. Let R be aring and B a left R-module. For every abelian
group C  Homuy(B,C) is aright R-module: (fr)(b)= f(rb). The resulting
functor Homap(B,—): Ab — mod-R h als(A) = /R®r B as its |€ft adjoint.
(See2.3.8and 2.6.2.)

Exercise A.6.1 Fix categories| and A. When every functor F: | > A hasa
limit, show that lim: A7 — A is afunctor. Show that the universal property of
lim F; is nothing more than the assertion that lim is right adjoint to A. Dually,
show that the universal property of colim F; is nothing more than the assertion
that colim: AT — A isleftadjoint to A.

Theorem A.6.2 An adjoint pair (L , R): A — B determines

1. A natural transformation n:id 4= RL (called the unit of the adjunc-
tion), such that the right adjoint of f: L(A) — B is R(f) 0 na: A —
R(B).

2. A natural transformation ¢: L R = idg (called the counit of the adjunc-
tion), such that the left adjoint of g: A — R(B) is e 0 L(g): L(A) — B.

Moreover, both of the following composites are the identity:

) LA) 22 LrLa) 5 L(A) and R(B) 25 RLR(B) X9 R(B).

Proof The map n4: A — RL(A) is the element of Hom(A, RL(A)) corre-
sponding to idpa€ Hom(L(A), L(A)). The map £p: LR(B) — B is the d-
ement of Hom(LR(B), B) corresponding to idgp€ Hom(R(B), R(B)). The
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rest of the assertions are elementary manipulations using the naturality of t
and are left to the reader as an exercise. The lazy reader may find a proof in
[MacCW, IV. 1]. <

Exercise Ah.2 Suppose given functors L: A — B,R:B— A and natura
transformations 7n:id 4= RL, &: L R = idg such that the composites (*) are
the identity. Show that (L, R) is an adjoint pair of functions.

Exercise A.6.3 Show that s 0 (LRe)=¢ 0 (¢eLR) and that (RLn)on =
(nRL) o n. That is, show that the following diagrams commute:

LRe n
LR(LR(B)) — LR(B) A —— RL(A)
lgLR(B) lSB lﬂA lT/RLA
€ RLn
LR(B) —— B RL(A) — RL(RL(A))

Reflective Subcategories A.6.3 A subcategory B of A is called a rejective
subcategory if theinclusion functor :: BC A hasaleft adjointL: A — B;L
is often caled the reflection of A4 onto B. If B is a full subcategory, then by
the above exercise B = R(B) for all B in B. The ireflectiont onto a skeletd
subcategory is areflection in this sense.

Here are two examples of reflective subcategories. Ab is reflective in
Groups; the reflection is the quotient L(G) = G/[G, G] by the commutator
subgroup. In 2.6.5 we will see that for every topological space X the category
of sheaves on X is a reflective subcategory of the category of presheaves on
X; in this case the reflection functor is called ishedfification.”
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65,77, 265, 287ff, 320
Connes, A., 332, 344, 348
Connesi  double complex B. See double
complex.
Connesi operator B, 344-349, 352
Connesi  sequence, 336
Connesi spectral sequence, 346. See adso
spectral sequence.
constant sheaf. See sheaves.
Congtruction Theorem for spectral sequences,
132ff
Continuum Hypothesis, 92, 98
contour integral, 27
contractible simplicial object, 20, 275ff, 282ff,
293-294,298
contractible space, 20, 129, 204ff, 415
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convergence of spectral sequences, 123, 126,
135ff, 395
approaches (abutsto), 126, 141
bounded convergence, 123-125, 132, 135,
143
Classical Convergence Theorem, 132, 135,
137, 139, 142, 157
Complete Convergence Theorem, 139-142,
157
convergent above, 125
weskly converges, 126, 135ff,140-2, 150,
156
coproduct in a category, 5, 29, 55, 170, 259,
420-428
— in acoalgebra. See coalgebra
— of spectra. See wedge.
corestriction (cor), 189ff, 196, 199
Cortinas, G., 342
cosimplicial objects, 86, 254, 256, 257, 260,
271, 281, 285, 287, 301
cotangent complex L g4, 295,297
cotriple L., 279-299
cotriple (co)homology, 286ff, 295, 297-298
counit & of an adjunction, 430. See aso adjoint
functors.
— in acoalgebra. See coalgebra
covering space, 203ff
crossed homomorphisms, 174ff, 306
crossed modules, 1871f
crossed product algebras, 187ff
cross product. See products.
c.s.8. (complete semisimplicial set), 259
cup product. See products.
CW complex, 19, 21, 24, 84, 204, 257-261,
409, 412, 415
CW prespectrum, 409, 412. See aso
prespectrum.
CW spectrum, 410. See also spectrum.
cycles, 2, 14, 17, 23, 36, 60ff, 83, 127, 133ff,
156
cyclic category AC, 33 1 ff
cyclic groups Cy, 140, 162, 1671f, 173, 176~
7, 189-193, 197, 205, 304, 330-334,
341-343, 347, 350, 355, 366
homology and cohomology of —, 168
cyclic homology HC, ch.9.
negative — HN, 338
of an agebra HCy(R), 334ff
of acyclic object, 334ff
of DG-algebras, 359ff
of agroup, 338ff

Index

of an ideal, 347, 358-359

of amixed complex, 345ff

periodic — HP, 337-338,340, 343,351,

354,355

of asmooth algebra, 337, 351, 354
cyclic objects, 330ff, 354

— G-sets, 339, 343

-modules, 331, 336, 338ff

-sets, 331, 338ff

ZG, 331, 3401ff

ZR, 330-333, 346, 354-360
cylinder cyl(f):

mapping cylinder, 20ff, 370ff

topological cylinder, 21, 411, 414

cylinder spectrum, 410414

A. See simplicia category.
AC. See cyclic category.
d-functor, 391. See also triangulated
categories.
S-functor. See cohomological —, homological
—, universal —.
Dy(R/k), D*(R/k). See André-Quillen
homology and cohomology.
D(A), 63, 369, 379. See also derived category.
DP(A), D-(d), D+(d), 384, 388ff,
392407
D(R), 400ff
D(S). See stable homotopy category.
D(X), 397ff, 402,407
Dedekind domain, 90.98
degeneracy maps n; in A, 255,332
degeneracy operators o;, 256, ch.8, 330, 354
degenerate subcomplex D(A), 266, 272, 346
delooping of a spectrum, 408
Dennis, R. K., 328
denominator set, 380
de Rham cohomology, 337, 349ff, 355,359
— complex, 349
derivation, 174ff, 213, 218, 229ff, 237, 245,
2941f, 306ft, 314-315, 358
Der(G), Der(g), 1741f, 179, 229-233, 2941f,
306ff
derived category D, ch.10, 385
bounded, bounded above/below, 384,386
exists, 386388
topological derived category, 407ff
is triangulated, 385
derived couple, 154ff, 348
derived functors of F, ch.2, ch.10. See dso
homology, cohomology.
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derived functors of F (cont.)
hyper-derived L; F, Ri F. See hyper-derived
functors.

left — (L; F), 43ff, 50, 53, 63, 68, 143, 147,

157,161, 221, 271, 391
of lim, 81, 86, 139. See also lim!.
right — (R F), 491f, 53, 64, 115, 161, 211,
221,228,271, 391
|-left —, 287,293
total left — LF, 391ff
total right — RF, 391ff
are universal §-functors, 47, 50, 225,
290
derived series of a Lie group, 219, 242, 247
descending chain condition, 82
DG-algebra, 112, 134, 181ff, 292, 321, 325,
349, 359-361, 367
DG-coalgebra, 366,368
diagonal simphcial object, 2751f, 284
differential graded algebra. See DG-algebra.
differentials of a chain complex, 2, ch. 1, 58,
61, 83, 86, 122,177, 333, 345, 360
Diff(Py). 298
in a spectra sequence, 120-127, 130, 133,
140, 240, 346, 348
Kihler —. See Kihler differentials.
dihedra groups, 177, 183, 191, 197,202
dimensions, ch.4
cohomological —, 226,241, 394, 398,403
embedding — (emb. dim), 105, 110, 111
flaa —(fd), 9111, 108, 144, 396, 397
globa —(gl. dim), 91ff, 100, 108-I 11,
114, 226, 241, 310
homologica —, 92, 394,396
injective — (id), 91£f, 104, 107, 114,400
Krull — (dim), 97, 98, 105ff, 114, 3 17ff,
323, 398, 402, 407
projective — (pd), 91-111, 161, 169, 241
Tor —, 92ff, 397,405
weak —, 92
dimension shifting, 44.47, 71, 80, 93, 147ff,
169
direct image sheaf (fxF), 42, 51-54, 152,
396ff, 402, 4061t
direct limit. See colimit.
discrete category, 25, 80, 418, 428
discrete G-module, 210ff
discrete valuation ring, 98, 105
divisible abelian group, 39, 73, 74, 158, 214.
See also injective module.
Dald, A., 21,270
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Dold-Kan correspondence, 264, 270-276, 286,
346,415
domain (integral domain), 68, 106, 116
double chain complex, 7ff, 15, 58ff, 85, 99,
141-150, 276, 335, 352ff, 3591f, 426
first quadrant —, 8, 60, 63, 120ff, 143ff,
275ff, 298, 328, 337, 359
fourth quadrant —, 62, 142, 143,360
half plane —, 60ff, 143, 145ff, 337
Horn -, 62. See also Horn.
second quadrant —, 62, 86, 142, 143,338
tensor product —, 58. See also tensor
product.
total complex of —. See total complex.
Tsyganis — CCay,333ff, 339, 343-348
duality. See also Pontrjagin duality.
dual category. See opposite category.
dual module B*. See Pontrjagin dudl.
front-to-back dual simplicial object A(i),
263, 266, 275, 289

E® terms, 125. See also spectral sequence.
edge map. See spectral segquence.
effaceable functor. See functor.
EG. See BG, path space.
Eilenberg, S., 80, 205, 238, 248, 259, 277, 418
Eilenberg-MacLane space K (i, n), 257, 264,
268,274
Eilenberg-Moore filtration sequence, 136, 140,
142,338
Eilenberg-Moore spectral sequence, 361
Eilenberg-Zilber Theorem, 88, 275ff, 284
elementary matrices £, 203,229, 294
Elmendorf, A., 415
embedding:
embedding dimension. See dimension.
Freyd-Mitchell Embedding Theorem, 12,
14, 2511, 79, 266, 276
Y oneda embedding, 28, 422, 424. See also
Y oneda Lemma
enough injectives. See injectives.
enough projectives. See projectives.
enveloping algebra R, 302ff. See aso
universal enveloping algebra.
epi morphism, 6ff,13, 220, 255, 419, 425ff
equivalence of categories, 270, 423
equivariant homology, 361
espace totale. See Serre fibration.
essentiadly of finite type, 322, 323, 326, 351
Eulerian idempotents w};') See idempotents.
exact couples 153ff, 348
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exact functor, 25, 27, ch.2, ch.3, 115, 116, 144,

152, 160ff, 21 Iff, 221, 276, 391, 429,
preserves derived functors, 45, 53

exact sequence, 1, 3, 7, 16, 79,285, 425ff. See

aso short exact, long exact sequence.
— of low degree terms. See low degree
terms.

exact triangle, 15, ch.10. See also triangle.

Exalcomm(R, M), 295,297

exhaustive filtration. See filtration.

Existence Theorem for total derived functors,
393-396,403

exponential map, 27, 205

extensons:

algebra—, 311ff

central —, 198ff, 236, 248ff

commutative algebra —. See Exalcomm.

cyclic galois —, 173, 176

group — (and H2(G)), 182ff, 198ff, 234,
235

Hochschild — (and H2(R)), 3 1Iff, 317

Lie algebra — (and H2(g)), 231, 2341,
241, 246, 248ff

module — (Exti and H1), 76ff, 232, 241,
246,351

of profinite groups, 2 13

of restricted Lie algebras, 238

split -, 76ff, 182ff, 234.3 1 Iff

universal —. See universal centra
extensons.

exterior algebra complex A*M, 112, 229,
238ff, 292, 304, 365

exterior algebra Q*. See Kihler
differentials.

external products. See products.

Ext functor Ext}(A, B),50-51, 63,ch.3, 91ff,
106ff,114-119, 145, 161ff, 172, 221,
225-229, 241, 246, 287, 289, 295, 422,
423

Ext(g, M). See extensions of Lie agebras.
Ext! and module extensions, 76ff
external product for Ext, 291

hyperext Ext"(A*, B*), 399ff

relative Ext, 288ff,302ff, 3 11

Y oneda Ext, 79ff, 188

S+ of asheaf. See direct image sheaf.

s of an S'module, 396405

j* of an R-module (= ®gJS),396-7, 400-406
face mapse; in A, 255, 332

Index

face operators 9;, 256, ch.8, 277, 330, 354,
356
factor set, 184ff, 213, 311,312
F-acyclic object, 44, 47, 50, 51, 148, 150ff,
162, 282ff, 392ff, 403ff. See a0 flat,
projective modules.
Faith, C., 96
fd(A). See dimension,
f d lemma, 93, 94,3 10
Feigin, B., 362,367
fiber. See Serre fibration.
fiber bundles for G, 257
fiber terms (of a spectral sequence), 124
fibrant simplicia set (Kan complex), 262,
263ff, 267, 275, 285, 293
fibration:
G-. See G-fibration.
Kan fibration (of simplicial sets), 262, 263,
265, 270, 415
Serre —. See Serre fibration.
filtered category, 56ff, 69, 86, 207, 429
filtered colimit. See colimit.
filtration of a chain complex, 84, 131-143,
155, 239, 324, 346, 358
bounded —, 132ff, 135ff
bounded above —, 125, 132, 140
bounded below —, 132-140, 157,239
canonical bounded —, 132-135, 142ff, 266
complete, 132, 135-141
exhaustive, 125, 131, 1351t, 156, 239
Hausdorff, 132, 135ff
— of a double complex, 1411f, 335, 348,
360
regular —, 124
finitely generated algebra, 296, 352
finitely generated module, 25, 70, 73-76, ch.4,
158, 166, 180, 296, 422
finitely presented module, 70ff, 75, 93, 98, 401
first fundamental exact sequence for Qg /.
297, 308, 314, 360, 368
first quadrant double complex.See double
complex.
5-lemma, 13, 23, 71, 75, 123, 273, 361, 375
flasque sheaf, 407
flat base change for Tor, 72, 163, 293, 296,
305,323
— for Andre-Quillen homology, 297
flat dimension. See dimension.
iflat modules, 68-74, 87-88, 91ff, 101, 111,
112, 143ff, 163, 167, 193, 291-293,
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303--305, 308, 339, 360, 363, 395, 406,
429
finitely presented flat modules are
projective, 71, 96
tensor product of —, 303,360
are Tor-acyclic, 44, 69
Flat Resolution Lemma, 7 1,293
forgetful functor U, 41, 44, 53, 96, 101, 189,
195, 218, 223, 232ff, 259, 280-284, 410,
421, 424,430
formal space, 361
fourth quadrant double complex. See double
complex.
fractions, 379ff
free groups, 161, 167, 169ff, 199. See also
presentations.
free abelian groups, 66ff, 84, 87ff, 169,267
free Lie algebra. See Lie algebra.
free loop space. See loop space.
free modules, 33, 90, 98-103, 109, 162, 169ff,
177,189, 221-226, 229, 235, 238ff, 260,
278, 294, 297, 318, 324, 338-344.
free module cotriple, 281, 284, 286
free product (coproduct) of groups, 170, 269
free ring (free algebra), 222, 223, 285,
293-294, 356ff
Freudenthal, H., 205
Freyd, J.P., 25
Freyd-Mitchell Embedding Theorem. See
Embedding.
Frobenius algebra, 96ff
front-to-back duality. See dual.
full subcategory (full functor), 25, 422425
function between prespectra, 409ff
functor, 14,421
additive. See additive functors.
adjoint. See adjoint functors.
— category. See functor category.
coeffaceable, 49
d-functor, 391
derived. See derived functor.
effaceable, 28, 49,213
exact functor. See exact functor.
faithful, 42 1
forgetful. See forgetful functor.
fully faithful, 12, 25, 383, 422
hyper-derived. See hyper-derived functor.
left balanced, 64
left exact, 25, 27-32, 49-53, 83, 115, 149,
150ff, 160, 221, 290
right balanced, 64
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right exact, 25, 27, 30ff, 43ff, 52ff, 71,
147-151, 157, 161, 221, 290
functor category, 25ff, 43, 541f, 80ff, 160,288,
424430
fundamental sequences for Qg k. 297,
308-309, 314, 360, 361, 368

G(A). See grade.
Gabber, O., 387
Gabriel, P., 29, 382
Gabriel-Zisman Theorem, 382
Galois extension of fields, 173, 175ff, 186-7,
206ff, 214
Fundamental Theorem of Galois Theory,
207,210
Galais group. See Galois extension.
Garland, H., 253
Generd Change of Rings Theorem, 99
genera linear group. See GL,,, gl,,.
generating functions, 355
geometric redlization | X |, 257-261, 264, 267,
415
adjoint to singular smplicia set, 261
geometrically regular algebra, 3 17
Gersten, S., 294
Gerstenhaber, M., 323
G-fibration, 263, 265, 270, 343
g-invariant bilinear form, 243ff, 250ff
gl, Lie algebra, 217, 229, 233, 244-248, 362ff
GLp(A), 182, 186, 203, 294
globa dimension gi. dim(R). See dimension.
Global Dimension Theorem, 91, 94, 114, 226,
241,311
globa sections functor ", 51, 54, 115, 150,
152, 285, 397, 407
G-module, 160, ch.6, 278-282, 339, 343, 424
g-module, 219, ch.7
Godement resolution. See resolution.
Goodwillie, T., 354, 361
Goodwillieis Theorem, 354-359
Gorengtein ring, 97ff, 107- 11
Grade 0 Lemma, 109, 110
grade G(A) of a module, 105ff, 1 16ff
graded abelian group or module, 25.29, 127,
145, 158,218
graded algebra, 65, 112, 135, 223, 321ff, 349,
354-359
associated —, 226, 358
differentidl —. See DG-algebra.
graded-commutative -, 112, 181-2, 192ff,
227,292, 3211f, 349,368
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graded coalgebra. See coagebra

graph, 34

Grothendieck, A., 30, 80, 82, 150, 370, 379,
398,426

Grothendieck spectral sequence. See spectral
sequence.

group ring kG, Ch.6, 223, 301, 338ff

Guccione, J., 342

Gysin sequence, 131, 197, 336, 344

half plane double complex. See double
complex.
Hartshorne, R., 119
Hasse invariants, 215
Hausdorff topologica space (or group), 97,
135, 208ff, 419
Hausdorff filtration. See filtration.
hereditary ring, 90, 98
higher direct image sheaf functors (R’ f), 53,
3971f, 402, 406ff
Hilbert, D., 176
Hilbert basis theorem, 322
Hilbert-Samuel function h(n), 317
-polynomia H(n), 317
Hilbert space, 97
Hilbertis Syzygy Theorem, 102, 114
Hilbertis Theorem 90, 173, 175ff, 213ff
Hochschild, G., 195, 302, 313, 322, 351
Hochschild chain complex C¥, 299,300, 319,
323,328, 333, ch9
Hochschild extension. See extension.
Hochschild homology (and cohomology), 299,
300, 333, ch.9
Hochschild-K ostant-Rosenberg  Theorem,
322ff, 351
Hochschild-Serre. See spectra seguence.
Hodge decomposition:
in cyclic homology, 352ff
in Hochschild homology, 299, 323ff, 353
Horn double complex, 62ff, 90, 398ff
Horn functor, 3, 5, 27, 34, 40ff, 5 Iff, 62ff, 115,
118, 161ff, 377, 382, 421ff, 429ff. See
also Ext.
as a g-module, 226,244
in derived categories. See hyperext.
is left exact, 27-28, 52
sheaf Horn éHorn. See sheaf Horn.
homogeneous space, 205
homologica §-functor, 30ff, 43, 45ff, 113,
146, 189, 195, 265, 276, 423
homological dimension. See dimension.

Index

homologism, 3
homology:
of a chain complex, Iff, 31, 32, 49, 87ff,
120ff, 266,271
cotriple —. See cotriple (co)homology.
cyclic —. See cyclic homology.
generdized homology theory, 2 1, 85
of agroup, ch.6, 257, 260, 282, 338ff
Hochschild —. See Hochschild homology.
of aLiealgebra, ch.7, 362ff
smplicid -, 4,260, 267,277
singular —, 4-5, 88, 158, 260, 267, 361
Universal Coefficient Theorem, 88
homotopism, 17
homotopy. See chain homotopy, homotopy
equivalence.
homotopy category of chain complexes in
A. See K(A)).
homotopy category of spectra K(S), 409,
411ff
homotopy classes of maps [E, F], 41 Iff
homotopy commutetive diagram, 4 13
homotopy lifting property. See Serre
fibration.
simplicial homotopy from f to g, 268ff,
273-277, 339, 341
homotopy equivalence, 261
chain —, 17-23, 35ff, 40, 63, 65, 147,284,
290, 296, 319, 360, ch.10
simplicid —, 204, 270, 273, 296-297, 339,
341
weak — of spectra, 409ff
homotopy groups m«(X), 128, 129, 158, 188,
204, 263ff, 271,409
of a simplicia object, 265ff, 271, 276,
283-286, 293
of asimplicial set, 263ff, 271, 276ff
of a spectrum, 409ff
Hopf, H., 198,205
Hopf algebra, 194, 226-7, 3 19, 367ff
Hopfis Theorem, 198, 200, 234
Horseshoe Lemma, 36, 37, 45, 46, 99, 146
H-space, 159
Hurewicz homomorphism, 129,267
hyperbolic plane, 205
hypercohomology, 150, 166, 354, 398, 404
hyper-derived functors L4« F and R*F,
147-151, 166, 391-395, 402ff
hyperext Ext"(A*, B*), 399ff
hyperhomology, 145ff, 157, 166, 206, 309,
339
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hyper-derived functors L« F andR* F (cont.)
hypertor Tor, 148ff, 167, 395ff, 402

zd(A) See dlme
id lemma,

uigal ofa Lz al; ebr 216" 232fs, 2426

iddmpote ,97-9%, 163, 311
Euleriar ),3251?, 3524f
sigrat e signature idempotent.

image of /% 1, §, 220, 425
induced G- mo‘.lle,'71ff
infinite loop space, 408
inflation rgap (inf), 389ff, 196, 211, 214, 234
initial Obekt, 55383,419
injective ijeqts 3gf 50, 149, 213
abelianl groups (are divisijle), $9, 73
“coc iplexes df —?40, 387E, 392fF,
{399, 405,409 « °
¢nough injbtives, 35T, 19—52, 79, 3,
116, 149, 150ff, 211, 2231f, 271,¢380,
387-388, 399103 .
injective dimension. Seeidimension.
injective resolution. See resolution.
modules, 38ff, 50, 69-70, 73ff, ch.4
preserved by rlght adjomt to exact functor,
41,96, 116, 153, 196, 211, 213, 233, 406
inner automorphism, 177,231
inner derivations, 229ff, 245
integral closure of an integral domain, 117
internal product for Tor. See products.
invariant subgroup of a G-module, 160ff, 304
invariant subgroup of a g-module, 221ff, 226,
364
invariant theory, 364ff
inverse image shesf (f~!G), 53ff, 58,410
inverse limit. See limits.
Jacobian criterion, Jacobian matrix, 3 18
Jacobifs identity, 216ff
Jacobson radical J(R), 103, 104,314

K(d) homotopy category, 15,18, 63,ch.10
KP(A), K*(d), 370,384, 388-395
K(S). See homotopy category of spectra
Kac-Moody Lie agebra, 25 1
Kihler differentials S2g 4, 294ff, 3074, 314,
318, 336, 365
exterior agebra .QR/k,321ff, 349ff
-— are projective if R is smooth, 295, 318,
323
k-split. See split exact complex.
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Kan, D., 262,270
Kan complex, 262. See also fibrant simplicial
Set.

Kan condition, 262, 263

Kan extension, 259

Kan fibration. See fibration of simplicia

Sets.

Kant, |., 418
Karoubi, M., 339
Karoubiis Theorem for HC(G), 339ff
Kassdl, C., 343, 345, 368
kernel, 1-2, 6ff, 15, 55ff, 81, 220, 419, 425ff
Killing, W., 247
Killing form, 243ff, 247, 250ff
Kostant, D., 322.35 1
Koszul, J.,, 120,239
Koszul complex, 11 -1 19, 240, 254, 260
Koszul resolution, 69, 114, 229, 292, 304
Kriz, I.,415
Krull dimension dim(R). See dimension.
Krullis Theorem in Galois Theory, 207ff
K-theory, 85,203, 293-4
Kummer sequence, 186
Kiinneth Formula, 87ff,144, 277, 284

for complexes, 88, 164ff, 227, 319

for Koszul complexes, 113, 118

spectral sequence, 143

|-decomposition, 324,326

A*M. See exterior agebra.

AX See loop space, brutal and free.

Lf*, 396-397, 400401, 404-406

LF. See derived functors.

Laurent polynomials, 161, 250, 337, 341

left adjoint. See adjoint functors.

left exact functor. See functor.

left resolution, 34

Leibnitz rule, 112, 127, 134, 174, 181, 218,
229, 321, 359, 360

Leray, J, 120, 127

Leray-Serre spectral sequence. See spectral
sequence.

Levi, E. E., 247

Levi factor, 246ff

Leviis Theorem, 246,248

Lie S., 216,247

Lie agebra, ch.7, 362ff

abelian -, 217-221, 227, 229, 234ff, 243,
364
Affine (Kac-Moody) -, 250ff
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Lie algebra{cont.)
free — (see presentations), 218ff, 221-224,
233-238, 248
Lie(A) for associative dgebras A, 217, 220,
223-227, 244, 362
nilpotent —, 219,233

perfect —, 248ff
product of —, 219, 248, 250
reductive —, 248

restricted —. See restricted Lie algebra
semisimple —, 242-248, 250, 253
simple —, 242-244, 250ff, 363
simply connected -, 249ff
solvable —, 2 19,242
solvable radica g, 242-247
Lie bracket, 216.220-224
Lie group, 131, 158, 205, 216, 247
lifting property, 33, 34ff, 78,281, 290,
318
lim! functor, 74, 80ff, 136ff, 153, 338, 343,
426ff
limits, 551f, 427ff, 430
direct limits. See colimits.
inverse limits, 55, 80ff, 126, 137, 153,
2071f, 340, 343, 427, 429
local coefficients, 128
local cohomology, 115ff
localization of a category, 379-386, 389, 395,
408,415
— of aring. See multiplicatively closed set.
Localization Theorems:
for Horn and Ext, 75ff, 163
for Tor, 73, 293, 305
of regular rings, 111
of smooth algebras, 3 14, 3 16
localizing subcategory, 29, 383ff, 389, 391,
394, 402, 409, 412
locally small multiplicative system, 381-386,
409
local field, 215
local ring, 73, 76, 971, 102-1 11,297
Loday, J-L., 333, 352, 362, 365, 367, 368
logarithm, 27
long exact sequences, 10ff, 30ff, 451f, 81, 113,
115, 128, 130, 148ff, 158, 168, 213, 265,
290, 301, 334, 358
loop space 2X,129-130, 361, 408ff, 411
brutal loop space AA, 270, 273-274
free loop space AX, 361
infinite loop space, 408
- of spectra, 408,410

Index .

low degree terms (from a spectral sequence),’

121, 129,151, 196, 198, 214, 233ff
lower central series of aLie algebra, 219
Lyndon, R, 195 .° e

MacLane, S., 205, 316 * z

MacLane’s criterion*for sep:
Malcev, 247
manifold, 26, 105, 131, 216,
map of spectra, 408ff
mapping cone of f. See cgne.
mapping cylinder cy! (f). Bee cylinder.
mapping lemma for spectral sequences, 123,
125, 126 N
Maschkefs Theorem, 95,342 = ¢
Massey;W., $53 U
matrices, 1, 4, 70.217 318, 327- 330 364,
424,425
ma;x Lie algebras 217 See also g[n, sl,,

2

matfx ring' M, (A), 33 93, 176, 187, 217,
245, 309ft; 327ff, 336 362
maximal ideal, 73, 76, 97,102-111,:318, 323
May, J. P, 415
Mayer-Vietoris sequence, 115, 119
Milnor, J., 84, 85
Mitchell, B., 25, 29, 86
Mittag-L cffler condition, 82ff, 140
trivial —, 82ff, 117, 139,359
mixed complex, 344ff
normalized —, 346ff, 352, 356ff
trivial -—, 349,352
module spectra, 415
monad (= triple), 279
monic morphism, 6ff, 13, 28, 49, 57, 220, 255,
418ff, 425ff
monoid, 418
Moore, J., 270
Moore complex NA, 265. See aso chain
complex.
Morita equivaent rings, 326ff
Morita invariance, 328ff, 336
morphism, 417
of chain complexes, 2ff, ch.2, 72, 75, 277,
330, 362ff
of Sfunctors, 32, 48, 189, 194ff, 226, 234,
278
of spectral sequences, 122-125, 134, 135,
155,346
of triangulated categories, 377, 385, 390ff,
402



Index

multiplicatively closed set, 69, 75ff, 111, 293,
305, 307, 380, 384

multiplicative structure. See spectral sequence.

multiplicative system, 380ff, 385

V. See shuffle product.

Ny (Strictly upper triangular matrices), 217,
219, 233, 235

Nagata, M., 111

Nakayamais Lemma, 102-109,314,3 17

natural transformation, 25, 3 Iff, 46ff, 54, 254,
269, 279, 286, 391ff, 423ff, 428,430

negative cyclic homology. See cyclic
homology.

Neshitt, E., 96

nilpotent Lie algebra. See Lie agebra

noetherian ring, 25, 75ff, ch.4, 296ff, 317,
322ff

noetherian topological space, 398, 402, 407

Noetherfs equations, 176

Noetheris Theorem, 174, 176

nonabelian homological agebra, 265, 293

nonassociative algebra, 216

nondegenerate elements of a simplicial set,
2571t

nonzerodivisor, 32, 68,100-114

Normal Basis Theorem, 173

normalized chain complex. See chain complex.

norm element of a finite group, 162ff, 167,
173, 176,180, 333, 344, 347

norm of afield extension, 176, 214

null homotopic, 17, 19-21, 63, 180, 267, 277,
387-389

Q> functor, 408ff

Q-spectrum, 409

QX. Seeloop space, Kihler differentials.

objects of a category, 417

obstruction to being split, 77

octahedral axiom, 374ff, 414

opposite category, 26ff, 40, 43, 50, 55, 57,
149, 152, 254, 279, 280, 287, 332, 378,
382, 386, 391, 419428

opposite ring, 302, 327,420

@re condition, 380ff

orthogond Lie algebrao,, 2 17

Osofsky, B., 92

outer automorphism, 177

7%(X). See homotopy groups.
n*(X). See cohomotopy.
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p-adic integers. See 2,,.
path connected topological space, 90
path space PA, 129, 2691f,273, 333, 339, 343
pd(A). See dimension.
pd lemma, 93,310
perfect group, 199ff, 248
perfect Lie algebra, 248ff
periodic cyclic homology. See cyclic
homology.
petite complex, 387
PGL, (projective linear group), 182, 186
poal, (semisimple but not simple), 244
p-group, 25, 159
p-torsion subgroup pA of A, 31, 66ff, 342
Poincare, H., 1
Poincaré-Birkhoff-Witt Theorem, 225ff, 239
Poincare lemma, 355
polyhedron, 127, 258, 261
polynomial ring, 101ff, 114, 193, 221, 223,
226, 240, 2851f, 294-297, 304, 313, 315,
317,337
Laurent —. See Laurent polynomials.
truncated —, 304, 337, 355, 358, 397, 418
Pontrjagin dua B* of B, 39, 69ff, 73, 199,
209.
Pontrjagin duality, 209,420
posets (partially ordered sets), 26, 56, 80, 86,
139,152,207, 418
directed poset, 429. See aso filtered
category.
of open setsin X, 26, 53,423
of open subgroups, 209,212
power series ring, 100, 105
(p, q)-shuffles. See shuffle product, shuffle
element.
presentations for groups, 198,203, 294, 307
— for agebras, 223, 224, 285
-for Lie algebras, 233, 235ff, 248
preserves injectives. See injective.
preserves projectives. See projective.
preserving derived functors. See exact functor.
presheaves, 26ff, 42, 53, 387, 402, 410, 423
Presheaves(X), 26ff, 53, 55, 386, 431
prespectrum, 409ff
CW prespectrum, 409, 410, 415
prime ideal, 73, 76,105ft, 111, 115,317
primitive elements in a coalgebra, 363ff
principal congruence group I'(¥), 205
principal derivations, 1741f, 179,213, 306
principal G-fibration. See G-fibration.
principal ideal domain, 39, 69, 90, 98
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products:
in acategory, 5, 55, 383, 420, 425-428. See
aso cocomplete category.
cross product in cohomology, 165ff, 192,
227
cup product in cohomology, 192ff, 227,277
direct product of groups, 164, 192ff, 201ff
externd —, 36, 64ff, 112-114, 227,
291-292, 319ff
Hochschild —, 3 19ff
internal —, 65, 114, 319-323
— of Lie agebras, 227, 243, 246, 248, 250,
253
— of rings, 292, 302, 310, 3 16
— of simplicia objects, 261, 277
— of spectra, 408, 411
— of topological spaces, 89,408
profinite:
cohomology, 21 Iff
completion, 209
groups, 206, 208ff, 420
sets, 208
topology, 207f
projection formula, 404ff
projective:
— abelian groups are free, 33, 66, 73
chain complex of —, 34, 392ff, 401,405
enough projectives, 33ff, 43, 47, 51-58, 79,
14511, 151, 211, 221-224, 274, 276, 380,
388-396
— lifting property. See lifting property.
— modules, 33ff, 50, 68, 71, 77, 89, 90,
ch.4, 167, 173,189, 281, 303, 310ff, 318,
323, 327ff
— objects, 29, 33ff, 40, 44ff, 51, 162,224,
274,271,288
— preserved (by left adjoint to exact
functor), 41, 233, 276, 404ff
— resolutions. See resolutions.
1 -projective, 281ff, 290ff, 296
projective dimension. See dimension.
projective linear group.See PG Ly, pgl,.
projective representation. See representa-
tions.
projective special linear groups. See PSLy,,
psl,.
projective n-space, 13 1,205
proper group action, 203ff
PSL, (projective specid linear group), 199,
202
psl,, isasimple Lie algebra, 244

pullback, 29, 78ff, 86, 182, 185, 201, 313, 343
punctured spectrum of aring, 116

Puppe, D., 21,407

Puppe sequence, 413ff

pushout, 54, 77ff

quasi-Frobenius ring, 96ff

quasi-isomorphism, 3, 15-21, 59, 63, 99,
146ff, 275, 346, 360, 363, ch.10

quatemion algebra H, 176,215

Quillen, D., 295, 333, 362, 365, 367

quotient category, 18, 29, 369, 384,411

quotient complex, 6, 20, 22, 178, 266, 335,
362

reductive Lie algebra, 248,364
reflection functor; reflective subcategory, 29,
422,431
regular filtration of a complex, 124
regular rings, 105ff, 317ff, 322ff
finite global dimension, 110
geometrically regular algebra, 3 17
smooth over afield, 317
von Neumann regular rings, 97ff
regular sequence (A-sequence), 105-1 14,
119, 240, 291, 304, 318, 323
regular spectral sequence, 126
relations. See presentations.
relative Ext. See Ext.
relative Tor. See Tor.
relatively flat module, 292
representations, 164, 202, 243
projective representation, 182, 186
resolutions:
bar. See bar resolution.
canonical, 177, 235, 275, 282ff
Cartan-Eilenberg —, 145ff. See also
resolution.
of achain complex. See hyperhomology.
Chevalley-Eilenberg —. See Chevalley-
Eilenberg complex.
F-acyclic, 44, 47, 50, 51, 71, 148,283, 285,
392
flat, 71, 87, 91ff, 144, 303
free, 67, 75, 76, 114, 164-169, 178, 193,
204, 222, 284, 287
Godement, 285
injective, 32, 40, 42, 50ff, 63, 73ff, 85, 91ff,
149, 151, 394
k-split, 289ff, 298,304
Koszul —. See Koszul resolution.
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resolutions (cont.)
|eft, 34, 44
non-projective, 68
periodic, 67, 74, 167, 178, 304, 333
projective, 34, ch.2, ch.3, 91-100, 109, 111,
143ff,162ff, 172, 1911f, 239, 241, 303,
397
right, 40
simplicia, 274ff, 283ff, 296, 333
simplicial polynomial — of aring, 296ff
truncated, 99
L -projective, 282, 289ff, 302
restricted Lie algebra, 227,232, 238
— cohomology, 261, 232, 238
— extensions, 232,238
— modules, 227,232
universa enveloping algebra u(g), 227
restriction map (res), 174, 185, 189-196, 211,
214,234
Rf,, 53, 396-398, 402, 406ff. See a0 fi.
RF. See derived functor.
RHom and hyperext, 63, 398ff, 405ff
Riemann surface, 205
right adjoint. See adjoint functors.
right exact functor. See functor.
right resolution, 40
Rinehart, G., 358
Rings (category of rings), 418ff
ring spectrum, 415
R-mod, xiv, 1, 25, 418
Rosenberg, A., 322,351
rotation of triangles. See triangles.
Russdlis paradox, 417

st (circle), 131, 205, 331, 361

§”. See sphere, sphere spectrum.

SA (category of simplicia objects in A), 254,
271ff

satellite functors, 32

saturated. See multiplicative system.

SBI sequence, 335-338, 342-348, 352, 354,
361

Schack, S. D., 323

Scheja, G., 114

schemes, 354, 396, 401, 406

Schur, I., 182, 186, 199

Schuris Lemma on simple modules, 244

Schur multiplier, 199,203

Schur-Zassenhaus Theorem, 186

Second fundamental sequence for Q. 309,
314,318
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section of an extension, 77, 182, 185, 187
section of a sheaf. See global section.
semidirect product:
of groups, 176, 182ff, 197
of Lie algebras, 231-234, 237, 247, 248
semisimple rings, 95ff,110, 309, 314, 342
— Lie algebra. See Lie algebra.
semi-simplicia objects, 258ff, 273,278
sequence. See exact -, Koszul —, regular -.
separable algebras, 309ff, 316, 336, 342
separable closure K of afield, 207ff, 213,214
separable field extension, 207, 308-309, 316ff
separably generated field extension, 315ff
Serre fibration 127£f, 188, 204ff
Serre, J-P., 117, 128, 195
Serre subcategory, 384-5, 389-390, 393
Sets (category of sets), 260, 281-285, 293,
332,417-424, 428, 430
set-theoretic problems, 183, 379-382, 422,
423. See also universes.
Shapirois Lemma, 162, 169, 1711f, 195, 206,
282
shedfification, 27, 53, 55, 410, 431
sheaves on a space X, 25, 26ff, 42, 51, 53ff,
115, 152, 285, 354, 387, 396, 398,
406410
Sheaves(X) (category of sheaves on X), 26,
42, 51-55, 58, 80, 115, 152, 285, 380,
386, 390, 397ff, 426-431
constant sheef, 26, 51, 54
of C*° functions, 26
of continuous functions, 26, 27
direct image —. See direct image shesf.
enough injective sheaves, 42.80
inverse image —. See inverse image sheaf.
sheaf Hom Hom, 402,407
skyscraper sheaf, 42, 51, 54, 285
stalk of a sheaf, 42, 54, 285, 387
short exact sequence, 27-31, 45, 49, 76, 130,
212
of complexes, 7, 10ff, 19, 231f, 45, 87, 334
of cyclic objects, 334
of Lie algebras, 217ff, 232,234
of towers of modules, 81ff, 137ff
shuffle elements 5,4, 324-5
shuffle product V, 181, 278, 284, 291, 319ff,
324,350
signature idempotent &, = e{™, 324ff, 350,
353,364. See aso idempotent.
sign trick, 8, 10, 58, 62, 99, 146, 193, 275,
321, 328, 333, 359, 360
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simple algebras. See Brauer group, Lie
agebras.
simplex (simplices), 4, 254, 256ff, 268
simplicial category A, 255ff, 269, 27 Lf, 331ff
simplicia complex, 256-258. See also chain
complex.
combinatoria —, 258, 261, 262
geometric —, 4, 5,19, 256, 258, 261
simplicia homology. See homology.
— of acotriple, 286ff
simplicia homotopy. See homotopy.
simplicial objects, ch.8, 295, 301, 329-344,
415
aspherica —. See aspherical.
augmented —, 274, 278ff, 286ft, 295,298
constant —, 254, 270, 289
simplicia identities, 256, 275
simplicia resolution, 274. See also resolution.
simplicial set, 257-267, 270, 275, 293
fibrant —. See fibrant smplicial set.
singular —, 260ff, 264,412
simply connected Lie algebra, 249ff
simply connected topological space, 128ff,
158, 204, 247, 361
singular chain complex. See chain complex.
singular simplicia set S(X). See simplicia set.
skeletal subcategory, 422, 423, 431
SL, (specia linear group), 199, 202-205
d,, 217,229, 241-248, 363ff
small category, 12, 25, 29, 43, 80, 3791, 418,
421,422,428
smash products of spectra, 415
smooth algebra, 296, 313ff, 322-326, 337,
350ff
smooth agebraic variety, 105
smooth manifold. See manifold.
Snake Lemma, 111f, 31, 38, 68, 70, 81, 156
SO,, 131,205
solvable radical. See Lie algebras.
Spec(R), 115,397
specia linear group. See SLj.
specia linear Lie algebra. See sl,.
spectrain topology, 408ff
CW spectra, 390, 409, 410ff, 415
spectral sequences, 8, 9, 83, 100, 122, ch.5,
402ff
Bockstein -, 158ff
bounded —,123ff, 132, 135, 159
bounded below —, 125ff, 132, 135
bounded convergence, 123, 135. See aso
convergence.

Index

collapsing a ET, 124, 136, 143ff, 151, 197,
206, 239, 298ff, 335, 342, 35 1,394
Connesi  —, 346, 348ff
converging —,123ff, 126, 1351f, 239. See
aso convergence.
degenerates (= collapses at E?)
E? terms, 121, 124, 128ff, 142ff, 196
E® terms, 122-127, 135, 137, 140, 156,
158
edge maps, 124, 128, 151, 196, 234, 335
Eilenberg-Moore —, 36 1
first quadrant —, 120-127, 132, 135, 144,
145, 1511f,195, 232, 266, 276, 296, 308,
335, 3591f
Grothendieck —, 139, 150ff, 195ff, 233,
403ff
half plane —, 125, 143
Hochschild-Serre — (for Lie algebras),
232-236, 342, 368
hyperhomology —, 148ff, 157, 1667,206,
402ff
Ktinneth —, 143
Leray —,152, 406ff
Leray-Serre — (for Serre fibrations), 127ff,
132,206
Lyndon/Hochschild—Serre — (for groups),
190, 195ff, 211, 214, 232, 342, 406
multiplicative structure, 127, 134
-of a double complex, 141ff, 298, 394
— of an exact couple, 155ff. See also
exact couples.
regular —, 125-126, 139ff, 157
isix spectral sequencest of EGA I, 404
with 2 columns, 121, 124
with 2 rows, 124
spectrification functor, 410. See also 2%
functor.
spectrum. See spectra.
sphere §",130-131, 205, 406
sphere spectrum S, 408
Spin group Spin,, 202
split complex, 16-19, 24
split exact complex (or sequence), 2, 16ff, 34,
45, 871f, 113, 114, 1641f, 178, 227, 275,
289, 299, 301, 314, 318, 352
k-split complex, 289ff, 298, 311
split extensions. See extensions.
splitting field, 207,309
stabilization homomorphisms, 365
stable homotopy category D(S), 407415
Stalings, 1., 176
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standard complex, 239. See dso Chevalley-
Eilenberg complex.

Steinberg group Sty, 203,294

Storch, U., 114

strict triangle on a map u, 371ff

strictly upper triangular matrices. See .

Structure Theorem of semismple Lie agebras,
243

subcomplex, 6, 191f, 83

suspension spectrum, 409

suspension SX of a space X, 24,409

-SE of a spectrum E, 411ff

Swan, R., 170, 269, 294

symmetric algebra Sym (M), 285-286, 297ff,
368

symmetric group E,,286, 324ff, 353, 364ff

syzygy, 47, 93ff, 99ff, 109

tm (upper triangular Lie algebra), 217, 219,
235
tangent space of aLiegroup, 2 16
Tate cohomology, 168ff, 173
tensor algebra T(M), 223, 228, 254, 261, 285,
303, 337, 347, 355ff, 412, 418, 420ff
tensor product, 52, 145, 300, 354,421. See
also Tor.
adjoint to Horn, 52ff, 405,430
of chain complexes, 58ff, 65, 88ff, 111,
143ff, 165277,284
of simplicial modules, 277, 319
total tensor product (in derived category),
394ff, 415
termina object, 5, 298, 383,419
tetrahedron, 4
Thomason, R., 408
3 x 3 Lemma, 11
Top (category of topological spaces), 418-419
topological derived category. See stable
homotopy category.
topologica group, 82, 209
topological space X, 4-5, 17, 191f, 26ff, 42,
51, 53, 84, 88ff, 115, 1271f, 150, 152,
158, 203-208, 2571, 260, 262, 319,
396402, 406, 4081f, 423
presheaves on —. See presheaves.
sheaves on —. See sheaves.
Tor-dimension. See dimension.
Tor-dimension Theorem, 92, 94
Tor functor, 32, 36, 53, 56.58, ch.3, 92ff, 104,
108, 110, 114, 128, 143-144, 148-149,
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157, 1611f,172, 221, 225, 228, 277, 287,
289, 295, 303, 342, 3954f, 404, 423, 429
external and interna products for Tor. See
products.
hypertor Tor. See hypertor.
relative Tor, 288fT, 302ff, 323
torsion group, 25, 31, 66ft, 73, 74, 158, 209,
213, 420, 423, 426
torsionfree abelian group, 25, 67, 69, 74, 158
isflat, 67, 69
torsionfree group, 205
total complex (Tot), 8, 9, 15, 100, ch.5, 276ff,
335, 345ff 426
direct sum — Tot®, 8, 9, 58ff, 141-149,
193, 284, 328, 3591ff, 394ff
product — Totl ], 8, 9, 60F, 856F, 1415t
149, 337-348, 352, 357, 360
total degree of a double complex, 122, 132,
154
total Horn. See Hom total complex, hyperext,
RHom.
totally disconnected space, 208ff
total space(see Serre fibration)
total tensor product ®L, 3951f, 402,415
total tensor product chain complex. See
tensor product.
tower of abelian groups or modules, 80ff,
1171f, 133, 136, 140, 152, 337, 429. See
also lim!
double tower, 139, 153
trace, 173, 217, 229, 243ff
trace map in homology, 328ff, 336, 362ff
transcendence basis of afield, 3 15
transfer maps, 174, 194ff
transitivity of smoothness, 314, 315, 322
— for Andre-Quillen homology, 297
trandate C{n] of acomplex, 9, 10, 59, 63, 83,
99, 113, 147, 270, 273-274, 346,348,
352, 364, 366, ch.10
of a double complex, 60, 335, 337, 346,
348,353
trandation. See trandlate, triangulated category.
trandation functor T,374ff, 386, 390, 408
triangles, 15, 374ff, 412
exact triangles, 153ff, 371, 374ff, 390,392,
399, 412ff
in D(d), 386,389
in K(d), 371ff, 385
rotation of -, 372,374,413
triangulated category K, 15,374, ch.10
morphisms between —. See morphisms.
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triangulated category K (cont.)
triangulated subcategory, 377, 378, 389-
390, 402ff
triple T, 279ff
triple cohomology, 286ff
trivial G-module, 160ff, 278
trivial g-module, 216ff, 229
trivial mixed complex, 349ff
trivid module functor, 160- 161, 220-22 1
truncated polynomials. See polynomia ring.
truncations (good truncation tC and brutal
truncation o C)
of acomplex, 9, 99, 270, 274, 349,415
of adouble complex, 60, 85, 337
Tsenis theorem, 214
Tsygan, B., 333, 362, 367
Tsyganis double complex CC,,, 333. See dso
double complex.

Unique Factorization Domain, 111
unit n of adjunction, 430. See aso adjoint
functors.
universal central extension, 198ff, 248{f, 294
Universal Coefficient Theorems, 83, 871f, 89,
128, 144, 164,196, 296, 307
with supports, 115
universal S-functor, 32ff, 43, 47-5 1, 67, 81,
86, 118, 189, 194, 212, 271, 276, 278,
288, 290, 423
universal enveloping agebra U(g), 223ff,
238ff
of arestricted Lie algebra u(g), 227
universes, 379-380, 385,409
upper triangular matrices. See ty,.

van der Waerden, B. L., 247

vector fieldson aLie group, 216

vector spaces over a field, 1ff, 15, 25, 74, 83,
97, 103, 173, 227, 241, 244, 311, 318,
358, 423, 430

Verdier, J-L., 374, 378, 407
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Vigué-Poirrier, M., 323
Villamayor, O., 3 11, 342

von Neumann, J., 97

von Neumann regular rings, 97ff

Walker, E., 96

Wang sequence, 130ff

weak dimension. See dimension.

weak homoatopy equivalence. See homotopy
equivalence.

wesakly effaceable functor, 28ff

Wedderbumis Theorem, 95, 187,309

Wedderburnis Principal Theorem, 3 14

wedge of spectra (E v F), 410ff

weight, 354ff

well-powered category, 385, 387

Weyl, H., 247

Weylis Theorem, 246ff, 363,364

Whitehead, J. H. C., 188,247, 313

Whiteheadis Lemmas, 245ft, 250, 252

Whiteheadis Theorem, 390, 4 12

Whitney, H., 277

Y oneda embedding, 25, 28, 29, 261, 422, 424
Y oneda Ext groups, 791ff, 188

Yoneda Lemma, 28, 52, 308, 309

Yoneda, N., 79

Zp (p-adic integers), 74, 82, 85, 207ff, 215,
343

Z pe= (the divisible p-group), 39, 74, 85

Z(C) (cycles in a chain complex), 3

ZG, ZR. See cyclic objects.

Zassenhaus, H., 186

Zdinsky, D., 311

zerodivisors, 105ff. See also nonzerodivisors.

zero object, 5, 370, 383, 408, 411, 419, 425

Zilber, J., 259, 277

Zisman, M., 382

Zomis Lemma, 39



