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Abstract. In this paper, we consider a slab represented by the interval 0 < x < 1, at the initial

temperature u0(x) ≥ 0 and having a heat flux q(t) on the left face and a nonlinear condition on

the right face x = 1. We consider the corresponding heat conduction problem and we assume that

the phase-change temperature is 00C. We prove that certain conditions on the data are necessary

and sufficient in order to obtain estimations of the occurrence of a phase-change in the material.
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1 Introduction

We consider a slab represented by the interval 0 < x < 1 and assume that

the phase-change temperature is 00C. We study the following heat conduction

problem:

Problem

uxx = ut , in D = {
(x, t) : 0 < x < 1, t > 0

}
, (1)

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (2)

ux(0, t) = q(t), t > 0, (3)

ux(1, t) = f (u(1, t)), t > 0, (4)
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where u0(x) ≥ 0 and q(t) > 0. We assume that the data satisfy the hypotheses

that ensure the existence and uniqueness property of the solution of problem [1,

pag. 67]. In this heat conduction problem the material is initially in the liquid

phase. We explicit the relation among the heat flux q and the function f (s),

in order to have a change of phase in the material by considering that the flux

at x = 1 depends on the temperature u(1, t), through (4). The solution of the

problem is given by [1]:

u(x, t) =
∫ 1

0

{
θ(x − ξ, t) + θ(x + ξ, t)

}
u0(ξ)dξ

− 2
∫ t

0
θ(x, t − τ)q(τ )dτ

+ 2
∫ t

0
θ(x − 1, t − τ)f (φ(τ))dτ,

(5)

where the function φ(τ) is the solution of a Volterra integral equation given by:

φ(t) = w(1, t) − 2
∫ t

0
θ(1, t − τ)q(τ )dτ + 2

∫ t

0
θ(0, t − τ)f (φ(τ))dτ,

with

w(x, t) =
∫ 1

0
{θ(x − ξ, t) + θ(x + ξ, t)} u0(ξ)dξ,

and θ(x, t) is defined by:

θ(x, t) = 1 + 2
∞∑

k=1

e−k2π2t cos(kπx).

The reduction of the problem with boundary condition ux = f (t, u) to an

integral equation was studied by [14], [15], [16].

First, from the uniform absolute convergence of the series for θ and its partial

derivatives, it is clear that, for t > 0, θ(x, t) > 0, the θ function is continuous

and its partial derivatives are continuous [see 1]. If the data verify the following

conditions:

F ≥ f (s) ≥ f0 > 0, s > 0, (6)

u0(x) ≥ 0, u
′
0(x) > 0, 0 ≤ x ≤ 1, (7)

q(t) > 0, t > 0, (8)
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then by using the maximum principle we have that u(0, t) ≤ u(x, t) in 0 < x < 1

since we can obtain ux(x, t) > 0 [11].

We will consider the following two possibilities:

1. The heat conduction problem (1)-(4) is defined for all t ≤ t∗, where

t∗ < ∞.

2. There exists a time tch < ∞ such that u(0, tch) < 0, that means another

phase appears (the solid phase) for t ≥ tch.

These possibilities depend on the data u0, q, f for the Problem. We try to clarify

this dependence by finding necessary and sufficient conditions on u0, q, f in

order to have the two possibilities. In [4] the one-phase Stefan problem with

prescribed flux or convective boundary condition at x = 0 is studied (see also [5,

6]). This paper was motivated by [2] and [3](see also [7, 9, 10]). In [8] the author

find an exact solution for a particular type of heat flux q. In the paper by Tarzia-

Turner (1992) the authors have presented a similar problem with temperature

and convective boundary conditions and they proved that certain conditions on

the data are necessary and sufficient in order to obtain a change-phase in the

material. In the work by Berrone (1994) several similar problems are analyzed

too. He considered several methods for the study of the subsistence of the model

that involve the reaction-diffusion equations. In [12] the authors have studied

a similar problem in spherical coordinates. A large bibliography on the Stefan

and related problems was given in [13].

This paper extends the problem introduced in [2] to the case of nonlinear

boundary condition.

When the radiation of heat flux from a solid is considered, the heat flux is

often taken to proportional to the fourth power of the difference of the boundary

temperature of the surroundings. Here, f represents a general radiation law.

In this paper we will study case 1 in Section 2, where we obtain bounds for

the time t∗ in order to have a heat conduction problem for t < t∗, with q a

constant function or a bounded function. In Section 3, we consider case 2, we

find estimations for the time tch when another phase will appear. Finally we

compare the two cases.
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2 Subsistence of the model of heat equation

2.1 The case when the heat flux q is constant

In this subsection we will consider the constant flux q(t) = q, in the last remark

of this section we will generalize the results to the case of q(t) a bounded function

of t . The condition u(0, t) > 0 for all t ≤ t∗ is equivalent to:

q < min[0,t∗] �(t). (9)

where

�(t) =
∫ 1

0 θ(ξ, t)u0(ξ)dξ + ∫ t

0 θ(−1, t − τ)f (φ(τ))dτ∫ t

0 θ(0, t − τ)dτ
, (10)

by using that θ(x, t) is positive and even in x. We emphasize that �(t) > 0

since θ(x, t) > 0, f (s) > 0 and u0(x) ≥ 0. Moreover this minimum of � exists

since we will find a lower bound �(t) for �(t) and �(t) will have a positive

minimum. Since q is constant we take the minimum value of � in order to ensure

u(0, t) > 0 for all t ≤ t∗. We are looking for a function �(t) more simple than

the expression we have as a bound for q such that �(t) ≤ �(t), then a sufficient

condition in order to have the subsistence of the heat conduction problem for all

t ≤ t∗ is:

q < min[0,t∗] �(t).

The following inequalities for the function θ(x, t) are needed.

Lemma 1. The function θ satisfies the following inequalities:

1. ∫ t

0
θ(0, t − τ)dτ ≤

∫ t

0
1 +

√
π√

(t − τ)
dτ = t + 2

√
πt,

for all t > 0.

(11)

2. ∫ 1

0
θ(ξ, t)u0(ξ)dξ ≥ u0(0), for all t > 0. (12)
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3. For t ≤ K: ∫ t

0
θ(−1, t − τ)f (φ(τ))dτ >

1

2
αK2f0,

and for t ≥ K:∫ t

0
θ(−1, t − τ)f (φ(τ))dτ >

∫ K

0
αtf0dτ +

∫ t

K

(1 − ε)f0dτ

= 1

2
αK2f0 + (1 − ε)f0(t − K),

(13)

for a suitable election of the parameters K , ε and α(K).

Proof.

1. The inequality (10) comes from the following inequality:

θ(0, t − τ) ≤
∫ ∞

0
e−k2π2t dk.

This inequality is obtained estimating the function θ(0, t − τ) by looking

θ as a lower Riemann sum.

2. In this case the inequality follows from:∫ 1

0
θ(ξ, t)dξ = 1,

and that the function u0(x) is nondecreasing.

3. For the last inequality we use the change of variable:

z = t − τ, dz = −dτ,

now, we obtain the following relation:∫ t

0
θ(−1, t − τ)f (φ(τ))dτ =

∫ t

0
θ(−1, z)f (φ(t − z))dz.

Therefore, we can bound the function theta in this manner:

θ(−1, t) ≥ g(t) =

 αt t ≤ K

1 − ε t ≥ K,
(14)
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for a suitable election of the parameters K , ε and α(K). For example we

can choose ε(K) = 1 − θ(−1, K) and α(K) = 1 − ε

K
for a given K .

This was motivated by the geometrical form of the function θ(−1, t − τ)

(i.e. increasing, concave, θ(−1, 0+) = 0 and θ(−1, +∞) = 1), then by

construction we obtain for t ≤ K:∫ t

0
θ(−1, t − τ)f (φ(τ))dτ >

∫ K

0
αtf0dτ

= 1

2
αK2f0,

(15)

and for t ≥ K:∫ t

0
θ(−1, t − τ)f (φ(τ))dτ >

∫ K

0
αtf0dτ +

∫ t

K

(1 − ε)f0dτ

= 1

2
αK2f0 + (1 − ε)f0(t − K).

(16 �)

The desired bound for �(t) is obtained by applying this last lemma.


(K, t) =




u0(0) + 1
2αK2f0

t + 2
√

πt
t ≤ K

u0(0) + 1
2αK2f0 + (1 − ε)f0(t − K)

t + 2
√

πt
t ≥ K.

(17)

We remark that ε = ε(K), α = α(K) and we defined for a given t∗ the function

�(t) = 
 (t∗, t) (i.e. we replace K by t∗). Then we obtain the following lemma:

Lemma 2. For t ≤ t∗ holds:

�(t) ≤ �(t),

where

�(t) = 
(t∗, t).

Now we can conclude the following statement.
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Theorem 1. For a given t∗, the problem is a heat conduction problem for t ≤ t∗

if:

q < �(t∗).

Proof. Using the fact that �(t) is decreasing (for t ≤ t∗) and �(t) ≤ �(t),

we obtain the following inequality:

q < �(t∗) ≤ �(t) ≤ �(t),

for t ≤ t∗ and using (9) we can obtain u(0, t) > 0 for t ≤ t∗. �

For a given t∗, we remark that the maximum K for the construction of �(t)

is t∗ since the limt→∞ 
(K, t) = (1 − ε)f0 > 0 and for fixed K the function


(K, t) is increasing for t ≥ K .

From the theorem 1, we can obtain an explicit expression for the time t∗, for

this we use the fact that

αK = 1 − ε,

obtained by the definition of the function g(t) and the following equation:

q = �(t∗) = u0(0) + 1
2 (1 − ε)t∗f0

t∗ + 2
√

πt∗
. (18)

We can think the last equation as a quadratic equation. We look for their roots.

We obtain the following Corollary:

Corollary 1. The time t∗ in theorem 1 is given by:

t∗ =

−q

√
π +

√
q2π − (

1
2 (1 − ε)f0 − q

)
u0(0)

q − 1
2 (1 − ε)f0




2

. (19)

Where we choose the positive root and we needed that:

q ≥ 1

2
(1 − ε)f0.
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Remark 1. We emphasize that the time t∗ depends on the election of the func-

tion g(t), that is t∗ depends on K , ε(K) and α(K).

Remark 2. By the theorem 1 for any q > 0, there exists a time tq > 0 that

implies there is not a phase-change process for t ≤ tq . Therefore a necessary

condition in order to have an instantaneous change of phase for the problem is

q(0+) = +∞. If we consider the Problem for a slab [0, x0] where x0 = ∞, then

we can replace the condition (4) by:

u(∞, t) = u0(∞), t > 0.

In [2] the authors show that the condition q(0+) = ∞ is not sufficient for the

case of a semi-infinite domain.In the example they take:

1. x0 = +∞,

2. u0(x) ≥ β0 > 0, x > 0,

3. q(t) ≤ q0(t) = β0√
πt

.

The solution u(x, t) of this problem satisfies the following inequality:

u(x, t) ≥ β erf

(
x

2
√

t

)
≥ 0,

for x ≥ 0 and t > 0.

Moreover the particular case q(t) = β0√
πt

, then q(0+) = +∞ and it is not

sufficient in order to have and instantaneous change of phase.

It is an open question to prove that this condition is not sufficient for the case

of a finite domain.

2.2 The heat flux q is a bounded function of t

We can find bounds for the case of a bounded function q = q(t), where we

consider

min
[0,+∞)

q(t)

in the equation (9).
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Theorem 2. For a given time t∗, the Problem is a heat conduction problem for

t ≤ t∗ if:

Q ≤ �(t∗), where Q = min
[0,+∞)

q(t).

Proof. In this case the condition u(0, t) > 0 for t ≤ t∗ is equivalent to:∫ t

0
θ(0, t − τ)q(τ )dτ <

∫ 1

0
θ(ξ, t)u0(ξ)dξ

+
∫ t

0
θ(−1, t − τ)f (φ(τ))dτ,

(20)

since θ(0, t) > 0, and as q(t) is bounded we can use the fact that:

Q

∫ t

0
θ(0, t − τ)dτ <

∫ t

0
θ(0, t − τ)q(τ )dτ, (21)

where

Q = min[0,+∞] q(t) ≤ min[0,t∗] q(t),

in order to obtain the following inequality:

Q ≤ min[0,t∗]

∫ 1
0 θ(ξ, t)u0(ξ)dξ + ∫ t

0 θ(−1, t − τ)f (φ(τ))dτ∫ t

0 θ(0, t − τ)dτ

= min[0,t∗] �(t).

(22)

Then a sufficient condition to have u(0, t) > 0 for t ≤ t∗ is given by

min[0,t∗] �(t) ≥ min[0,t∗] �(t) = �(t∗) ≥ Q. �

3 Existence of a phase-change process

In this section we will find an estimation for the time tch in order to have a

change-phase process in the material. The condition for u(0, tch) < 0 for t = tch

is equivalent to:

q > �(tch), (23)
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where

�(tch) =
∫ 1

0 θ(ξ, tch)u0(ξ)dξ + ∫ tch
0 θ(−1, tch − τ)f (φ(τ))dτ∫ tch

0 θ(0, tch − τ)dτ
. (24)

We emphasize that this is different from the case in section 2 where we consider

for u(0, t) > 0 for t ≤ t∗. We need an upper bound function δ(t) for the function

�(t) such that δ(t) ≥ �(t) (where � was defined in section 2). We suppose

now that q > δ(tch); this implies the inequality (23).

The following inequalities for the function θ are needed.

Lemma 3. The function θ satisfies the following inequalities:

1. ∫ t

0
θ(0, t − τ)dτ ≥ 2(π − 2)√

π

√
t + t for all t > 0. (25)

2. ∫ 1

0
θ(ξ, t)u0(ξ)dξ ≤ u0(1) for all t > 0. (26)

3. ∫ t

0
θ(−1, t − τ)f (φ(τ))dτ ≤ F t. (27)

Proof.

1. The inequality (26) comes from the following inequality:

θ(0, t − τ) ≥
∫ ∞

1
e−k2π2t dk.

This inequality was obtained estimating the function θ(0, t−τ) by looking

at θ as an upper Riemann sum.

2. In this case the inequality follows from:∫ 1

0
θ(ξ, t)dξ = 1,

and that the function u0(1) is the minimum of the u0(x).
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3. For this last inequality we use:

θ(−1, t − τ) ≥ 0,

and the hypothesis for the function f . �

The function δ is obtained by using the last lemma:

δ(t) = u0(1) + F t

C
√

t + t
, (28)

where the constant C is given by:

C = 2(π − 2)√
π

.

The function δ(t) is decreasing in [0, tmin] , where:

tmin =
(

u0(1) +√
u0(1)(u0(1) + C2F)

CF

)2

.

Then we obtain the following result:

Theorem 3. If

q > δ(tch),

with tch ≤ tmin, then another phase appears in the Problem for some t ≤ tch.

Remark 3. In this case the heat conduction model is not more valid. We have

to express the problem as free boundary problem for a two phase Stefan problem

with appropriate conditions from some t ≤ t∗.

Remark 4. We can take t∗ = tch ≤ tmin in Theorem 1. From the fact that:

δ(tch) ≥ �(tch),

we conclude that:
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1. If

q ≤ �(tch),

then u(0, t) ≥ 0 for all t ≤ tch.

2. If

q ≥ δ(tch),

then the material changes of phase before that the time tch.

3. It is an open question what happens if:

δ(tch) < q < �(tch).

4 Conclusions

In section 2 we have found an expression for t∗ for a given q in order to have a

heat conduction problem for t ≤ t∗ (i.e. the material does not change of phase).

In section 3 we have found an condition for tch < tmin for a given q in order to

have a change of phase for t ≤ tch (i.e. the material changes of phase before

that the time tch). We have studied this problem through the exact solution (in a

complex form with integral equations ) and we have considered bounds of their

terms in order to make easy the explicit expression of the time for the occurrence

or not of the change of phase in the material.
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